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Abstract:  Particle swarm optimisation (PSO) is introduced to implement a new constructive learning 

algorithm for training generalised cellular neural networks (GCNNs) for the identification of spatio-

temporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to 

successively approximate the desired signal by progressively pursuing relevant orthogonal projections. 

This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, 

which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage 

hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, 

the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the 

network, where adjustable parameters of the associated units are optimised using a particle swarm 

optimiser. The resultant network model produced at the first stage may be redundant. In the second 

stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is 

applied to refine and improve the initially trained network. The effectiveness and performance of the 

proposed method is validated by applying the new modelling framework to two spatio-temporal 

evolutionary system identification problems. 

Keywords: Cellular neural networks, coupled map lattices, evolutionary algorithms, mutual 

information, neural networks, orthogonal least squares, parameter estimation, particle 

swarm optimisation, spatio-temporal evolutionary systems. 
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1.  Introduction 

Cellular neural networks (CNNs) (Chua and Yang 1988a, 1988b, Chua and Roska 1993, 2002, 

Roska and Chua 1993) are a class of nonlinear continuous computing and processor arrays that are 

well suited for signal and image processing. During past decades, CNNs have been widely 

investigated for both static and dynamic image processing applications, see for example the work by 

Roska and Chua (1992), Crounse et al. (1993, 1996), Chua et al. (1995), Crounse and Chua (1995), 

Thiran et al. (1995), Venetianer et al. (1995), Stoffels et al. (1996); see also the recently published 

papers by Lin and Yang (2002), Sbitnev and Chua (2002), Itoh and Chua (2003, 2005), Morfu and 

Comte (2004), Shi (2004), Chen et al. (2005), Cai and Min (2005), Kanakov et al. (2006), and He and 

Chen (2006). The mathematical representation of CNNs consists of a large set of coupled nonlinear 

ordinary differential equations (ODEs) that may exhibit a rich spatio-temporal dynamics (Gilli et al. 

2002). It has been shown that CNN dynamics present a broader class of behaviours than PDEs, and the 

equivalence between discrete-space CNN models and continuous-space PDE models has been 

rigorously investigated in Gilli et al. (2002). 

Spatio-temporal evolutionary (STE) phenomena widely exist in various areas of science and 

engineering (Kaneko 1993, Adamatzky 1994, Chua and Roska 2002, Wolfram 2002). One salient 

feature of STE systems, compared with classical pure temporal signals or static images, is that there 

exists an inherent evolution law that determines the evolution procedure of an STE system. The 

individual value of a state at a local position of the current pattern, at the present time instant, is 

dependent on individual values at several local positions of one or more previous patterns. In many 

cases, the evolution law of a real world STE system is unknown and needs to be identified from 

observed patterns. Compared to classical pure temporal signal modelling and static image processing, 

the identification and modelling of high dimensional STE systems is much more challenging. 

This study considers the identification problem for STE systems, and the objective is to introduce a 

novel automatic and systematic identification procedure that can be used to effectively identify, from 

available observations, the evolution dynamics of an STE system, by constructing a class of discrete-

time generalised CNN (GCNN) models. The construction procedure of the GCNN model is composed 

of two stages. In the first stage, a new constructive learning method, called the orthogonal projection 

pursuit (OPP), implemented with a particle swarm optimisation (PSO) algorithm, is used to form an 

initial coarse GCNN model, by recruiting a number of optimised basis functions into the model. The 

coarse model produced by the OPP learning algorithm may be redundant. Thus, in the second stage, a 

forward orthogonal regression (FOR) learning algorithm (Billings and Wei 2007a, Wei and Billings 

2007), implemented using a mutual information estimation method, is then applied to refine and 

improve the initially obtained GCNN model by removing redundant basis functions from the model. 
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The construction of the GCNN model involves solving some nonlinear-in-the-parameters problems. 

Traditionally, Gauss-Newton type nonlinear optimisation methods are often applied to estimate the 

unknown model parameters, with a stipulation that the gradient of the associated object functions are 

differentiable and easy to explicitly calculate. In this study, however, the recently developed particle 

swarm optimisation (PSO) algorithm (Eberhart and Kennedy 1995, Kennedy and Eberhart 1995) is 

employed as an alternative to solve the associated nonlinear optimisation problem where the objective 

function is not differentiable. Compared with classical nonlinear least squares algorithms, the PSO 

algorithm, as a population-based evolutionary method, possesses several desirable attractive properties, 

for example, this type of algorithm is easy to implement but quite efficient in dealing with a wide class 

of nonlinear optimisation problems. As a stochastic algorithm, PSO does not need any information on 

the gradients of the relevant object functions, this ensures that the PSO is very suitable for nonlinear 

optimisation problems where the relevant object functions are not differentiable or the gradients are 

computationally expensive or very difficult to obtain. 

The paper is organised as follows. In section 2, the architecture of the GCNN model is presented. 

In section 3, a two-stage hybrid training scheme, involving both the OPP+PSO approach and a 

forward orthogonal regression algorithm, is described in detail. In section 4, an example is presented 

to demonstrate the application of new modelling framework. Finally, the work is summarised in 

section 5. 

2.  The Architecture of the GCNN Model 

In this study, the 2-D case, which has obvious physical meaning and which is widely applied in 

practice, is taken as an example to illustrate the construction procedure of the GCNN model. It is 

known that space-invariant CNN models are widely applied to describe real world problems in most 

applications (Chua and Roska 2002). The discrete-time counterpart of the standard space-invariant 

CNN representation will thus be employed as the elementary building block to construct the GCNN 

model, where a number of optimised discrete-time CNN cell blocks, which are used as the basis 

functions, are superposed and integrated to represent a given STE system. 

2.1 The discrete-time CNN cell model  

Assume that the 2-D image or pattern produced by an STE system, at the time instant t, consists of 

a JI ×  rectangular array of cells, ),( jiC
t , with Cartesian coordinates (i,j), i=1,2, …, I, j=1,2, …, J.  

Following Chua and Roska (2002), let ),( jiS
t
r be the sphere of influence of the radius r of cell 

),( jiC
t , at the time instant t,  defined as  

}|}||,{|max:),({),(
1,1

rqjpijiCjiS
JqIp

tt
r ≤−−=

≤≤≤≤
                                                                 (1) 
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Table 1.    The )12()12( +×+ rr  neighbourhood 

 

C(i-r, j-r) 
x1 

… C(i-r, j) 
xr  

… C(i-r,j+r) 
x2r+1 

… … … … … 

C(i, j-r) 

xr(2r+1)+1 

… C(i,j) 

xr(2r+1)+(r+1) 

… C(i,j+r) 

x(r+1)(2r+1) 

 …  … … 

C(i+r,j-r) 
x2r(2r+1)+1 

… C(i+r,j) 
x2r(2r+1)+(r+1) 

… C(i+r,j+r) 
x(2r+1) (2r+1) 

 

where t=1,2, …, i=1,2, …, I, j=1,2, …, J, and r is a non-negative integer number indicating how many 

neighborhood cells are involved in the evolution procedure. The sphere ),( jiS
t
r  is sometimes referred 

to as the )12()12( +×+ rr  neighbourhood. Let R∈)(, ts ji be the state variable representing the cell 

),(),( jiSjiC t
r

t ∈ . From the definition of ),( jiS t
r , a total of 2)12( +r state variables are involved in (1), 

see Table 1, where the symbol C(i,j) will be used to indicate cells at an arbitrary evolution time instant. 

Let )(, ts ji  be the (i,j)th cell to be updated at time t. The discrete-time, discrete-space and 

continuous-state CNN cell model is given below 

∑
−− ∈

−−−+=
),(),(
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)1(

0,
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)1(),()(

jiSqpC

qpji
t
r

t

tyqjpiActs ∑
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−−−+
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jiSqpC

qp
t
r

t

tuqjpiB  

∑
−− ∈

−−−+
),(),(

,
)2(

22

)2(),(

jiSqpC

qp
t
r

t

tyqjpiA L+−−−+ ∑
−− ∈ ),(),(

,
)2(

22

)2(),(

jiSqpC

qp
t
r

t

tuqjpiB  

∑
−− ∈

−−−+
),(),(

,
)( )(),(

jiSqpC

qp
t
r

t

tyqjpiA
ττ

ττ ∑
−− ∈

−−−+
),(),(

,
)( )(),(

jiSqpC

qp
t
r

t

tuqjpiB
ττ

ττ            (2) 

|]1||1[|
2

1
)( ,,,, −−+== jijijiji sssgy                                                                                      (3) 

where τ is the time lag, defined as a positive integer, indicating how many past images or patterns are 

involved in the evolution procedure; R∈jis , , R∈qpy , , R∈qpu , , and R∈0c are the state, output, 

input, and threshold of the cell C(i,j) , respectively; )(kA  and )(kB , with τ,,2,1 L=k , are called the 

feedback and the input synaptic operators (Chua and Roska 2002). Notice that the standard 

nonlinearity g may be defined as many other functions (Chua and Roska 1993).  
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2.2 The GCNN model  

For sake of simplicity of description, consider the zero-input (autonomous) class of STE systems. 

In an autonomous STE system, no external input image is imposed, and the output image at any time t 

is due exclusively to some initial conditions. Model representations for these situations can easily be 

extended, in a straightforward way, to other more complex cases. For an autonomous STE system, the 

state equation (2) becomes 

∑ ∑
≤− ≤−

−−−+=
rip rjq

qpji tyqjpiActs
|| ||

,
)1(

0, )1(),()(  

L+−−−+ ∑ ∑
≤− ≤−rip rjq

qp tyqjpiA
|| ||

,
)2( )2(),(  

∑ ∑
≤− ≤−

−−−+
rip rjq

qp tyqjpiA
|| ||

,
)(

)(),( ττ  

∑ ∑
−= −=

++ −+=
r

rp

r

rq

qjpiqp tyac )1(,
)1(
,0 ∑ ∑

−= −=
++ +−+

r

rp

r

rq

qjpiqp tya L)2(,
)2(

,  

∑ ∑
−= −=

++ −+
r

rp

r

rq

qjpiqp tya )(,
)(

, ττ                                                                                      (4) 

where ),(
)()(

, nmAa
kk

nm = for τ,,2,1 L=k . Combining (3) and (4), yields, 











−+== ∑ ∑ ∑

= −= −=
++

τ

1

,
)(

,0,, )())(()(
k

r

rp

r

rq

qjpi
k

qpjiji ktyacgtsgty                                                       (5) 

Equation (5) involves a total of 1)12(
2 ++= τrd variables. For convenience of description, introduce 

d single-indexed variables )(txk  as below 

)](),(,),([)( ,,, ktsktsktskt rjrijirjri −−−=− ++−− Ls                                                               (6) 

)](,),2(),1([)](,),(),([)( 21 τ−−−== ttttxtxtxt d sssx LL                                                       (7) 

where )()](,),([ 22 )12()12)(1(1
kttxtx

rkrk
−=++−+ sL  for τ,,2,1 L=k . For the case τ =1, the description (7) 

is shown in Table 1. Equation (5) then becomes 







+= ∑

=

d

m

mmji txccgty
1

0, )()(                                                                                                    (8) 

where each mc corresponds to one and only one 
)(

,
k

qpa  with rp ≤|| , rq ≤||  and τ,,2,1 L=k . 

Now assume that the true model of a STE system to be identified is of the form  

))(()( tfty x= ))(,),(),(( 21 txtxtxf dL=                                                                                 (9) 
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where y(t) represents the state variable )(, ts ji  corresponding to the central cell ),( jiC t . For a real-

world STE system, the true model f is generally unknown and needs to be identified from available 

observations. The task of STE system identification is to construct, based on available data, a model 

that can represent, as close as possible, the observed evolution behaviour. Unlike constructing static 

models for typical data fitting, the objective of dynamical modelling is not merely to seek a model that 

fits the given data well, it is also required, at the same time, that the model should be capable of 

capturing the underlying system dynamics carried by the observed data, so that the resultant model can 

be used in simulation, analysis, and control studies. 

In this study, the CNN cell model (8) is used as the elementary building block to approximate the 

unknown function f in (9). Let )();( 110 dd xcxccgg +++= Lcx , where T
dccc ],,,[ 10 L=c , 

T
dxxx ],,,[ 21 L=x and g is given by (3). The basic idea for constructing an GCNN model is to 

successively approximate the function f by progressively minimising the approximation errors. This 

generally starts from 00 =f (the initial approximation function is set to be zero), evolves in a stepwise 

manner by searching through steps j=1,2,etc.; at the jth step, the approximation jf  is augmented by 

including the jth construction function );( jjg cx that produces the largest decrease in the approximation 

error, that is, it minimises the objective function: 2
1

,
||);((||min cx

c
gff j α

α
+− − . The true function f is 

generally unknown, the relevant observations of this function are therefore often used for model 

estimation. 

Assume that after the mth step search, the approximation error has been deduced to a desired level, 

that is, a GCNN model that consists of a total of m CNN building blocks provides a satisfactory 

representation for a given STE system, in the sense that, 

εα ≤− ∑
=

m

j

jj gf
1

);( cx                                                                                                          (10) 

where ε is a predetermined threshold of approximation error. The coarse GCNN model can then be 

chosen as  

∑
=

=≈
m

j

jjj gff
1

);( cxα                                                                                                          (11) 

Notice that the m functions );( jj gg cx= , with j=1,2, …, m, involved in the coarse GCNN model (11) 

may be redundant, some refinement procedure may thus be required to improve the generalisation 

performance of the coarse model. Details of the two stage procedure for constructing the GCNN 

model is presented in the next section. 

 



 8 

3.  Constructing the GCNN model 

Inspired by the successful applications of projection pursuit regression (PPR) (Friedman and 

Stuetzle 1981) and other constructive learning algorithms (Jones 1992, Mallat and Zhang 1993, 

Hwang et al. 1994, Kwok and Yeung 1997a, 1997b, Wei and Billings 2004, Billings and Wei 2005), 

this study proposes a simple orthogonal projection pursuit (OPP) learning scheme, implemented by a 

particle swarm optimisation (PSO) algorithm. Similar to other constructive algorithms, models 

produced by the OPP algorithm may, however, be highly redundant. To remove or reduce redundancy, 

a forward orthogonal regression (FOR) learning algorithm (Billings and Wei 2007a, Wei and Billings 

2007), implemented using a mutual information estimation method, is applied to refine and improve 

the initially generated model by the OPP algorithm. 

Note that in the following, the inner product is defined for sampled vectors in N-dimensional 

Euclidian space, for example, the inner product of the two vectors TNuuu )](,),2(),1([ L=u and 

T
Nvvv )](,),2(),1([ L=v is defined as ∑ ==>=< N

k

T
kvku

1
)()(, vuvu ; this is different from that defined 

in (7), where the inner product is imposed to functions in )(2 RL . 

3.1  The OPP algorithm for coarse model identification 

Let NTNyyy R∈= )](),...,2(),1([y be the vector of given observations of the output signal, 

T
kkkk Nxxx )](,),2(),1([ L=x   the vector of the observations for the kth input variable, with k=1,2, …, 

d. For any given T
dccc ],,,[ 10 L=c , let )();( 110 ddcccg xxcXg +++= L , where ],,,[ 21 dxxxX L= .  

The basic idea of the OPP algorithm for coarse model identification is to successively approximate 

the function f by progressively minimising the approximation errors. The OPP algorithm is 

implemented in a stepwise fashion; at each step a construction vector that minimises the projection 

error will be determined. Starting with yr =0 , find a construction function );( 11 cXgg =  such that 

}||);({||minarg),( 2
0

,
11 cXgrc

c
ww

w
−= . The associated residual vector may be defined as 1101 grr w−= , 

which can be used as the “fake desired target signal” to produce the second construction vector 2g . 

However, it should be noted that the coefficients ),( 11 wc may not always be identical to the true 

(theoretical) optimal value *
1c , no matter what optimisation algorithms are applied. As a consequence, 

1101 grr w−=  may not be orthogonal with the construction vector 1g . To make the associated residual 

orthogonal with the relevant construction vector, the residual is then defined as 1101 grr α−= , where 

2
1111 ||||/, ggr >=<α .  

Assume that at the (n-1)th step, a total of (n-1) construction vectors );( jj cXgg = , with j=1,2, …, 

n-1, have been obtained. Let 1−nr be the residual vector associated with these (n-1) obtained vectors 
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when they are used to approximate the desired signal y . The nth construction vector can be obtained 

by choosing }||);({||minarg),( 2
1

,
cXgrc

c
ww n

w
nn −= −  and );( nn cXgg = . The associated residual vector 

can be defined as  

);( 1 nnnn cXgrr α−= −                                                                                                              (12) 

where 

2

1

||||

 ,

n

nn
n

g

gr ><= −α                                                                                                                       (13) 

From (12),  

2

2
12

1
2

|| ||

 ,
||||||||

n

nn
nn

g

gr
rr

><−= −
−                                                                                                 (14) 

By respectively summing (12) and (14) for n from 2 to m+1, yields 

m

m

n
n

n

nn rg
g

gr
y ∑

=

− +><=
1

2

1

||||

,
m

m

n
nn rg∑

=
+=

1

α                                                                                  (15) 

∑
=

− ><−=
m

n n

nn
m

1
2

2
122

||||

,
||||||||

g

gr
yr                                                                                               (16) 

The residual sum of squares, also called the sum of squares error, 2|||| nr , can be used to form a 

criterion to stop the growing procedure. For example, the criterion can be chosen as the error-to-signal 

ratio: 22 ||||||||ESR yrn= ; when ESR becomes smaller than a pre-specified threshold value, the 

growing procedure can then be terminated.  

Now the PSO based OPP algorithm can briefly be summarised as follows. 

The PSO+OPP algorithm: 

Initialisation: yr =0 ; ESR=0; 

while { η≥ESR or PEMmn ≤ };        //{η  is a pre-specified very small threshold value.}// 

//{mOPP is the maximum number of construction functions 

// permitted to be included in the network} // 

for n=1 to mOPP  

                    //{Starting from some random (but reasonable) value for the parameter vector c , optimise 

the following function using the PSO algorithm.}// 

}||);({||minarg),( 2
1

,
cXgrc

c
ww n

w
nn −= −  ;   

2

1

||||

 ,

n

nn
n

g

gr ><= −α ; 

nnnn grr α−= −1 ;    

22
||||||||ESR yrn= ; 

end for 

end while 
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      Note that for each n in the inner loop of the PSO+OPP algorithm, the associated PSO algorithm 

repeatedly runs 10 times, and the coefficients that produce the smallest value for the object function 

are chosen to be the parameters for the nth step search.  It is clear from (14) that the sequence 2
|||| nr  is 

strictly decreasing and positive; thus, by following the method given in Kwok and Yeung (1997b) and 

Huang et al. (2006), it can easily be proved that the residual nr is a Cauchy sequence, and as a 

consequence, the residual nr converges to zero. The algorithm is thus convergent. Notice that in the 

OPP algorithm, the elementary building blocks are some CNN cell models, where the unknown 

parameters are optimised by using some PSO algorithm that does not need any information on the 

gradients of the object functions, this enables the PSO to be very suitable for nonlinear optimisation 

problems where the relevant object functions are not differentiable or the gradients are 

computationally expensive or difficult to obtain. However, like the conventional projection pursuit 

regression algorithm, the OPP algorithm may produce redundant models. To refine and improve the 

OPP produced network models, the forward orthogonal regression (FOR) learning algorithm, assisted 

by a mutual information method (Billings and Wei 2007a, Wei and Billings 2007), is then applied to 

remove any severe redundancy. 

3.2  The PSO algorithm for parameter optimisation 

Particle swarm optimisation (PSO), originally inspired by sociological behaviour associated with, 

for example, bird flocking (Kennedy et al.  2001), is a population-based stochastic optimisation 

algorithm that was first proposed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart 1995, 

Eberhart and Kennedy 1995). In PSO, the population is referred to as a swarm, while the individuals 

are referred to as particles; each particle moves, in the search space, with some random velocity, and 

remembers and retains the best position it has ever been. The mechanism of PSO can succinctly be 

explained as follows. The position of each particle can be viewed as a possible solution to a given 

optimization problem. In each iteration (one step move), each particle accelerates its move toward a 

new potential position, by adaptively using information about its own personal best position obtained 

so far, as well as the information of the global best position achieved so far by any other particles in 

the swarm. Thus, if any promising new position is discovered by any individual particle, then all the 

other particles will move closer towards it. In this way, PSO will finally find, in an iterative manner, a 

best solution to the given optimisation problem. 

Now consider an s dimensional optimisation problem, where the relevant parameter vector to be 

optimised is denoted by sT
s R⊂Θ∈= ],,,[ 21 θθθ Lθ . Assume that a total of L particles are involved in 

the relevant swarm. Denote the position of the ith particle at the present time t by )(tiθ , the relative 

velocity by )(tiv , the personal best position by )(tip , and the global best position obtained so far by 

)(tgp . Following Kennedy et al. (2001), Shi and Eberhart (1998a, 1998b), Clerc and Kennedy (2002), 
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PSO can be implemented using the iterative equations below 

)]()([)({)1( 11 ttrctt iiii θpvv −+=+ χ )]}()([22 ttrc ig θp −+                                                      (17) 

)1()()1( ++=+ ttt iii vθθ                                                                                                         (18) 

where i=1,2, …, L; 1c  and 2c are the acceleration coefficients, also referred to as the cognitive and 

social parameters; |42|/2 2 φφφχ −−−= , with 421 >+= ccφ , is a constriction factor used to 

obtain good convergence performance by controlling explosive particle movements; 1r  and 2r are 

random numbers that are uniformly distributed in [0,1]. Typical choices for 1c  and 2c  are to 

set 221 == cc  (Kennedy and Eberhart 1995, Eberhart and Kennedy 1995). 

Let )(θπ be the function that needs to be minimised, then the personal best position of each particle 

can be updated as below (van den Bergh and Engelbrecht 2004)   





<++
≥+

=+
))(())1(( if     ),1(

))(())1(( if          ),(
)1(

ttt

ttt
t

iii

iii

i
pθθ

pθp
p

ππ
ππ

                                                                     (19) 

While the global best position achieved by any particle during all previous iterations is defined as 

))1((minarg)1( +=+ tt ig
i

pp
p

π ,      Li ≤≤1 .                                                                          (20) 

In the OPP algorithm discussed in the previous section, the objective function is defined as 

∑
=

−−− +++−=−=
N

t

ddnnn txtxwgtrww
1

2
1101

2
11 ))]()(()([||);(||),( θθθπ LθXgrθ                        (21) 

where N is the number of training samples.  

With regard to the termination of the optimisation procedure, the criterion can be chosen as 

follows. Let ‘mPSO’ be the maximum number of permitted iterations. The optimization procedure can 

then be terminated when either the iteration index exceeds ‘mPSO’, or when the parameter to be 

optimized becomes stable, that is, when δ≤−+ 2||)()1(|| tt θθ , where δ is a pre-specified small number, 

say 510−≤δ . 

3.3  The FOR algorithm for model refinement 

Assume that a total of M basis functions of the form )( ,11,0, ddjjjj xcxccgg +++= L , where g is 

defined by (3), are involved after having performed the PSO based OPP procedure on the given data 

set. Denote the set of these M functions by  

},,2,1),(:{ ,11,0, Mjxcxccggg ddjjjjj LL =+++==Ω                                                        (22) 
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Note that all the parameters kjc . have already been estimated as part of the coarse model identification 

procedure. Experience shows that the set Ω may be highly redundant, and a refinement procedure thus 

needs to be performed to produce a parsimonious model.  

The objective of this refinement stage is to reselect the most significant construction functions 

from the set Ω , to form a more compact model for a given nonlinear identification problem. 

Let y and kx be defined as in previous sections, and let )();( ,11,0, ddjjjjj cccg xxcXgg +++== L , 

where j=1,2, …, M and ],,,[ 21 dxxxX L= . Also, let },,2,1:{ MjD j L== g . The model refinement 

problem amounts to finding, from the vector dictionary D, a full dimensional subset },,{ 1 mmD pp L=  

},,{
1 mii gg L= , where

kik gp = , },,2,1{ Mik L∈  and k=1,2, …, m (generally Mm << ), so that y can 

be satisfactorily approximated using a linear combination of mppp ,,, 21 L  as below 

mmm eppy +++= ββ L11                                                                                                       (23) 

where me is the associated model residual vector.  

The orthogonal least squares (OLS) type algorithms (Billings et al. 1989, Chen et al. 1989, Billings 

and Zhu 1994, Aguirre and Billings 1995, Chen et al. 2003, Chen et al. 2004, Wei et al. 2004) can be 

used to determine model basis functions (model terms). In this study, however, a variation of the OLS 

algorithm, called the forward orthogonal regression (FOR) algorithm, implemented using a mutual 

information method (Billings and Wei 2007a, Wei and Billings 2007), is employed for the model 

refinement. Assume that x and y are two random discrete variables, with alphabet X  and Y , 

respectively, and with a joint probability mass function p(x, y) and marginal probability mass functions 

)(xp and )( yp . The mutual information ),( yxI  is the relative entropy between the joint distribution 

and the product distribution )()( ypxp , given as (Cover and Thomas 1991) 






= ∑∑
∈ ∈ )()(

),(
log),(),(

ypxp

yxp
yxpI

x yX Y

yx                                                                                (24) 

The mutual information ),( yxI is the reduction in the uncertainty of y due to the knowledge of x, and 

vice versa. Mutual information provides a measure of the amount of information that one variable 

shares with another one. If y is chosen to be the system output (the response), and x is one regressor in 

a linear model, ),( yxI can then be used to measure the coherence of x with y in the model. Several 

algorithms have been proposed to estimate mutual information from observed data, see for example 

Moddemeijer (1989, 1999), Darbellay and Vajda (1999), and Paninski (2003) and the references 

therein. 

Detailed discussions on the utility of the mutual information for model term selection can be found 

in Billings and Wei (2007a) and Wei and Billings (2007). Now, let nppp ,,, 21 L be the n selected 
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linearly independent basis vectors after the nth step search, and let nqqq ,,, 21 L  be a group of 

orthogonal vectors, generated from the vectors nppp ,,, 21 L , by means of some orthogonal 

transformation. Following Billings et al. (1989), Chen et al. (1989), the error reduction ratio (ERR), 

produced by including the nth basis vector nq , or equivalently by including np , is defined as 

2

22

||||

||||
ERR

y

qnn
n

γ=                                                                                                                    (25) 

where 2
||||/, nnn qqy >=<γ . ERR can be used to measure the significance of individual model terms 

in that it provides an index indicating the contribution made by each selected individual model term to 

explain the total variance in the desired output signal. 

Let ne be the residual vector produced at the nth search step. Similar to in the OPP algorithm, the 

model residual vector ne can be used to form a criterion to terminate the search procedure. Following 

the suggestion in Billings and Wei (2007b), the following adjustable prediction error sum of squares 

(APRESS), also referred to as the adjustable generalised cross-validation (AGCV), will be used to 

monitor the regressor search procedure 

2
)/1(

)(MSE
APRESS

Nn

n
n λ−

=                                                                                                       (26)  

where Nn n /||||)MSE(
2

e= is the mean-square-error that is associated to the model of n model terms. 

The number of regressors (wavelet functions) will be chosen as the value where APRESS arrives it 

minimum. Billings and Wei (2007b) suggest that the adjustable parameter λ  be chosen between 5 and 

10. 

Following Billings and Wei (2007a) and Wei and Billings (2007), the mutual information based 

forward orthogonal regression (FOR) algorithm, is briefly summarised below.  

The FOR-MI algorithm: 

Step 1: Set },,2,1{1 MU L= ; 

               for j=1 to M 

jj φq =)1( ;  

  ),(][
)1(

0
)1(

jMIjI qr= ;                                   // Calculate the mutual information for all 

                             // candidate basis vectors.// 

                   end for 

                  ]}[{maxarg )1(
1

1

iI
Ui∈

=l ; }{ 11 l=V ;   

                  
11 lφp = ;   11 pq = ;  

2
1

1
1

||||

,

q

qy ><=γ ; 1001 qrr γ−= ; 

2

2
1

2
1

||||

||||
]1[ERR

y

qγ= ;
NN

2
1

2

||||

)/1(

1
]1[APRESS

r

λ−
= ;  

     Step n, 2≥n : 
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                   For n=2 to M 

                     11 \ −−= nnn VUU ; 

                          for nUj ∈  

∑
−

=

><
−=

1

1
2

)(

||||

,n

k
k

k

kj

j
n
j q

q

qφ
φq ;  

            ),(][
)(

1
)( n

jn
n

MIjI qr −= ;              //Calculate the mutual information for all 

// for all candidate basis vectors.// 

//{if ,||||
2)( ε≤n

jq set 0][
)( =jI

n }// 

end for ( end loop for j )  

                         ]}[{maxarg )( jI n

Uj
n

n∈
=l ; )}||(||arg{}{

2)( ε<=
∈

n
j

Uj
nn

n

V qUl ;   

                          
nn lφp = ;   

)(n
n

nlqq = ;  
2

||||

,

n

n
n

q

qy ><=γ ; nnnn qrr γ−= −1 ; 

2

22

||||

||||
][ERR

y

qnnn
γ= ;

NNn
n n

2

2

||||

)/1(

1
][APRESS

r

λ−
= ;  

                      for k=1 to n 

                                   
2,

||||

,

k

kn
nkr

q

qp ><= , for nk < ; 1, =nkr , for nk = ; 

                          end for (end loop for k ) 

                   end for (end loop for n ) 

The FOR algorithm provides an effective tool for successively selecting significant model terms (basis 

functions) in supervised learning problems. Terms are selected step by step, one term at a time. The 

inclusion of redundant bases, which are linearly dependent on the previous selected bases, can be 

efficiently excluded by eliminating the candidate basis vectors for which 
2)(

||||
n
jq  are less than a 

predetermined threshold ε , say 1010−≤ε . Assume that a total of m significant vectors are selected, 

then the unknown parameter T
m],,,[ 21 βββ L=β , relative to the model (23), can easily be calculated 

from the triangular equation γRβ= , where R is an upper triangular matrix and 

T
m],,,[ 21 γγγ L=γ with 2

||||/, iii qqy >=<γ  for i=1,2,…, m. 

4.  Case Studies 

Consider the generalised coupled map lattice model below 

))1(()1()( ,21, −−−= tsccts jiji φ  

))1(())1(([
4

1,,1
1 −+−+ −− tsts

c
jiji φφ ))]1(())1(( ,11, −+−+ ++ tsts jiji φφ  






 −+−+−+−+ ++−++−−− )]1()1()1()1([

4

1
1,11,11,11,12 tstststsc jijijijiφ                             (27) 
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Fig. 1   Instant snapshots produced by the model (27), with a=1.6, 1c =0.28, and 2c =0.12. (a) t=5; (b) t=20; (c) 

t=75; (d) t=100. 

 

whereφ is defined as the typical logistic map function 21)( axx −=φ , 1c and 2c are constants. In this 

study, the case where a=1.6, 1c =0.28, and 2c =0.12 was considered. Starting with an initial pattern of 

size 100100× , where values of all the initial cells were randomly selected in [0,1], the model (27) was 

simulated. Some patterns are shown in Fig. 1. 

A dataset consisting of 2000 data pairs that were randomly selected from the first 100 patterns was 

created and this dataset was then used for GCNN model identification. A Gaussian white noise 

sequence with zero mean and standard deviation of 0.005 was added to the training dataset. Some 

conditions, relative to the model identification procedures using the PSO+OPP and FOR algorithms, 

are listed in Table 2. The ERS (error-to-signal ratio) criterion, relative to the PSO+OPP algorithm, is 

shown in Fig. 2. The adjustable generalised cross-validation (AGCV), defined by (26), is shown in Fig. 

3, which suggests that a GCNN model with 31 model terms would be a good choice.  

 

 

   
  (a) 

   
  (b) 

   
  (c) 

   
  (d) 
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Table 2.   Some conditions involved in the 

identification procedure. 

Size of the arrays of cells 100100 ×  

Number of model variables 9 

mOPP in the OPP algorithm 200 

η  in the OPP algorithm 10-5 

Swarm size in the PSO algorithm 100 

c1, c2 in the PSO algorithm c1= c2=2.05 

χ  in the PSO algorithm 0.7298 

mPSO in the PSO algorithm 500 

δ in the PSO algorithm 10-5 

ε in the FOR algorithm 10-10 

λ  in the FOR algorithm 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2   The ESR(error-to-signal ratio) criterion, relative to the PSO+OPP algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   The AGCV criterion, relative to the FOR algorithm. 
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To evaluate the performance of the identified GCNN model of 31 model terms, the patterns 

produced by this model were investigated and compared with those produced by the original model 

(27). Denote the observation of the pattern measured at the time instant t by X(t). The k-step-ahead 

prediction, denoted by ));(|(ˆ ftXktX + , where f  represents the identified nonlinear function, is the 

iteratively produced result using the identified model, on the basis of X(t), but without using 

information on observations for patterns at any other time instants. As an example, starting with a 

random initial pattern of size 128128× , where values were uniformly distributed in ]1,0[ , the one and 

ten step-ahead predicted patterns were calculated  using the identified GCNN model. The one and ten 

step ahead predicted patterns at time instant t=20, along with the corresponding patterns produced by 

the model (26), are shown in Fig. 4, which clearly shows that the identified GCNN model can be used 

to reconstruct the dynamics possessed by the original model (27). 

 

 

Fig. 4  A comparison of the 1- and 10-step-ahead predicted patterns at the time instant t=20, produced by the 

identified GCNN model, with that produced by the original model (27). (a) The pattern produced by the original 

model (27); (b) 1-step-ahead predicted pattern; (c) 10-step-ahead predicted pattern.   

5.  Conclusions 

The proposed generalized CNN (GCNN) modeling framework provides a powerful model 

identification approach for spatio-temporal evolutionary (STE) systems. The introduction of the novel 

two-stage training scheme, where the PSO based orthogonal projection pursuit (OPP) algorithm is 

employed for a coarse model identification and the mutual information assisted forward orthogonal 

regression (FOR) algorithm is used for model refinement, enable the GCNN modeling procedure to be 

very effective because of the following features. Firstly, the network training procedure is almost self-

implemented, meaning that by starting with some given conditions (initial, boundary and termination), 

all the within and between-network parameters can be estimated and calculated by the proposed 

algorithms. Secondly, the model identification procedure can produce a transparent model, where 

individual neurons are explicitly available. Thirdly, by applying the FOR algorithm, the initially 

   
  (a) 

   
  (b) 

   
  (c) 
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produced model by the OPP algorithm, can be significantly refined and improved, and a parsimonious 

model containing only a small number of neurons can then be obtained.  

By introducing the PSO algorithm, which is easy to implement, the calculation of gradients 

required by classical nonlinear optimisation algorithms can be avoided. This makes the new modelling 

framework very suitable for STE system identification, where relevant object functions may not be 

differentiable or relevant gradients are very difficult to obtain. 
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