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Abstract: In nonlinear system identification, the available observed data are conventionally 

partitioned into two parts: the training data that are used for model identification and the test data that 

are used for model performance testing. This sort of ‘hold-out’ or ‘split-sample’ data partitioning 

method is convenient and the associated model identification procedure is in general easy to 

implement. The resultant model obtained from such a once-partitioned single training dataset, however, 

may occasionally lack robustness and generalisation to represent future unseen data, because the 

performance of the identified model may be highly dependent on how the data partition is made. To 

overcome the drawback of the hold-out data partitioning method, this study presents a new random 

subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased 

models. The basic idea and the associated procedure are as follows. Firstly, generate K training 

datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect 

significant model terms and identify a common model structure that fits all the K datasets using a new 

proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, 

estimate and refine the model parameters for the identified common-structured model using a 

multifold parameter estimation method. The proposed method can produce robust models with better 

generalisation performance. 

Keywords: Cross-validation, model structure/subset selection, nonlinear system identification, 

parameter estimation, random resampling, split-sample. 

 

 

 

1.   Introduction 

A mathematical model of a nonlinear dynamical system is usually defined by two properties: the 

model structure and the associated model parameters. The central task in any nonlinear system 

identification task is to construct, based on available observations, a suitable model structure using 

some specified elementary building blocks, and then to calculate the associated model parameters 

using some linear or nonlinear parameter estimation algorithm. Take the commonly used linear-in-the-

parameters regression modelling problem as an example, where a linear regression model is employed 
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to describe the underlying system, and where candidate model terms or regressors are formed by some 

linear or nonlinear combinations of lagged input and output variables. The initial full regression model 

may be very complex and will typically include a great number of candidate model terms and some 

efficient model structure selection procedures, using either the best subset or stepwise search methods, 

will need to be performed to determine which model terms are important and should be included in the 

model. The forward stepwise regression method, especially the well known orthogonal forward 

regression (OFR) type methods (Billings et al. 1989b, Chen et al. 1989), have been widely employed 

in recent years for model structure identification of nonlinear dynamical systems (Leontaritis and 

Billings 1987, Billings et al. 1989a, Billings and Chen 1989, Chen et al. 1992, Zhu and Billings 1993, 

1996, Billings and Zhu 1994, Aguirre and Billings 1994, 1995a, b, Chen et al. 1996, Billings and Chen 

1998, Correa et al. 2000, Harris et al. 2002, Hong et al. 2003a,b,c, Wei et al. 2004, Tsang and Chan 

2006, Truong et al. 2007).  

Conventionally, the available observational dataset is often partitioned into two parts: the training 

data that are used for model identification including parameter estimation, and the test data that are 

used for model performance testing. The main advantage of this sort of ‘hold-out’ or ‘split-sample’ 

data partitioning method is that it is convenient and the associated model identification procedure is in 

general easy to implement. Notice, however, that the division of the training and test data using the 

‘hold-out’ method, for model identification, may sometimes be subjective and models produced by the 

once-partitioned single training dataset may occasionally be biased, because the identified model 

structure and the estimated model parameters can be highly dependent on how the given dataset was 

partitioned. The most useful approach, to overcome the drawbacks of the hold-out method for 

nonlinear dynamical modelling, is to introduce cross-validation, which has been extensively applied in 

conventional linear regression and related models (Allen 1974, Stone 1974, Golub et al. 1979, Shao 

1993), into the model identification procedures (Stoica et al. 1986, Ljung 1987). In fact, leave-one-out 

(LOO) cross-validation has been introduced for model parameter estimation of nonlinear regression 

models (Hansen and Larsen 1996, Myles et al. 1997, Monari and Dreyfus 2002) and for model 

construction of linear-in-the-parameters regression models for nonlinear dynamical systems (Hong et 

al. 2003a,b,c, Chen et al. 2004). It has been shown that by incorporating the LOO cross-validation in 

the OFR procedure, the resultant algorithms can often produce efficient sparse models for nonlinear 

identification problems using the linear-in-the-parameters regression form of models (Chen et al. 

2004). Recent applications of the forward or backward orthogonal selection algorithms, assisted by the 

LOO criterion, can be found in Truong et al. (2007) and Hong and Mitchell (2007). A variation of the 

conventional LOO criterion for model subset selection of nonlinear systems can be found in Billings 

and Wei (2007). An attractive advantage of LOO for dealing with linear least squares problems is that, 

a closed form solution is available to calculate the associated LOO criterion from the results of a 

single least-squares fit to all training samples. 

It has been shown that although LOO cross-validation produces almost unbiased estimates for the 
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expected generalisation error (Stone 1974, Efron and Tibshirani 1993), the associated variance may be 

very large (Efron 1983, Breiman 1996). Another drawback of the LOO cross-validation is that it is 

unstable with respect to small perturbations in the data, that is, a slight data perturbation may lead to a 

drastic change in the resultant regression models (Breiman 1996). Furthermore, LOO cross-validation 

also has some more subtle deficiencies in model subset selection. For example, it has been shown 

(Shao 1997) that for linear regression models, LOO is asymptotically equivalent to the AIC and 

Mallow’s Cp criteria; however, leave-v-out cross-validation, is asymptotically equivalent to Schwarz’s 

Bayesian information criterion (BIC), for some specifically chosen v. It is known that, with the same 

subset selection procedure, the number of model regressors chosen by using the AIC criterion is 

always greater than that chosen by using the BIC criterion. Results from numerous simulations have 

shown that while AIC tends to produce badly overfitted models with a small number of training 

samples, BIC can still work well (Hurvich and Tsai 1989, Shao and Tu 1995). This suggests that 

leave-v-out cross-validation, with some appropriately chosen values for v, should provide better results, 

for linear regression models.  

Leave-one-out cross-validation can be viewed as the extreme case of K-fold cross-validation where 

K is is equal to the number of involved observations. The aforementioned discussions suggest that K-

fold cross-validation should be superior to LOO cross-validation, in the sense that K-fold cross-

validation could produce robust regression models with better generalisation properties. In fact, 

Breiman and Spector (1992) found that, for subset selection and evaluation in linear regression 

modelling, five- or ten-fold cross-validation (leave out 20% or 10% of the data) gave better results 

than LOO.  

With the aforementioned observations and keeping in mind that prediction accuracy is often the 

‘gold standard’ for model identification, this study aims to present a new random subsampling and 

multifold modelling (RSMM) approach to produce robust models with better generalisation properties. 

The implementation of the RSMM method consists of three stages. The first stage involves data 

resampling, which is quite similar to K-fold random cross-validation. At this stage, K training datasets 

are independently generated; each dataset contains a certain number of data points that are randomly 

selected from a specified dataset. Corresponding to each training dataset, a validation dataset can be 

obtained by removing the training data points from the specified dataset. The second stage involves 

the detection of common significant model terms and the identification of a common model structure 

that fits all the K datasets. A new common model selection approach, called multiple orthogonal 

search (MOS) algorithm, is proposed to achieve the target of this stage. The objective of the third 

stage is to refine the associated model, by applying a multifold parameter estimation approach to the 

identified common-structured model, to produce some improved estimates of the model parameters.  

The paper is organised as follows: In section 2, the linear-in-the-parameters regression model is 

briefly presented. In section 3, the three stages are presented in detail. Some examples are provided in 

section 4, to demonstrate how well the new proposed RSMM approach works on model identification 
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of nonlinear systems. The paper ends with summary in section 5, where some comments are given. 

2.   The Linear-In-The-Parameters Model 

Consider the identification problem for nonlinear systems given 0N  pairs of input-output 

observations, },,2,1:))(),({( 0Nttytu L= , where u(t) and y(t) are the observations of the system input 

and output, respectively. The relationship between the input and the output of a wide class of nonlinear 

systems can formally be described using the NARX (Nonlinear AutoRegressive with eXogenous 

inputs) model below (Leontaritis and Billings 1985, Pearson 1995, 1999, Ljung 2001)  

)())(,),(),(,),1(()( tentutuntytyfty uy +−−−= LL                                                               (1) 

where f is some nonlinear function, un and yn  are the maximum lags in the input and output, 

respectively, and e(t) is an independent identical distributed noise sequence. 

The function f is in general unknown and needs to be identified from given observations of the 

system. The task of system identification is thus to find, from the given data, a nonlinear approximator 

f̂  that can represent the true (but unknown) function f. Generally, the identified model should not 

only fit the observed data accurately, but also possess good generalization properties, meaning that the 

model is capable of capturing the underlying system dynamics, so that the model can be used for 

simulation, prediction, and control. One commonly used approach, for effectively reconstructing the 

nonlinear function f, is to construct a nonlinear approximator f̂ using some specific types of basis 

functions including polynomials, radial basis functions, kernel functions, splines and wavelets 

(Leontaritis and Billings 1987, Chen and Billings 1992, Brown and Harris 1994, Murray-Smith and 

Johansen 1997, Cherkassky and Mulier 1998, Liu 2001, Harris et al. 2002, Wei and Billings 2004, 

Billings and Wei 2005). More often, models constructed using these methods can easily be converted 

into a linear-in-the-parameters form, which is an important class of representations for nonlinear 

system identification, because compared to nonlinear-in-the-parameters models, linear-in-the-

parameters models are simpler to analyze mathematically and quicker to compute numerically. 
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A general form of the linear-in-the-parameters regression model is given as 
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mm +== ∑
=

φθx )()( tetT += θφ                                                                    (3) 

where M is the total number of candidate regressors, )(tmφ ))(( tm xφ= (m=1,2, …, M) are the model 

terms generated, in some specified way, by the elements of the ‘input’ (predictor) vector )(tx , mθ are 

model parameters, and 
T

M ttt ))]((,)),(([)( 1 xxφ φφ L=  and θ  are the associated regressor and 

parameter vectors, respectively. Notice that in most cases the initial full regression equation (3) might 

be highly redundant, some of the regressors or model terms can thus be removed from the initial 

regression equation without any effect on the predictive capability of the model, and this elimination 

of the redundant regressors usually improves the model performance. Generally, only a relative small 

number of model terms need to be included in the regression model for most nonlinear dynamical 

system identification problems. An efficient model term selection algorithm is thus highly desirable to 

detect and select the most significant regressors. 

3.   The Random Subsampling and Multifold Modelling Approach 

The random subsampling and multifold modelling (RSMM) approach consists of three steps: 

random subsampling, common model structure identification and model parameter estimation. 

3.1  Random subsampling 

Random resampling methods, including cross-validation, bootstrapping and jackkniffing (Devijver 

and Kittler 1982, Efron and Gong 1983, Efron and Tibshirani 1993), have been widely applied for data 

analysis and nonparametric modelling tasks. This study, however, employs a K-fold random 

subsampling method to generate, from a set of chronologically recorded observations, a number of 

training and validation datasets, which are to be used for model identification including parameter  

estimation of nonlinear systems. 

Consider the model identification problem for a nonlinear dynamical system, where 0N pairs of 

observations, },,2,1:))(),({( 0Nttyt L=x , are available. Following the conventional routine of the 

‘hold-out’ method, the 0N data pairs are first split into two parts: the training dataset consisting of the 

first N data pairs, and the test dataset consisting of the remaining NN −0  data pairs. 

Let },,2,1:{ NtB t L== ξ  and },,1:{ 0NNtT t L+== ξ , where ))(),(( tytt x=ξ is the t-th sample 

(observation pair). Following the idea of conventional cross-validation, samples in the dataset B can be 

resampled as follows: 

•   K-fold cross-validation. The dataset B is split, along the coordination of the sampling index t, into 

K subsets, with roughly equal data length (number of samples). The hold-out method is then 

repeated K times, and at each time, one of the K subsets is used as a validation set and the other   

K-1 subsets are used as a training set. 
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•   K-fold random subsampling. The dataset B is randomly partitioned into K different subsets; each 

subset contains a certain number of samples that are randomly selected (without replacement) from 

B. Each of the K subsets is successively used as a validation set.  

This study considers the K-fold random subsampling method, which is implemented as below. 

•   Step 1. Let },,2,1{0 NL=Γ and }:{ 0Γ∈=Γ ii  be a random permutation of 0Γ . Divide the index set 

Γ  into K different parts, KΓΓΓ ,,, 21 L , where each part is roughly with the same size. 

•   Step 2. Let },:{ kttk tBV Γ∈∈= ξξ  and }\,:{\ kttkk tBVBB ΓΓ∈∈== ξξ , with k=1,2, …,K. Each 

kB is used as a training set and each kV  is used as a validation set. 

For the given 0N pairs of samples },,2,1:))(),(({ 0Nttytt L== xξ , both the associated training dataset 

},,2,1:{ NtB t L== ξ  and the K training sets KBBB ,,, 21 L , along with the K validation sets 

KVVV ,,, 21 L  , will be used to identify an appropriate regression model of the form (3) for the relevant 

dynamical system. This will be achieved with a new multiple orthogonal search algorithm (MOS) 

below. 

3.2  The multiple orthogonal search algorithm for model selection 

From the above discussion, it is known that all the datasets KBBB ,,, 21 L and KVVV ,,, 21 L come 

from the same dynamical system. These datasets should thus share, in theory, the same model 

structure, as well as the same model parameters. At the moment, however, the common model 

structure is not yet known and needs to be identified from these given datasets.  

Let the number of samples in the training dataset kB  be kN , and denote these kN samples by 

:))(),(({ , tyt kktk x=ξ ,, ktk B∈ξ  },,2,1 kNt L= . The objective is to identify a common-structured 

sparse model, for the given system, from the following multiple regressions 

)())(()(
1

, tetty k

M

m

kmmkk += ∑
=

xφθ )()(
1

,, tet k

M

m

mkmk += ∑
=

φθ                                                     (4) 

where ))(()(, tt kmmk xφφ = , with k=1,2, …, K, m=1,2, …, M, and t=1,2, …, kN . These equations can be 

expressed using a compact matrix form below 

kkkk eθy +Φ=                                                                                                                        (5) 

where T
kkkk Nyy )](,),1([ L=y ,

T
Mkkk ],,[ ,1, θθ L=θ , T

kkkk Nee )](,),1([ L=e , and ],,[ ,1, Mkkk φφ L=Φ   

with T
kmkmkmk N )](,),1([ ,,, φφ L=φ  for k=1,2, …, K and m=1,2,…, M.  

3.2.1  Multiple orthogonal search (MOS) for model term selection 

The multiple orthogonal search (MOS) method, which can be considered as an extension of the 

well known orthogonal forward regression (OFR) type algorithms (Billings et al. 1989, Chen et al. 
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1989), is developed to select a common-structured sparse model from the multiple regressions given 

by (4) and (5). Let },,2,1{ MI L= , and denote by }:{ ImD m ∈= φ  the dictionary of candidate model 

terms. For the kth training dataset kB , the dictionary D can be used to form a dual 

dictionary }:{ , Immkk ∈= φD , where the mth candidate basis vector mk ,φ  is formed by the mth 

candidate model term Dm ∈φ , in the sense that T
kkmkmmk N ))]((,)),1(([, xxφ φφ L=  (k=1,2, …,K). The 

common model term selection problem is equivalent to finding, from the dictionary }:{ ImD m ∈= φ , a 

subset D
nsss ⊂},,,{

21
φφφ L  (generally Mm << ), so that ky (k=1,2, …, K) can be satisfactorily 

approximated using a linear combination of ksksksk n
D⊂},,,{ ,,, 21

φφφ L  as 

ksknkskkk n
eφφy +++= ,,,1, 1

θθ L                                                                                            (6) 

The MOS algorithm selects significant model terms in a forward stepwise way, one model term at 

each search step. Initially, let kk yr =0, (k=1,2, …, K).  For k=1,2, …, K and j=1,2, …, M,  calculate 

))((

)(
),(err

,,

2
,)1(

jk
T

jkk
T
k

jk
T
k

jk
φφyy

φy
=                                                                                                 (7) 

and define 







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=≤≤

K

kMj
jk

K
s

1

)1(

1
1 ),(err

1
maxarg                                                                                              (8) 

The first significant common model term can then be selected as the s1th element, 
1sφ , in the 

dictionary D. Accordingly, the first significant basis vector for the kth regression model is thus 

1,1, skk φα = , and the associated orthogonal basis vector can be chosen as 
1,1, skk φq = .The model 

residual for the kth regression model, related to the first step search, is given as 

1,

1,1,

1,

0,1, k

k
T
k

k
T
k

kk q
qq

qy
rr −=                                                                                                            (9) 

In general, the mth significant model term 
msφ can be chosen as follows. Assume that at the (m-1)th 

step, (m-1) significant model terms, 121 ,, −mφφφ L , have been selected. Let 1,2,1, ,,, −mkkk ααα L be the 

associated basis vectors for the kth regression model, and assume that the (m-1) selected bases have 

been transformed into a new group of orthogonal bases 1,2,1, ,,, −mkkk qqq L via some orthogonal 

transformation. Let  



 9 

∑
−

=
−=

1

1
,

,,

,,

,
)(

,

m

s
sk

sk
T

sk

sk
T

jk

jk
m

jk q
qq

qφ
φp , mJj ∈                                                                                    (10) 

where }11,,1:{ −≤≤≠≤≤= mtsjMjjJ tm . For k=1,2,…,K and mJj ∈ ,  calculate 
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,
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,
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and define 







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=≤≤

K

k

m

Mj
m jk

K
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1
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The mth significant common model term can then be selected as the ms th element, 
msφ , in the 

dictionary D. Accordingly, the mth significant basis vector for the kth regression model is thus 

mskmk ,, φα = , and the associated orthogonal basis vector can be chosen as )(

,,
m

skmk
m

pq = .The model 

residual for the kth regression model, related to the mth step search, is given as 

mk

mk
T

mk

mk
T
k

mkmk ,

,,

,

1,, q
qq

qy
rr −= −                                                                                                 (13) 

Notice that ),(err
)(

m
m

sk  can be explained as the error reduction ratio (ERR) that is introduced by 

including the mth basis vector 
mskmk ,, φα =  into the kth regression model. The criterion (12), by 

maximizing the sum of the ERR values, relative to all the K data sets, guarantees that the variation of 

the outputs in all the K data sets can be explained by including the model term 
msφ , with the highest 

percentage, compared with selecting any other candidate model term }:{ ImD m ∈=∈ φφ . The 

quantity 

∑ == K

k m
m

skKm
1

)(
),(err)/1()AERR(                                                                                    (14) 

 is referred to as the mth average (or overall) error reduction ratio (AERR). 

Subsequent significant bases can be selected in the same way step by step.  Once the first (m-1) 

basis vectors 1,2,1, ,,, −mkkk ααα L  (respectively the associated orthogonalized bases 1,2,1, ,,, −mkkk qqq L ) 

have been determined, then these (m-1) bases together with the mth basis 
mskmk ,, φα =  (respectively 

the orthogonalized basis 
)(

,,
m

skmk
m

pq = ) , can explain the variation in the outputs of the K data sets with 

a higher percentage than by including any other candidate bases. This step-by-step forward selection 

algorithm is a non-exhaustive search method, and may not always produce the global optimal solution. 

For most problems, however, this algorithm usually produces satisfactory and nearly optimal results. 
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From the above orthogonal procedure, it is known that the vectors mk ,r and mk ,q  are orthogonal, 

thus  

mk
T

mk

mk
T
k

mkmk

,,

2
,2

1,
2

,

)(
||||||||

qq

qy
rr −= −                                                                                               (15) 

By respectively summing (13) and (15) for m from 1 to n, yields 

nk

n

m
mk

mk
T

mk

mk
T
k

k ,
1

,

,,

,
rq

qq

qy
y ∑

=
+=                                                                                                      (16) 
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||||||||

qq
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=
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m mk
T
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T
k

k
1 ,,

2
,2 )(

||||
qq

qy
y                                                           (17) 

Equation (16) shows that ky  can be approximated using a set of orthogonal vectors },,,{ ,2,1, nkkk qqq L , 

which are transformed from the original vectors ksksksk n
D⊂},,,{ ,,, 21

φφφ L . The norm 2
, |||| nkr , or 

some associated variations, is often used to form a criterion to determine the model complexity (model 

size) in some conventional identification procedure, where observed data are partitioned using the 

‘hold-out’ method. In this study, however, a K-fold random subsampling method is used to determine 

the model complexity. 

3.2.2  Parameter estimation of individual models 

It is easy to verify that the relationship between the selected bases ksksksk n
D⊂},,,{ ,,, 21

φφφ L  and 

the associated orthogonal bases nkkk ,2,1, ,,, qqq L , for the kth data set, is given by 

nknknk ,,, RQA =                                                                                                                       (18) 

where ],,,[ ,,, 21 nskskskk φφφA L= , nk ,Q  is an nNk × matrix with orthogonal columns 

nkkk ,2,1, ,,, qqq L , and nk ,R  is an nn × unit upper triangular matrix whose entries are calculated during 

the orthogonalization procedure. The unknown parameter vector, denoted by 
T

nkknk ],,[ ,1,, θθ L=θ ,  for 

the regression with respect to the original bases, can be calculated from the triangular equation 

nknknk ,,, gθR =  where 
T

nkknk gg ],,[ ,1,, L=g  and )/()( ,,, mk
T

mkmk
T
kmg qqqy=  for m=1,2, …, n. 

3.2.3  Model size determination 

Model selection criteria are often established on the basis of estimates of prediction errors, by 

inspecting how the identified model performs on future (never used) data sets. Several criteria, for 

example, the Akaike information criterion (AIC) (Akaike 1974), the Bayesian information criterion 

(BIC) (Schwarz 1978), the minimum description length (MDL) (Rissanen 1978), the generalised 

cross-validation (GCV) (Golub et al. 1979), and many variants (Miller 1990, Hansen and Yu 2001 
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Stoica and Selen 2004), are available to determine the model complexity or model size (number of 

regressors). In this study, however, one variation of the conventional BIC (Efron and Tibshirani 1993) 

is considered, and this given as below 

)MSE(
)ln(

1)BIC( p
pN

Np
p 








−

+=
NpN

Np RSS)ln(
1 








−

+=                                                             (19) 

where y is the observed (or desired) output sequence of length N, MSE and RSS represent the mean-

squared-error and the residual sum of squares, respectively, corresponding to the choice of the model 

of p terms. The relationship between MSE and RSS is defined as NNpp p /||||/)RSS()MSE(
2

r== , 

where pr represents the associated model residual. 

Now consider again the multiple (K-fold) regression modelling problem discussed in the previous 

section. The present study uses a weighted average information criterion to determine the number of 

common model terms. The weighted average BIC is given by 

)(WABIC)1()(WABIC)(WABIC (Val)(Train) ppp αα −+=                                                         (20) 

whereα is a constant satisfying 10 ≤≤ α , )(WABIC
(Train)

p and )(WABIC
(Val)

p  respectively represent 

the values of the associated weighed average information criterion, corresponding to the model of p 

terms, calculated by applying the BIC to the relevant training and validation data sets as below  

∑
=

=
K

k

k p
K

p
1

(*)(*) )(BIC
1

)(WABIC                                                                                              (21) 

where ‘*’ indicates either ‘Train’ or ‘Val’, meaning that )(BIC(*) pk and )(WABIC(*) p are calculated 

from either the training datasets KBBB ,,, 21 L , or the validation datasets KVVV ,,, 21 L . The subscript k 

in )(BIC(*) pk  indicates that the criterion is for the kth model and is associated with the kth training and 

validation data set.  

3.3  Model parameter estimation and refinement 

Assume that a total of n common model terms, n
mm t 1))}(({ =xω Dt

n
mim

⊂= =1))}(({ xφ , have been 

selected by applying the multiple orthogonal search (MOS) algorithm to the associated training dataset 

B that consists of N data pairs, },,2,1:))(),({( Nttyt L=x . The common-structured model can then be 

described as 

)())(()(
1

tetty
n

m

mm += ∑
=

xωβ )()(
1

tet
n

m

mm += ∑
=

ωβ                                                                (22) 

3.3.1  Ridge regression 
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Let Φ be the design matrix associated with (22), y the output vector, and T
n ],,,[ 21 βββ L=β the 

model parameter vectors. The least squares estimator of the model parameter vector β is then given by 

yβ TT ΦΦΦ= −1
LS )(ˆ                                                                                                                 (23) 

Note that the least squares method may occasionally produce very poor estimates of the regression 

coefficients when it is applied to non-orthogonal data (Montgomery et al. 2001), meaning that the 

absolute value of the least squares estimates may be too large and that they are very unstable, that is, 

their magnitudes and signs may change considerably given a different sample (Montgomery et al. 

2001). This stems from the requirement that the estimate LSβ̂  be an unbiased estimator of β . One way 

to alleviate this problem is to drop the requirement that the estimator of β  be unbiased by using ridge 

regression, a penalised least squares method originally proposed by Hoerl and Kennard (1970a,b) . 

The ridge estimator Rigβ̂ is defined as 

yIβ
TT Φ+ΦΦ= −1

Rig )(ˆ λ                                                                                                        (24) 

where 0≥λ  is some constant. Hoerl and Kennard (1976) proposed to use the following iterative 

estimation procedure to determine the ridge biasing parameter λ .  

•    Step 0: Calculate 

 
LSLS

2
LS

0 ˆˆ

ˆ

ββT

nσλ =                                                                                                                            (25) 

where 

)ˆ()ˆ(
1

ˆ
LSLS

2
LS βyβy Φ−Φ−

−
= T

nN
σ                                                                                     (26) 

•    Step k ( 1≥k ): Calculate 

)(ˆ)(ˆ

ˆ

1Rig1Rig

2
LS

−−

=
kk

Tk

n

λλ
σλ
ββ

                                                                                                     (27) 

where )(ˆ
1Rig −kλβ is the ridge estimator corresponding to the biasing parameter 1−kλ .  

Results from our own simulation studies have shown that the above iterative estimation procedure 

converges very fast, and in most cases the biasing parameter kλ becomes unchanged (a constant) after 

only three or five steps. 

3.3.2  K-Fold estimation 

This study proposes using a K-fold parameter estimation approach to obtain more robust estimates 

of the model parameters. Either the least squares (23) based or the ridge regression (24)-(27) based K-
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fold estimation approach can be used to achieve this objective. Taking K-fold ridge regression as an 

example, the associated procedures can be briefly summarised as follows: 

•   Step 1: Apply the K-fold random subsampling method to the associated training dataset B, to 

generate K subsets KΩΩΩ ,,, 21 L , each roughly containing say 90% data samples in B. 

•   Step 2: Apply the ridge regression to the training dataset B, and let the resultant ridge estimator be 

)0(
Rigβ̂ . 

•   Step 3: Apply the ridge regression to these K subsets KΩΩΩ ,,, 21 L . Let the resultant ridge 

estimator, relative to the kth dataset kΩ , be )(
Rig

ˆ kβ , with k=1,2, …, K. 

•   Step 4: The average of the K+1 ridge estimators, defined as ∑ = += K

k

k K
0

)(
RigKF )1/()ˆ(ˆ ββ , is chosen as 

the model parameter vector of the associated model. 

4.   Examples and Applications 

Two examples are provided to demonstrate the application of the proposed random subsampling 

and multifold modelling (RSMM) approach. The data used in the first example are simulated from 

some low-order nonlinear models; the objective is to illustrate how well the RSMM approach works 

on improving the model parameter estimates for nonlinear models, where the model structure is 

assumed to be known. The data used in the second example are for a wild type of fly, called 

Drosophila; this example involves a real-world nonlinear input-output system identification problem. 

4.1  Improved parameter estimates with known model structure 

Consider two models given below 

1M :   )1(8.0)2(6.0)1(8.0)( −+−−−= tutxtxtx )1(7.0)1(6.0)1(4.0
432 −−−+−− tututu           (28a) 

)()()( ttxty ε+=                                                                                                                  (28b) 

2M :   )2()1(2.0)2()1(4.0)2(5.0)1()( 2 −−−−−+−+−= tututututututx                                   (29a) 

)()()( ttxty ε+=                                                                                                                  (29b) 

where the properties of the input signal u(t) and the additive noise signal )(tε , along with some 

simulation conditions, are described in the details below. 

4.1.1   Experiments for model 1M  

The input u(t) was uniformly distributed on [- 1, 1], and the noise ),0(~)( 2σε Nt . Four cases, 

corresponding to σ =0.0106, 0.1071, 0.3374 and 0.5979, were considered. These enable the signal-to-

noise ratio (SNR) to be roughly 40, 20, 10 and 5dB, respectively. Simulations and Monte-Carlo 

experiments were carried out by performing the procedures below: 
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•    For each case, the model was simulated 200 times 

•    At each time of simulation, a data set containing 500 input-output data points was collected.  

•   For each of the 200 datasets, the ordinary least squares algorithm was used for parameter estimation. 

•    For each of the 200 datasets, the K-fold parameter estimation procedure, described in section 3.3, 

was performed for parameter estimation, where K was chosen to be 10.  

Let
)(ˆ q

pβ be the estimate of the pth parameter pβ̂ , produced from the qth dataset using either the 

ordinary least squares algorithm or the K-fold parameter estimation method, where p=1,2,3,4,5,6, and 

q=1,2,3, …, 200. This study uses the following three statistics to measure the performance of the 

parameter estimates for a known model structure. 

•   The mean (or average) 

∑
=

=
200

1

)(mean ˆ
200

1ˆ

q

q
pp ββ                                                                                                                 (30) 

•   The standard deviation 

2/1

2
200

1

mean)(dev
]ˆˆ[

200

1ˆ












−= ∑

=q

p
q

pp βββ                                                                                            (31) 

•    The mean of the total relative error 

%100
ˆ

6

1

200

1ˆ
200

1

6

1

)(

)()(

MTRE ×










 −
= ∑ ∑

= =q p

q
p

q
p

q
p

p β
ββ

β                                                                            (32) 

The three statistics associated with the above four cases are listed in Table 1. 

4.1.2   Experiments for model 2M  

The input u(t) was an AR(2) process of the form u(t)=1.6u(t-1)-0.6375u(t-2)+ )(16.0 tw , and the 

noise )(tε was of the form )()1(75.0)( tcwtt +−= ηη , where with )1,0(~)( Ntw and c is a constant. 

Four cases, corresponding to c=0.01, 0.1, 0.25 and 0.5, were considered. These make the signal-to-

noise ratio (SNR) to be roughly 40, 20, 10 and 5dB, respectively. The same simulations and Monte-

Carlo experiments, as described for the previous model 1M , were carried out, and the associated 

results are shown in Table 2. From the results given in Tables 1 and 2, it can be concluded, in a 

statistical and an asymptotic sense, that: 

•   When the SNR is high, both the ordinary least squares algorithm and the K-fold estimation methods 

can provide very good parameter estimates, with low standard deviations and low total relative 

errors. 

•   The variance of the parameter estimates produced by the ordinary least squares algorithm is much 

greater than that produced by the K-fold estimation methods.  

•   The total relative errors of the parameter estimates produced by the ordinary least squares algorithm 

is much greater that that produced by the K-fold estimation method.  
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Table 1  Comparisons of the parameter estimates produced by the ordinary least squares algorithm and 

by the K-fold RSMM method, for the model given by (28) 

 

Parameter estimates and the associated performance 
 

SNR 
Method 

1β  2β  3β  4β  5β  6β  MTRE (%) 

LS 0.7998 -0.5999 0.8002 -0.3999 0.5998 -0.7002 0.4563% 

KLS 0.7999 -0.5999 0.8003 -0.4002 0.5997 -0.6998 0.0561% 

 
Mean 

KRR 0.7999 -0.5999 0.8003 -0.4003 0.5997 -0.6997 0.0566% 

LS 0.0005 0.0005 0.0031 0.0046 0.0048 0.0067  

KLS 0.0001 0.0001 0.0005 0.0008 0.0007 0.0012  

 
 

40dB 

 

Dev 

KRR 0.0001 0.0001 0.0005 0.0008 0.0007 0.0012  

LS 0.7855 -0.5868 0.7999 -0.4008 0.6004 -0.7015 5.0218% 

KLS 0.7857 -0.5870 0.8006 -0.4003 0.5995 -0.7023 1.0798% 

 

Mean 

KRR 0.7856 -0.5869 0.8007 -0.4039 0.5989 -0.6970 1.1937% 

LS 0.0048 0.0046 0.0287 0.0478 0.0438 0.0691  

KLS 0.0007 0.0007 0.0047 0.0078 0.0061 0.0109  

 

 

20dB 

 

Dev 

KRR 0.0007 0.0007 0.0046 0.0076 0.0060 0.0107  

LS 0.6789 -0.4908 0.7968 -0.4262 0.0611 -0.6711 19.6064% 

KLS 0.6784 -0.4901 0.8055 -0.4293 0.5898 -0.6664 8.2488% 

 
Mean 

KRR 0.6773 -0.4893 0.8057 -0.4545 0.5847 -0.6274 10.3088% 

LS 0.0166 0.0159 0.0915 0.1531 0.1391 0.2209  

KLS 0.0025 0.0021 0.0153 0.0186 0.0237 0.0266  

 
 

10dB 

 

Dev 

KRR 0.0025 0.0020 0.0144 0.0156 0.0222 0.0227  

LS 0.5130 -0.3458 0.8076 -0.4456 0.5858 -0.6612 34.3088% 

KLS 0.5117 -0.3459 0.8117 -0.4266 0.5789 -0.6929 17.0049% 

 

Mean 

KRR 0.5097 -0.3443 0.8106 -0.4856 0.5654 -0.5971 20.9344% 

LS 0.0274 0.0283 0.1554 0.2260 0.2321 0.3225  

KLS 0.0044 0.0038 0.0276 0.0457 0.0420 0.0699  

 

 

5dB 

 

Dev 

KRR 0.0044 0.0038 0.0236 0.0307 0.0356 0.0500  

 LS: Ordinary least squares algorithm; KLS: LS based K-fold parameter estimation;  

KRR: Ridge regression based K-fold parameter estimation; 

 

Table 2  Comparisons of the parameter estimates produced by the ordinary least squares 

algorithm and by the K-fold RSMM method, for the model given by (29) 

 
SNR Method 

1β  2β  3β  4β  MTRE (%) 

LS 0.9998 0.5001 0.4000 -0.2000 0.3393% 

KLS 0.9998 0.5002 0.4001 -0.2000 0.0619% 

 

Mean 

KRR 0.9998 0.5002 0.4001 -0.2000 0.0622% 

LS 0.0056 0.0055 0.0009 0.0006  

KLS 0.0016 0.0014 0.0002 0.0001  

 

 
40dB 

 
Dev 

KRR 0.0016 0.0014 0.0002 0.0001  

LS 1.0000 0.4993 0.3995 -0.1997 3.8751% 

KLS 1.0014 0.4967 0.3995 -0.1995 0.4562% 

 

Mean 

KRR 0.9998 0.4980 0.3995 -0.1995 0.4174% 

LS 0.0508 0.0475 0.0096 0.0064  

KLS 0.0064 0.0094 0.0017 0.0011  

 

 

20dB 

 

Dev 

KRR 0.0064 0.0093 0.0017 0.0011  

LS 1.0049 0.4941 0.4021 -0.2004 10.3419% 

KLS 1.0035 0.4964 0.4038 -0.2002 1.2701% 

 

Mean 

KRR 0.9942 0.5039 0.4036 -0.1998 1.1024% 

LS 0.1315 0.1252 0.0253 0.0174  

KLS 0.0197 0.0209 0.0045 0.0021  

 

 
10dB 

 
Dev 

KRR 0.0191 0.0203 0.0045 0.0020  

LS 1.0182 0.4852 0.4001 -0.2005 20.1103% 

KLS 0.9991 0.4909 0.4011 -0.1977 2.2415% 

 

Mean 

KRR 0.9996 0.5165 0.4006 -0.1962 2.7484% 

LS 0.2514 0.2499 0.0480 0.0306  

KLS 0.0412 0.0342 0.0065 0.0054  

 

 

5dB 

 

Dev 

KRR 0.0376 0.0305 0.0065 0.0054  

•   The variance of the parameter estimates produced by the K-fold ridge regression is less than that 

produced by the K-fold least squares method.  

•   The total relative errors of the parameter estimates produced by the K-fold ridge regression are 

comparable with those produced by the K-fold least squares method. 
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4.2  Fruit fly modelling 

The fruit fly insect dataset contains 1000 experimental data points for a wild type of fruit fly, 

called Drosophila. The system input was the response of the photoreceptors (PR: mV), and the output 

was the response of the large monopolar cells (LMCs, mV). The relationship between the input and 

the output in the fruit fly experiment is complex, because in addition to the response from the 

photoreceptors, several other factors may also affect the output response of the large monopolar cells. 

The objective here was to find a model that reflects, as closely as possible, the relationship between 

the response of the photoreceptors (the input) and the response of the large monopolar cells (the 

output), to facilitate the analysis and understanding of the associate behaviour of this kind of insect.  

The 1000 input-output data points, which are shown in Figure 1, were partitioned into two parts: 

the training data set consisting of the first 800 points, and the test data set consisting of the remaining 

200 points. A Volterra series model was employed to describe the input-output relationship of the fruit 

fly data. The Volterra model is a special case of the linear-in-the-parameters form (3), where the 

‘input’ (predictor) vector )(tx contains no lagged output y(t-k), with 1≥k . The input vector )(tx for 

the fruit fly data was chosen to be T
txtxtxt )](,),(),([)( 1521 L=x ,),2(),1([ L−−= tutu  T

tu )]15( − , and 

the initial full model was chosen as  
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Fig. 1   The input and output signal for the fruit fly modelling problem.  
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A total of 136 candidate model terms were involved in the initial full model (33). A 10-fold random 

subsampling and multifold modelling (RSMM) approach, along with the weighed average BIC given 

by (20) where the weight coefficientα =0.5, was applied to the training dataset composed of the first 

800 data points. For a comparison, the conventional orthogonal forward regression (OFR) algorithm, 

along with the BIC given by (19), was also applied to the same training dataset. The BIC and WABIC, 

shown in Figure 2, suggest that the model size for the OFR and RSMM produced models should be 13 

and 12, respectively. The selected model terms for the two models are shown in Table 3, where 

individual model terms are ranked in the order that they entered into the model. 

It can be seen from Table 3 that the performance of the RSMM produced model is slightly better 

than that produced by using the traditional hold-out method, in the sense that the RSMM produced 

model provides better predictive capability over the test dataset. More importantly, it can easily be 

noted that by using the K-fold ridge regression, the very large initial least squares estimates of the 8th 

coefficient 53.7965 has been significantly reduced, without deteriorating the model’s generalisation 

properties. This is important because, from the discussion of the previous section, the ridge penalised 

model with shrinkage coefficients should be more robust. The model predicted output from the 

RSMM produced model is shown in Figure 3. Note that Figure 3 illustrates the model predicted output 

which is a much better indication of model performance than the one step ahead predicted output. The 

latter is virtually coincident with the data set. 
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Table 3  Comparisons of the OFR and RSMM produced models for the fruit fly modeling problem 

 

OFR RSMM 

Parameter 

 
Index Model term Parameter Model term 

Initial (LS) KLS KRR 

1 u(t-15) 0.399564 u(t-15) 0.439843 0.480600 0.141230 

2 u(t-1)u(t-14) -0.298695 u(t-1)u(t-14) 0.004403 0.004146 0.004584 

3 u(t-7)u(t-14) 0.312272 u(t-8)u(t-10) -0.003163 -0.003154 -0.002933 

4 u(t-2)u(t-14) 0.015946 u(t-2)u(t-13) 0.012494 0.012462 0.012521 

5 u(t-1) 3.397754 u(t-5) 0.390185 0.321670 0.916750 

6 u(t-14)u(t-15) -0.023164 u(t-1)u(t-5) 0.430601 0.426020 0.462471 

7 u(t-1)u(t-13) 0.191000 u(t-1)u(t-15) -0.091538 -0.089021 -0.084144 

8 u(t-7)u(t-13) -0.183164 const 53.796524 53.396613 0.062336 

9 const 47.895010 u(t-1) 3.143354 3.159672 1.327320 

10 u(t-1)u(t-1) -0.059281 u(t-5)u(t-5) -0.245837 -0.243192 -0.251918 

11 u(t-1)u(t-5) -0.001521 u(t-1)u(t-1) -0.143858 -0.142570 -0.177004 

12 u(t-1)u(t-7) 0.285200 u(t-5)u(t-15) 0.068354 0.066661 0.056249 

13 u(t-7)u(t-7) -0.208430     

 mse=5.3722; 

nrmse=0.3695. 
 mse=4.8159; 

nrmse=0.3498. 
mse=5.0013; 

nrmse=0.3565. 

mse=4.7537; 

nrmse=0.3475. 

 LS: Ordinary least squares algorithm; KLS: LS based K-fold parameter estimation; KRR: Ridge regression based K-fold 

parameter estimation; The above MSE and NRMSE were calculated over the test dataset.  

 

 

 

 

 

 

 

 

Fig. 2   The BIC for the OFR produced model (the circled-line) and the WABIC for the RSMM produced model 

(the stared-line) for the fruit fly modelling problem.   
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Fig. 3   A comparison of the model predicted output and the measurement for the fruit fly modelling problem. 

The thick solid line represents the measurement; the thick dashed line represents the model predicted output 

from the RSMM produced model; the thin solid line represents the model predicted output from the traditional 

hold-out method using the OFR algorithm. 

 

5.   Conclusions 

The application of the new random subsampling and multifold modelling (RSMM) approach 

involves two steps: model term selection and model parameter refinement. As in other random 

sampling or bootstrapping methods, the information carried by a given data set can often be 

sufficiently exploited for model identification by means of the proposed multifold random 

subsampling approach. When the RSMM approach is applied to model structure selection, some kind 

of multiple search procedures, over a number of partitioned datasets, are inevitably involved. It would 

initially seem that the implementation of a multiple search is complex. Fortunately, however, the 

introduction of the new multiple orthogonal search (MOS) algorithm enables the realisation of the 

associated multiple search to be quite convenient.  

For convenience of description and illustration, all the models involved in the given examples are 

formed using polynomials. However, it should be stressed that the RSMM approach can also be 

applied to any other parametric or non-parametric modelling problems, where the initial full models 

can be written as a linear-in-the-parameters form.  

The criterion used for model size determination in this study is a weighted average Bayesian 

information criterion (WABIC), where a weight coefficient needs to be provided. However, how to 

chose and optimise such a weight coefficient is still an open problem. 
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