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Abstract: Spatio-temporal evolutionary (STE) images are a class of complex dynamical systems that 

evolve over both space and time. With increased interest in the investigation of nonlinear complex 

phenomena, especially spatio-temporal behaviour governed by evolutionary laws that are dependent 

on both spatial and temporal dimensions, there has been an increased need to investigate model 

identification methods for this class of complex systems. Compared with pure temporal processes, the 

identification of spatio-temporal models from observed images is much more difficult and quite 

challenging. Starting with an assumption that there is no apriori information about the true model but 

only observed data are available, this study introduces a new class of multiscale lattice cell (MLC) 

models to represent the rules of the associated spatio-temporal evolutionary system. An application to 

a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to 

demonstrate the new modelling framework. 

Keywords: Cellular neural networks, coupled map lattices, mutual information, orthogonal least 

squares, parameter estimation, spatio-temporal evolutionary systems. 
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1.   Introduction 

In the real world, spatio-temporal evolutionary (STE) phenomena is found in many diverse fields 

of science and engineering including biology, chemistry, ecology, geography, medicine, physics, and 

sociology (Kaneko 1993, Jahne 1993, Silva and Principe 1997, Astic et al. 1998, Bascompte and Sole 

1998, Czaran 1998, Spors and Grinvald 2002, Dimitrova and Berezney 2002, Berezney et al. 2005, 

Dolak and Schmeiser 2005). To analyse or imitate STE phenomena, several efficient representations, 

for example the well known cellular automata (CA) (Wolfram 1994, Adamatzky and Bronnikov 1990, 

Adamatzky 1994, 1996, 2001, Ilachinski 2001), cellular neural networks (CNNs) (Chua and Yang 

1988a, 1988b, Roska and Chua 1993, Chua et al. 1995, Crounse and Chua 1995, Thiran et al. 1995, 

Chua and Roska 2002), and coupled map lattice (CML) models (Kaneko 1989, 1993), have been 

proposed. In these representations, it is often assumed that the associated mathematical model 

structure, along with the model parameters, is known, so that the model can be used to describe or 

analyse some specific phenomena. However, the evolution laws associated with real-world STE 

phenomena may not always be completely known, and evolution rules need to be acquired from 

observed data of images or patterns. Hence, in recent years, the identification of spatio-temporal 

models from observed data has received much attention and several efficient identification methods 

and algorithms have been proposed, see for example Adamatzky and Bronnikov (1990), Adamatzky 

(1994, 1996, 1997), Sitz et al. (2003), Coca and Billings (2001), Mandelj et al. (2001), Billings and 

Coca (2002), Billings and Yang (2003), Yang and Billings (2003), Billings et al. (2006). 

This study considers the spatio-temporal model identification problem, where it is assumed that 

there is no apriori information about the true model structure and only imaged data are available. 

Motivated by the successful applications of the wavelet-based multiscale and multiresolution analysis 

approach (Mallat 1989) in classical signal and image processing  (Mallat 1998, Unser 1999), as well as 

in dynamical process modelling (Billings and Coca 1999, Billings and Wei 2005a, 2005b, Wei and 

Billings 2004a, 2004b, 2006, Wei et al. 2004, 2006), and also inspired by the easy tractability of  

conventional coupled map lattice models (Kaneko 1989, 1993), this study aims to introduce a novel 

multiscale lattice cell (MLC) model for STE system identification. Unlike in a typical wavelet-based 

multiscale or multiresolution dynamical modelling approach, where the elementary building blocks are 

strictly chosen to be some dyadic wavelets, in the new MLC model, the choice of the prototype 

functions are permitted to be very flexible, any functions including wavelets, B-splines and Gaussian 

type functions can be chose as the elementary building blocks as long as there is strong evidence that 

the functions possess desirable properties and can lead to a good model for a given modelling problem. 

In most existing wavelet models for dynamical systems, the scale and shift parameters are restricted to 

a dyadic lattice. Dyadic wavelet models are proved to be perfect for general static signal representation, 

in that dyadic wavelets, along with associated scale functions, can often form orthogonal (orthonormal) 

bases that play an important role in wavelet multiresolution analysis (MRA) (Mallat 1989, Daubechies 
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1992). An important property of an orthonormal decomposition is that the well known Pareval’s 

theorem holds, that is, the energy of a signal is conserved, without any loss, in the wavelet coefficients. 

For the STE dynamical system modeling problem, where observations are often sparse in the problem 

space, however, a dyadic lattice may not usually be an optimal choice. In addition, data used in dyadic 

wavelet models for nonlinear dynamical systems often need to be compressed or normalised to [0,1], 

to simplify the associated modelling procedures (especially for the determination of the wavelet shift 

parameters) (Billings et al. 2006). Although data normalization is frequently used in many modelling 

approaches and can often simplify the associated modeling procedures, normalization may, at the 

same time, change the physical meanings of the signals to be modeled. This may be undesirable for 

some applications where variables are required to preserve their physical dimension. In the new MLC 

model, data normalisation procedures become unnecessary. 

The MLC model is composed of a number of basis functions; the feature of each individual 

function is determined by three factors: the scale (dilation) parameter, the shift (translation) parameter, 

and the coefficient weighted on the associated function. For a chosen elementary building block (the 

prototype function), the task of MLC model identification involves as least three aspects: the 

determination of the scale and shift parameters; the determination of the model structure and 

complexity, that is,  the determination of which and how many basis functions should be included in 

the model; and the estimation of the weight coefficients. A new simple unsupervised histogram-based 

clustering algorithm is introduced; this method can be used to determine the scale and shift parameters 

of individual functions that will be used to form an initial full MLC model; this full model is in 

general highly redundant. A forward orthogonal regression (FOR) learning algorithm (Billings and 

Wei 2007a, Wei and Billings 2007), implemented using a mutual information estimation method, is 

then applied to refine and improve the initial MLC model by removing redundant basis functions. 

2.  The MLC Model 

In this study, the two-dimensional case, which has obvious physical meanings and is widely 

applied in practice, is taken as an example to illustrate how to construct an MLC model. For simplicity, 

only the zero-input (autonomous) case is considered here. In an autonomous STE system, no external 

input image is imposed, and the output image at any time t is due exclusively to the initial conditions 

and the evolution of the pattern. Model representations for these situations can easily be extended, in a 

straightforward way, to other more complex cases.  

2.1  The lattice cell model  

Assume that the 2-D image or pattern produced by an STE system, at the time instant t, consists of 

a JI ×  rectangular array of cells, ),( jiC
t , with Cartesian coordinates (i,j), i=1,2, …, I, j=1,2, …, J.  
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Table 1.    The )12()12( +×+ rr  neighbourhood 

 

C(i-r, j-r) 

x1 

… C(i-r, j) 

xr  

… C(i-r,j+r) 

x2r+1 

… … … … … 

C(i, j-r) 
xr(2r+1)+1 

… C(i,j) 
xr(2r+1)+(r+1) 

… C(i,j+r) 
x(r+1)(2r+1) 

 …  … … 

C(i+r,j-r) 

x2r(2r+1)+1 

… C(i+r,j) 

x2r(2r+1)+(r+1) 

… C(i+r,j+r) 

x(2r+1) (2r+1) 

 

Following Chua and Roska (2002), let ),( jiS t
r be the sphere of influence of the radius r of cell 

),( jiC t , at the time instant t,  defined as  

}|}||,{|max:),({),(
1,1

rqjpijiCjiS
JqIp

tt
r ≤−−=

≤≤≤≤
                                                                 (1) 

where t=1,2, …, i=1,2, …, I, j=1,2, …, J, and r is a non-negative integer number indicating how many 

neighborhood cells are involved in the evolution procedure. The sphere ),( jiS
t
r  is sometimes referred 

to as the )12()12( +×+ rr  neighbourhood. Let R∈)(, ts ji be the state variable representing the cell 

),(),( jiSjiC
t
r

t ∈ . From the definition of ),( jiS
t
r , a total of 2

)12( +r state variables are involved in (1), 

see Table 1, where the symbol C(i,j) will be used to indicate cells at an arbitrary evolution time instant. 

Let )(, ts ji  be the (i,j)th cell to be updated at time t. A wide range of STE systems can be described 

by the discrete-time, discrete-space and continuous-state spatio-temporal difference equation of the 

form below 

))(,),2(),1(()(, lagji ntttfts −−−= sss L  

,),1(,),1(,),1(( ,,, LLL −−−= ++−− tststsf rjrijirjri  

,),2(,),2(,),2( ,,, LLL −−− ++−− tststs rjrijirjri  

))(,),(,),( ,,, lagrjrilagjilagrjri ntsntsnts −−− ++−− LL                                               (2) 

where f is some nonlinear function, lagn is the time lag, defined as a positive integer, indicating how 

many past images or patterns are involved in the evolution procedure, and )( kt −s  is the state vector 

formed by the 2)12( +r  state variables relative to the patterns at the time instant (t-k) with k=1,2, …, 

lagn , that is,  

 )](),(,),([)( ,,, ktsktsktskt rjrijirjri −−−=− ++−− Ls                                                              (3) 
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Note that the general lattice cell representation form (2) includes, as special cases, most typical 

coupled map lattice models. For convenience of description, introduce d single-indexed variables )(txk  

as below 

)](,),2(),1([)](,),(),([)( 21 lagd nttttxtxtxt −−−== sssx LL                                                  (4) 

where )](,),([)( 22 )12()12)(1(1
txtxkt

rkrk ++−+=− Ls  for k=1,2, …, lagn . For the case lagn =1, the 

description (4) is shown in Table 1. Also, let y(t) represent the state variable )(, ts ji  corresponding to 

the central cell ),( jiC
t . Then, Eq. (2) becomes 

))(()( tfty x= ))(,),(),(( 21 txtxtxf dL=                                                                                (5) 

In conventional coupled map lattice models, the nonlinear function f in model (2) is often assumed 

to be known as some deterministic function. However, for real-word complex STE systems, a pre-

determined function f may not sufficiently characterise the underlying dynamics. It may be better to 

learn, from available real observations, an appropriate model for a given STE system. The task of STE 

system identification is to construct, based on available data, a model that can represent, as close as 

possible, the observed evolution behaviour. Unlike constructing static models for typical data fitting, 

the objective of dynamical modelling is not merely to seek a model that fits the given data well, it also 

requires, at the same time, that the model should be capable of capturing the underlying system 

dynamics carried by the observed data, so that the resultant model can be used in simulation, analysis, 

and control studies. 

2.2 The new MLC model  

Inspired by the idea behind the traditional coupled map lattice models, the present study employs 

an additive model structure to approximate the nonlinear function (5)  

))((ˆ)( tfty x= )(te+ ))(())(())(( 2211 txftxftxf dd+++= L )(te+                                         (6) 

where )(⋅if  are some univariate nonlinear functions that need to be identified, and e(t) is some 

modelling error that can be treaded as an independent identical distributed noise sequence. One 

commonly used approach, for effectively reconstructing the nonlinear functions )(⋅if , is to construct a 

nonlinear approximator if̂ using some specific types of basis functions including polynomials, radial 

basis functions, kernel functions, splines and wavelets (Leontaritis and Billings 1987, Chen and 

Billings 1992, Brown and Harris 1994, Aguirre and Billings 1995, Murray-Smith and Johansen 1997, 

Cherkassky and Mulier 1998, Harris et al. 2002, Wei and Billings 2004a, 2004b, Billings and Wei 

2005a, 2005b). More often, models constructed using these methods can easily be converted into a 

linear-in-the-parameters form, which is an important class of representations for nonlinear system 
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identification, because compared to nonlinear-in-the-parameters models, linear-in-the-parameters 

models are simpler to analyze mathematically and quicker to compute numerically. The present study, 

however, employs a family of shifted multiscale basis functions to approximate the nonlinear 

maps dfff ,,, 21 L  in (6). 

Now take a wavelet-based approximation as an example. Let ψ be a chosen mother wavelet.  

Consider the family 






 −=

a

bx
abx ψψ ),;(                                                                                                              (7) 

where +∈Ra , R∈b , and the waveletψ is admissible. The admissibility condition is depicted using 

the Fourier transform )(ˆ ξψ of the function ψ as ∞<= ∫
∞

∞−
− ξξψξψ dC

21
)(ˆ (Daubechies 1992). Each of 

these d functional components )( ii xf  can now be represented as 

∑∑=
k j

i
jk

i
jki

i
jkii abtxwtxf ),);(())(( )(

,
)(

,
)(

, ψ                                                                                    (8) 

where
)(

,
i

jka and 
)(

,
i

jkb  are pre-determined scale and shift parameters, and 
)(

,
i

jkw are the associated weight 

coefficients. Equation (6) can now be written as  

))((ˆ)( tfty x= )(te+ ∑
=

=
d

i
ii txf

1

))(( )(te+  

∑∑∑
=

=
d

i k j

i
jk

i
jki

i
jk abtxw

1

)(
,

)(
,

)(
, ),);((ψ )(te+                                                                          (9) 

This is the initial full MLC model for the associated STE system (2). In this model the scale and shift 

parameters 
)(

,
i

jka and 
)(

,
i

jkb  are restricted to a pre-specified non-dyadic lattice, which is directly 

determined by using the information given by the original observation dataset. The weight 

coefficients
)(

,
i

jkw , however, need to be estimated by solving the associated regression equation problem.  

Some realization issues, relative to the construction of the MLC model (6), include:  

•    The determination of the scale and shift parameters )(
,
i

jka and )(
,
i

jkb . 

•    The initial full model (9) is often redundant, so a key problem involves how to refine and improve 

the model to produce a parsimonious model with good generalisation properties. 

•    The estimates of the weight coefficients )(
,
i

jkw are highly dependent on the given estimation dataset 

of the observations. A second key problem is how to effectively estimate the weight coefficients. 
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3.   The Determination of the Shift and Scale Parameters 

3.1  The Histogram-Based Grouping Algorithm 

Consider a given time series },,2,1:)({ 0Nttx L= . Let 0

1min )}(min{
N
ttxx == , 0

1max )}(max{
N
ttxx ==  

and ],[ maxmin xxR = . Now the objective is to partition all the data points in the time series )}({ tx into K 

groups. The grouping criterion and the associated partitioning procedure are as follows:  

•   Divide the interval R into k equally-spaced sub-intervals (bins); the kth bin is defined as 

),[ 1+= kkk rrR  for k=1,2, …, K-1, and ],[ 1+= kkk rrR for k=K, where hkxrk )1(min −+=  and 

Kxxh /)( minmax −= (h is referred to as the bin width).  

•    If kRtx ∈)( , then the t-th data point is included in the kth bin. 

•    Denote the number of data points contained in the kth bin kR by kg . 

These are the basic ideas of the commonly used histogram method. However, the determination of 

the bin width and bin number K is still an open issue in histogram analysis (Wade 1997). The famous 

Sturges’ rule (Sturges 1926), which has been used in default in some popular languages and software, 

suggests that the total bin number be chosen to be )(log1 02 NK += . It has been pointed out (Scott 

1992) that the Sturges’ rule is more of a number-of-bins rule rather than a bin-width-oriented rule 

itself, and it has been shown (Scott 1992) that the bin width produced by the Sturges’ rule leads to an 

over-smoothed histogram, especially when the number of samples is large. Based on a well-

established theory (Scott 1992), two cross-validation (CV) criteria has been derived for bin width 

choice. The biased CV and unbiased (least squares) CV functions are given below 

∑
−

=
+ −+=

1

1

2
12

00

)(
)(12

1

)(6

5
))((BCV

K

k

kk gg
KhNKhN

Kh                                                               (10) 

∑
=−

+−
−

=
K

k

kg
KhNN

N

KhN
Kh

1

2

0
2
0

0

0 )()1(

1

)()1(

2
))((UCV                                                              (11) 

where KxxKh /)()( minmax −= is the bin width of K partitions. The bin width for the associated dataset 

is defined to be the one that minimises the BCV or UCV vriteria. These cross validation criteria can be 

used to determine the scale and shift parameters of the associated basis functions.  

3.2  Choice of the Shift and Scale Parameters 

For a given time series },,2,1:)({ 0Nttx L= , assume that a total of K groups have been determined 

using the above histogram-based grouping algorithm, and let kc be the centre (midpoint) of the kth 

interval kR . In the present study, wavelet shift parameters are chosen to be these K centres.  
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It is known that wavelet basis functions are compactly supported or nearly compactly supported.  

For example the B-splines and associated wavelets (Chui 1992, Unser et al. 1993, User 1999) are 

compactly supported, while the Gaussian and the Mexican hat (or Marr) wavelets (Daubechies 1992, 

Billings and Wei 2005a) are nearly compactly supported. Hence, to the wavelet transform (7), for any 

scale and shift parameters a and b, there must exist a positive number δ such that 

0|),;(| ≈




 −=

a

bx
abx ψψ , for δ≥−

a

bx
                                                                             (12) 

For example, for the 1-D Mexican hat wavelet )2/exp()1()( 22 xxx −−=ψ , 0001.0|)(| ≤xψ  for 

5|| =≥ δx . Thus, for a fixed shift parameter b, the scale parameter a should not be chosen too small, 

because a very scale will ‘disable’ many useful data points. On the other hand, the scale parameter a 

should not be chosen too large, because a very large scale could make the associated functions become 

too smooth to capture detailed dynamics of the signal.  

From the above discussion, the shift and scale parameters b and a are chosen as follows: 

•    The number of wavelet shift parameters is chosen to be K, where K is defined using the histogram-

based grouping algorithm. 

•    The K shift parameters Kbbb ,,, 21 L  are chosen to be the centres of the K bins (groups). 

•    For each shift parameter kb , allocate a total of J scale parameters to the associated basis functions, 

denote these scale parameters by Jaaa ,,, 21 L , where 4/2 0aa
j

j =  for j=1,2, …, J and 

KKha 2/)(0 = .  

Here, the idea of choosing KKha 2/)(0 = comes from Haykin (1999), where it is suggested that the 

scale (bandwidth) parameter be chosen as Kbb ji
Kji

2/|}{|max
1

−=
≤<≤

σ  . Applying the above procedure 

to equation (6), yields, 

∑ ∑∑
= = =

=
d

i

K

k

J

j

i
j

i
ki

i
kj

i

abtxwty
1 1 1

)()()(
, ),);(()( ψ )(te+  

∑ ∑ ∑
= = = 









 −=
d

i

K

k

J

j
i

j

i
kii

jk

i

a

btx
w

1 1 1
)(

)(
)(

,

)(ψ )(te+                                                                                 (13) 

where )(i
ja  and )(i

kb  are the scale and shift parameters, relative to the ith variable )(txi . In model (14), 

it is assumed that the time series )}({ txi produced by the ith variable )(txi has been partitioned into iK  

groups, and thus a total of iK  shift parameters are involved for the variable )(txi ; for each of these 

shift parameters, there are a total of J scale parameters associated with the wavelets. Therefore, the 
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initial full wavelet model (14) contains a total of )( 1 dKKJM ++= L  basis functions. Model (14) 

can easily be converted to a linear-in-the-parameters form below 

∑
=

=
M

m

mm tty
1

)()( φθ )(te+ θφ )(t
T= )(te+                                                                                  (14) 

where },,2,1;,,2,1;,,2,1:),;({
)(

,
)(

JjKkdiabx i
i

jk
i

kim LLL ===∈ ψφ , mθ are model parameters, and 

T
M ttt )](,),([)( 1 φφ L=φ  and θ  are the associated regressor and parameter vectors, respectively. 

Notice that in most cases the initial full regression equation (14) might be highly redundant, some of 

the regressors or model terms can thus be removed from the initial regression equation without any 

effect on the predictive capability of the model, and this elimination of the redundant regressors 

usually improves the model performance. Generally, only a relatively small number of model terms 

need to be included in the regression model for most nonlinear dynamical system identification 

problems. An efficient model term selection algorithm is thus highly desirable to detect and select the 

most significant regressors. 

4.   Model Refinement Using the Forward Orthogonal Regression Algorithm 

Let ,),1([ Lmm φ=φ  T
m N )](φ be a vector formed by the mth candidate model term in the initial full 

model (15), where m=1,2, …, M. Let },,{ 1 MD φφ L=  be a dictionary composed of the M candidate 

bases. From the viewpoint of practical modelling and identification, the finite dimensional set D is 

often highly redundant. The model refinement problem amounts to finding, from the vector dictionary 

D, a full dimensional subset },,{ 1 mmD pp L=  },,{
1 mii φφ L= , where

kik φp = , },,2,1{ Mik L∈  and 

k=1,2, …, m (generally Mm << ), so that y can be satisfactorily approximated using a linear 

combination of mppp ,,, 21 L  as below 

mmm eppy +++= ββ L11                                                                                                       (15) 

where me is the associated model residual vector.  

The orthogonal least squares (OLS) algorithm (Billings et al. 1989, Chen et al. 1989,) can be used 

to determine model basis functions (model terms). In this study, however, a variation of the OLS 

algorithm, called the forward orthogonal regression (FOR) algorithm, implemented using a mutual 

information method (Billings and Wei 2007a, Wei and Billings 2007), is employed for model 

refinement. Assume that x and y are two random discrete variables, with alphabet X  and Y , 

respectively, and with a joint probability mass function p(x, y) and marginal probability mass functions 

)(xp and )( yp . The mutual information ),( yxI  is the relative entropy between the joint distribution 

and the product distribution )()( ypxp , given as (Cover and Thomas 1991) 



 11 






= ∑∑
∈ ∈ )()(

),(
log),(),(

ypxp

yxp
yxpI

x yX Y

yx                                                                                (16) 

The mutual information ),( yxI is the reduction in the uncertainty of y due to the knowledge of x, and 

vice versa. Mutual information provides a measure of the amount of information that one variable 

shares with another one. If y is chosen to be the system output (the response), and x is one regressor in 

a linear model, ),( yxI can then be used to measure the coherence of x with y in the model. Several 

algorithms have been proposed to estimate mutual information from observed data, see for example 

Moddemeijer (1989, 1999), Darbellay and Vajda (1999), and Paninski (2003) and the references 

therein. 

Detailed discussions about the utility of the mutual information for model term selection can be 

found in Billings and Wei (2007a) and Wei and Billings (2007). Now, let nppp ,,, 21 L be the n 

selected linearly independent basis vectors after the nth step search, and let nqqq ,,, 21 L  be a group of 

orthogonal vectors, generated from the vectors nppp ,,, 21 L , by means of some orthogonal 

transformation. Following Billings et al. (1989), Chen et al. (1989), the error reduction ratio (ERR), 

produced by including the nth basis vector nq , or equivalently by including np , is defined as 

2

22

||||

||||
ERR

y

qnn
n

γ=                                                                                                                    (17) 

where 2
||||/, nnn qqy >=<γ . ERR can be used to measure the significance of individual model terms 

in that it provides an index indicating the contribution made by each selected individual model term to 

explain the total variance in the desired output signal. 

Let ne be the residual vector produced at the nth search step. Similar to in the OPP algorithm, the 

model residual vector ne can be used to form a criterion to terminate the search procedure. Following 

the suggestion in Billings and Wei (2007b), the following adjustable prediction error sum of squares 

(APRESS), also referred to as the adjustable generalised cross-validation (AGCV), will be used to 

monitor the regressor search procedure 

2
)/1(

)(MSE
APRESS

Nn

n
n λ−

=                                                                                                       (18)  

where Nn n /||||)MSE( 2e= is the mean-square-error that is associated to the model of n model terms. 

The number of regressors (wavelet functions) will be chosen as the value where APRESS arrives at a 

minimum. Billings and Wei (2007b) suggest that the adjustable parameter λ  be chosen between 5 and 

10. 

Following Billings and Wei (2007a) and Wei and Billings (2007), the mutual information based 

forward orthogonal regression (FOR) algorithm, is briefly summarised below.  



 12 

The FOR-MI algorithm: 

Step 1: Set },,2,1{1 MU L= ; 
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                      for k=1 to n 

                                   
2,

||||

,

k
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nkr

q

qp ><= , for nk < ; 1, =nkr , for nk = ; 

                          end for (end loop for k ) 

                   end for (end loop for n ) 

The FOR algorithm provides an effective tool for successively selecting significant model terms (basis 

functions) in supervised learning problems. Terms are selected step by step, one term at a time. The 

inclusion of redundant bases, which are linearly dependent on the previous selected bases, can be 

efficiently excluded by eliminating the candidate basis vectors for which 
2)(

||||
n
jq  are less than a 

predetermined threshold ε , say 1010−≤ε . Assume that a total of m significant vectors are selected, 

then the unknown parameter T
m],,,[ 21 βββ L=β , relative to the model (15), can easily be calculated 
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from the triangular equation γRβ= , where R is an upper triangular matrix and 

T
m],,,[ 21 γγγ L=γ with 2

||||/, iii qqy >=<γ  for i=1,2,…, m. 

5.  Applications 

The new MLC modelling framework can be applied to identify some SPE phenomena, where the 

true models are unknown and the initial full model involves a great number of ‘input’ or ‘independent’ 

variables. To illustrate the application of the new modelling method, the Belousov-Zhabotinsky 

(Belousov 1959, Zhabotinsky 1964, Winfree 1972, Kuramoto 1984) reaction was considered here as 

an example.  

The BZ reaction, as an excitable medium (Adamatzky 2001, 2004), is representative of an 

important class of chemical reactions exhibiting a spatio-temporal oscillatory behaviour. As a classical 

example of nonequilibrium thermodynamics, the BZ reaction provides an interesting chemical model 

of nonequilibrium phenomena, and the modelling and identification of these types of reactions is of 

extreme interest for theoretical analysis of such phenomena. 

By adopting the recipe given by Winfree (1972), an experiment resulting in a thin layer BZ 

reaction was carried out in the laboratory, and a set of images were captured (sampled) with equal time 

intervals during the experiment, using a digital video camera that is connected to a PC via a USB 

socket. The sampled images were processed and saved as patterns with a resolution of 300 by 500 

pixels. Some of these patterns are shown in Fig. 1.   

The proposed MLC modelling framework was applied to these sampled images, and the objective 

was to identify a mathematical model for the BZ reaction. Details of the identification procedure are 

given below. 

5.1  The initial model and the training data 

Consider the model of the form (2), where the number of total model variables is determined by 

two factors: the radius of the neighbourhood, r, and the time lag, lagn . In the present study, the two 

coefficients were chosen to be r=1, and lagn =2. Thus, the model (2) involves a total of 18 model 

variables.  

The state variable )(, ts ji , at the present time instant t, was initially assumed to be associated with 

state variables in the past two adjacent neighbourhoods at the previous time instants t-1 and t-2. Any 

two patterns, at the abutting time instants t and t-1 are called an adjacent pattern group. For an 

arbitrary time instant, the data pair, )}(),({ tytx , where )(tx and y(t) are defined by (4) and (5), is called 

a data pair. Notice that )(tx and y(t) are also implicitly associated with the spatial location indices i 

and j (see Table 1). As a consequence, for any given time instant t, there would be a large number of 

data pairs available. 
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Fig. 1   Some snapshots for the BZ reaction at different time instants. The size of each template is 500300 × (300 

pixels in the vertical direction and 500 pixels in the horizontal direction). (a) t=10; (b) t=20; (c) t=30; (d) t=40.  

  

 

A training dataset, consisting of a total of N=6000 data pairs, Nkkyk ,...,2,1)}(),({ =x , was generated 

for model identification, where y(k) represents the value of the relevant central cell at the present time 

instant, and Tkxkxkxk )](,),(),([)( 1821 L=x  represent the values of the 18 involved cells on a squared 

lattice, at the previous time instants. Data pairs )}(),({ kykx in the training dataset were randomly 

chosen from ten adjacent pattern groups that were also randomly selected from the first 40 sampled 

patterns.  

5.2  Determining the shift and scale parameters 

Note that all the involved 18 variables come from the same system; in a statistical sense, these 18 

variables, as well as the ‘output’ variable y(t), should obey the same distribution. Thus the 18 variables 

could be allocated the same shift parameters. It was noticed that the values of a great number of 

observations are exactly equivalent to the maximum value ymax=255. Thus, the one shift parameter was 

in default chosen to be 255, and other shift parameters were determined by performing the histogram-
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(a) 

 
(b) 
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based grouping algorithms on the associated time series {y(t)} with t=1,2, …, N, where data points 

whose values are exactly equivalent to ymax, were excluded. The biased CV (BCV) criterion, shown in 

Fig. 2, suggests that the optimal number of groups for the associated dataset should be chosen as 8. 

Thus a total of 9 shift parameters 921 ,,, bbb L  were chosen for the relevant dataset.  

The Mexican hat wavelet function, defined as 2/2
2

)1()( xexx −−=ψ , was used as the elementary 

building block for constructing the MLC model, and the primary bandwidth for each group was 

chosen to be 0a =6.25. For each shift parameter kb , a total of 6 scales were to used to perform 

associated wavelet transforms; denote these scale parameters by 621 ,,, aaa L , where 0
2

2 aa
j

j
−= . The 

initial full MLC model was thus of the form 

∑∑∑
= = =










 −=
18

1

9

1

6

1

)(
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)(
)(

i k j j

kii
jk

a

btx
wty ψ )(te+                                                                                   (19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2   The BCV criterion versus the number of groups, produced using the histogram-based clustering 

algorithm.  
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Fig. 3   The AGCV criterion versus the number of model terms (selected by using the FOR-MI algorithm).  

  

5.3  Model refinement and performance evaluation 

The initial full MLC model (19) contains a total of 972 model terms; most of the model candidate 

model terms may be redundant. The initial full model thus needs to be refined. The FOR-MI algorithm 

was performed, over the given training dataset, to select significant individual basis functions from the 

initial model (19). The adjustable generalized cross-validation (AGCV), defined by (18) and where the 

adjustable parameter λ =10, suggests that a total of 26 basis functions should be included in the final 

model (see Fig. 3).  

To evaluate the performance of the identified additive wavelet models, the short-term predictive 

capability of the models was inspected. Denote the observation of the image (pattern) measured at the 

time instant t by X(t). The k-step-ahead prediction, denoted by ));1(),(|(ˆ ftXtXktX −+ , where f  

represents the identified nonlinear function, is the iteratively produced result by the identified model, 

on the basis of X(t) and X(t-1), but without using information on observations for patterns at any other 

time instants. As an example, the measurements at the time instants t=41 and 42 were used to calculate 

the 1-step-ahead predictions for the values at the time instant t=43, and this is shown in Fig. 4.  

 



 17 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4   Model prediction (one step ahead) for the BZ reaction at time instant t=43. (a) Real measurement at t=43; 

(b) Predicted image from the model.  

 

To quantitatively measure the performance of the identified models, the 2-D normalised mean-

square-error (NMSE), defined as below, was considered 
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where )(, ts ji  represent the observations at the time instant t, )(ˆ
, ts ji  represent the corresponding 

predicted values from the given model, )(ts is the mean value of the patter at the time instant t, and I 

and J define the size of the associated patterns. The predicted values at t=43 were compared with the 

associated observations, and the normalised mean-square-error was calculated to be 0.0763.  

From Fig. 4 and the NMSE value, it is clear that the identified MLC model can capture the main 

spatio-temporal evolution dynamics from these real laboratory BZ reaction. The identified model can 

provide very good short term predictions. 

6.  Conclusions 

The multiscale lattice cell (MLC) model, by incorporating some multiscale approach into the 

traditional lattice cell model, provides an enhanced powerful representation for spatio-temporal 

evolutionary images. An initial full MLC model for a given model identification problem may involve 

a great number of basis functions. Experience has shown that in general only a relatively small number 

of basis functions are significant and need to be included in the model. Thus an efficient model term 

selection algorithm is necessary to produce a parsimonious model with good generalisation properties. 

Orthogonal least squares (OLS) type of algorithms, including the forward orthogonal regression aided 

 

(a) 

 

(b) 
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by mutual information (FOR-MI), have been proved to be quite effective for general model selection 

problems. 

The MLC model identification procedure is performed on some scaled and translated basis 

functions, where two types of parameters need to be determined: the shift and the scale parameters. 

Although the present study provides some tips for choosing these parameters, optimisation of these 

parameters still need to be considered in a future study, to produce more efficient models for complex 

spatio-temporal systems. 
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