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Abstract: Hysteresis, or jump phenomenon, are a common and severe nonlinear 

behaviour associated with the Duffing oscillator and the multi-valued properties of the 
response solution. Jump phenomenon can be induced by either varying the amplitude 

or the frequency of excitation. In this paper a new time and frequency domain 
analysis is applied to this class of system based on the response curve and the 

response spectrum map.   
 

 
 

1. Introduction 

 

Duffing’s equation represents a class of single-degree-of-freedom nonlinear driven 

damped oscillators with a cubic, or more generally a polynomial, nonlinear restoring 
force, and has been widely used in modelling mechanical and electrical oscillators. 

Despite the seemly simple form of Duffing’s equation, it is extremely rich in dynamic 
behaviours and exhibits many complex solutions. Almost every nonlinear 

phenomenon can be found in Duffing’s equation which has often been used as a 
benchmark example in many studies. Of the many complex nonlinear dynamics that 

are possible, a common severe nonlinear phenomenon that is induced by the multi-
valued solution is due to the cubic nonlinearity in the Duffing oscillator is hysteresis, 

which is the topic of the current study.  

Hysteresis can occur in the Duffing oscillator when either the amplitude or the 

frequency of the excitation is varied. Traditionally the 2-dimensional response curve, 
which displays the amplitude of response as a function of either the amplitude or the 

frequency of the excitation, has been used to study hysteresis(Stoker,1950, 
Hagedorn,1982 and Thompson and Stewart, 2002, etc).  In this study, a new time and 

frequency domain analysis of hysteresis is presented. First a 3-dimensional response 
curve which takes account of both varying amplitude and frequency of the excitation 
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is introduced to provide a comprehensive view of hysteresis for a Duffing oscillator. 
Then a detailed qualitative analysis of various operating conditions along both 

excitation parameters is given, based on the response curves and response spectrum 
maps.  

 

2. Volterra Series Representation of the Duffing Oscillator 

 
The Volterra series, first proposed by Volterra (1930), has been widely used for the 
representation, analysis and design of nonlinear systems. The Volterra model is a 

direct generalisation of the linear convolution integral and provides an intuitive 
representation in a simple and easy to apply way. For a SISO nonlinear system, where 

)(tu and )(ty are the input and output respectively, the Volterra series can be 

expressed as 
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and  y tn ( )  is the ‘n-th order output’ of the system 
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where hn n( , , )τ τ1 ⋅ ⋅ ⋅  is called the ‘nth-order kernel’ or ‘nth-order impulse response 

function’. If n=1, this reduces to the familiar linear convolution integral. 

The discrete time domain counterpart of the continuous time domain SISO Volterra 

expression (1) is 
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In practice only the first few kernels are studied on the assumption that the 

contribution of the higher order kernels falls off rapidly. Systems that can be 
adequately represented by a Volterra series with just a few terms are called weakly or 

mildly nonlinear systems. A discrete time Volterra series is also called a NX 
(Nonlinear model with eXogenous inputs) model. 

The multi-dimensional Fourier transform of )(⋅nh yields the ‘nth-order frequency 

response function’ or the Generalised Frequency Response Function (GFRF):  
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The generalised frequency response functions represent an inherent and invariant 

property of the underlying system, and have proved to be an important analysis and 

design tool for characterising nonlinear phenomena. Despite its importance, the 

Volterra series has a limited convergence, and can therefore only be applied to so-
called weakly or mildly nonlinear systems.  



Consider a Duffing oscillator, with cubic nonlinearity, subject to a sinusoidal 
excitation as 

                                    uykykcyym =+++ 3
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where )cos( tAu ω=  and 31  and ,, kkcm are the mass, the damping, the linear 

stiffness and nonlinear stiffness respectively. The nonlinear stiffness parameter 3 k  in 

(4) needs to stay small in order to be ‘weakly’ nonlinear, at least in some regions, for 
the existence of Volterra series representation. When hysteresis, which is seen as a 

part of the class of ‘severely’ nonlinear phenomenon, occurs in the Duffing oscillator, 
a valid and unique global Volterra series representation would not be expected to exist. 

However, Duffing’s oscillator with hysteresis may accept a local Volterra series 
representations. This point will be discussed in the following sections. 

 

 

3. A 3-Dimensional Response Curve for the Duffing 

Oscillator  
 

Exact analytical solutions of Duffing’s equation (4) do not exist and therefore  

approximation schemes are used in quantitative investigations.  One of the 

approximation methods that has been widely adopted is the harmonic balance method. 

This involves re-arranging the external excitation in (4) as  

22with)cos()sin( QPAtQtPu +=+= ωω                         (5) 

and expressing the response as   

)sin( tHy ω=                                                                                   (6) 

Substituting (5) and (6) into (7), together with the use of )3sin()sin()(sin
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where the term containing )3sin( tω has been neglected. 

Equating coefficients of the same harmonic terms in (7) and using 
22

QPA += gives 
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If the amplitude A and frequency ω of the excitation are given, the amplitude of the 

response can be approximately obtained using formula (8). One important 

phenomenon which commonly occurs with the Duffing oscillator is the so-called 

hysteresis or jump phenomenon which occurs because of the multi-valued properties 

of the response in (8) due to the cubic nonlinearity. This will be shown as two stable 

solutions separated by an unstable solution.  

Hysteresis can occur by either changing the amplitude or the frequency of the external 

excitation and has been studied extensively based on the response curve(RC), which 



measures the amplitude of  the response against either the amplitude or the frequency 
of excitation in a 2-dimensional diagram. Whereas hysteresis occurs along both the 

amplitude and frequency axes, it is sometimes advantageous to have a 3-dimensional  
response curve which can provide a global picture of  the hysteresis behaviour. Here a 

3-dimensional response curve of the Duffing oscillator (4) is shown in Figure 1, using 

the parameters 05.0 and 1,2.0,1 31 ==== kkcm . Note that only forward paths where 

the frequency and amplitude are increasing are studied. 

 
Figure 1. Response curve of the Duffing oscillator (4) for both varying excitation 

amplitude and frequency  

 

Figure 1 reveals a lot of important information with respect to hysteresis. It gives a 

clear overall picture of when and where the jump occurs. Overall, there are two areas 

where hysteresis is present. The major jump cliff starting from rad/sec1=ω  and 

A=1 has been the main subject of most studies. Looking along the frequency axis, it 

can be seen that there is only a very narrow range of excitation amplitudes where the 
Duffing system is hysteresis-free, for example where ].5.0,0[∈A  The main jump cliff 

starts from A=0.5.  The frequency point and the magnitude of the jump increases 

monotonously, as the amplitude of the excitation increases. When the amplitude 
reaches around 10.5, multiple jumps appear.  

Along the amplitude axis, over the low frequency range, there is an area where no 

hysteresis is present.  But there are ridges as the amplitude becomes high, indicating 
an increase of dynamic complexity due to the increasing excitation amplitude. There 

are also no multiple jumps for the whole frequency range.  In the following section, a 

frequency domain analysis is performed on both axes to further characterize this type 

of severe nonlinearity. 

 

 

4. Frequency Domain Analysis of  Hysteresis 
 

Although the 3-D Response Curve illustrated in Figure 1 provides a comprehensive 
picture with respect to the hysteresis, the features it reveals are mostly in the time 

domain. Very few efforts have been made to analyse the dynamics of hysteresis in the 
frequency domain.  In this section, an attempt has been made for the first time, by 



combining the powerful Response Spectrum Map recently proposed by Billings and 
Boaghe (2001), to exploit the frequency domain properties behind hysteresis at 

representative amplitude and frequency points.   

4.1   Frequency domain analysis for the Duffing equation when 

the amplitude of Excitation is held constant 

From Figure 1, it can be seen that when the amplitude A is relatively small, there is 

only a single jump along the whole frequency axis. A 2-dimensional response curve 

can be extracted from Figure 1 by setting A=1.2, this is shown in Figure 2.   

 

 
Figure 2. 2D Response curve when the amplitude of the excitation is fixed at A=1.2 

Apart from the fact that the hysteresis occurs at rad/sec28.1=ω point, Figure 2 shows 

very little other information about the properties of the system before and after the 

jump. A completely new 3-D diagram, called the Response Spectrum Map(RSM) by 

Billings and Boaghe (2001) which is typically used to study bifurcation phenomena, 

will be adopted here in the analysis of hysteresis. The RSM for the Duffing oscillator 

(4) at amplitude A=1.2 is illustrated in Figure 3. It can be seen from Figure 3 that a 

significant frequency component change occurs in the response at excitation 

frequency rad/sec28.1=ω in line with the response curve in Figure 2. But the 

important information the response curve cannot provide but the RSM can is that over 

the whole excitation frequency range, the response possesses only first, third and fifth 

order etc harmonics, implying that the underlying Duffing oscillator at amplitude 

A=1.2 is weakly nonlinear, or in other words, has a Volterra series representation. 

Although no global Volterra expression is available because  the two stable solutions 

co-exist, local Volterra series representations can be realised.  



                

 

Figure 3. Response Spectrum Map for the case where the amplitude of excitation is 

fixed at A=1.2 

Further analysis of the RSM in Figure 3 reveals that although the system preserves 

the Volterra series validity throughout the hysteresis dynamics, the level of 
changes with various harmonics are different. It can be seen that the first order 

harmonic remains relatively unchanged before and after the hysteresis effect, 
while a significant drop in magnitude occurs for the higher order frequency 

components after hysteresis, with the fifth harmonics even vanishing. Since the 

higher order harmonics are related to the higher order kernels in the Volterra 

series representation, this phenomenon would suggest a reduced order Volterra 

representation after the hysteresis. To verify this, two discrete time Volterra (NX) 

models were built using the excitation and response data at points A and B in 

Figure 2 respectively. That is for the points just before ( ω =1.28) and 

after(ω =1.29) the jump. The models were estimated using the orthogonal least 

squares algorithm with terms selection based on the error reduction ratio( Billings 
at al 1988 ).  

 

Model for point A(ω =1.28):   

   k- uk- uk-  u. -k- uk- uk-  u.-k-  u.-k-  u.= ky )3()2()1(074540)4()2()1(122830)3(87743)4(11746)(

                       (9)  

Model for point B (ω =1.29): 

   k-uk- u. -k-  uk-  uk-  u= ky )4()3(237020)4(0.25188)4(7472.4)1(212.6)( 23++−
      (10) 

Inspection of the coefficients of the NX model (9) and (10) does not readily reveal 

which model has a more significant higher order (third order) presence in terms of 

a Volterra representation. But if both (9) and (10) are mapped into the frequency 

domain (Peyton Jones and Billings, 1989) and the Generalised Frequency 

Response Functions(GFRF’s) are compared (Table 1), the order of Volterra 

representation or the mildness of nonlinearity for each situation becomes very 
clear.  It can be seen from Table 1 that the magnitude of the higher order GFRF’s  

)(3 ⋅H  with 28.1=ω  is much more significant than the first order 



)(1 ⋅H compared with the result at 29.1=ω , suggesting that in the latter case the 

system can be almost approximated by a linear system.  

 

 28.1=ω  29.1=ω  

)(1 ωH  3.7552 1.8310 

),,(3 ωωωH  0.1973 0.0222 

),,(3 ωωω −H  0.1952 0.0163 

 

                              Table 1. Comparison of the GFRF’s from (9) and (10)  

The contribution of each GFRF’s can also be calculated using the results in Bedrosian 
and Rice(1971). Figure 4 and 5 illustrate the contributions from each order of GFRF’s 

to the response at points A and B respectively using NX models (9) and (10). It can be 

seen in Figure 4 that both the first and third order GFRF are required to obtain a 

satisfactory truncation accuracy at ω =1.28, while in Figure 5 for ω =1.29 there is no 

apparent improvement in the accuracy when the third order GFRF is included. In 

other words, at ω =1.29 the system can be almost regarded as a linear system. These 

findings are in good agreement with the observation from the RSM in Figure 3. It can 

therefore be concluded that there is a reduction in the number of terms in the Volterra 

representation after the hysteresis effects. 

       

Figure 4 (a) First order output response, and (b) up to the third order output response.  Dashed— 

synthesized output by GFRF’s from (9); Solid--simulated original output from (4) 

 

 

Figure 5 (a) First order output response, and (b) up to the third order output response. Dashed— 
synthesized output by GFRF’s from (10); Solid--simulated original output from (4) 



 

It can be seen from the 3-D response curve in Figure 1 that the complexity of the 

dynamics increases as the amplitude of the excitation increases, leading to multiple 

jumps. Figure 6 shows the response curve at amplitude A=15. It can be seen from 

Figure 6 that at A=15 there are much richer dynamic behaviours compared to the 

response curve at amplitude A=1.2 in Figure 2. There are more resonances in the low 

frequency range, and in addition to the main jump at around ω =2.3, there is an 

auxiliary jump at around ω =0.96.  

 

 

 

Figure 6.  Response curve when the amplitude of excitation is fixed at A=15 

 

The RSM for the Duffing equation (4) at A=15 is given in Figure 7. The phenomenon 

surrounding the main jump at around ω =2.3 is similar to that for A=1.2, with a 

possible reduced Volterra representation after the jump. The particular feature of the 

RSM in Figure 7 compared with the RSM in Figure 3 is the presence of hysteresis at 

ω =0.96, apparently initiated by the existence of even order harmonics, which can not 

be interpreted in the frequency domain from the original structure of the Duffing 
oscillator where there is no quadratic nonlinearity.   

 



 

     Figure 7. Response Spectrum Map for the amplitude of excitation fixed at A=15 

 

4.2  Frequency domain analysis for Duffing equation when the 

frequency of excitation is held constant 
Hysteresis can occur along the amplitude axis as well as the frequency axis, as the 3-
dimensional response curve in Figure 1 revealed. The response spectrum map can also 

play an important role in the qualitative analysis in this situation. 
First, the excitation frequency is chosen as ω =1.52 rad/sec.  The corresponding 

response curve and RSM are shown in Figure 8 and 9 respectively. It can be seen 

from the RSM in Figure 9 that there is a dominant presence of first harmonics in the 

response both before and after hysteresis. This confirms the implication of the 

harmonic balance solution in equation (8) that the solution is dominated by the first 
order harmonic. Therefore the two monotonously increasing curves in Figure 6 can be 

considered as reflecting the two stable solution obits in equation (8) separated by the 
unstable solution.  

 
Figure 8.  Response curve for the frequency of excitation fixed at ω =1.52 



 
Figure 9.  Response spectrum map for the frequency of excitation fixed at ω =1.52 

 

From Figure 9 it can be seen that throughout the whole amplitude range, there are 
only first order and associated odd order superharmonics, similar to the constant 

amplitude case in Figure 3, indicating that local Volterra series representations exist. 
Again, the significant higher order harmonics suggest that the order of Volterra 

representation increases after the jump.   

Now consider the situation when the frequency of the excitation is held constant at 

ω =1. The response curve and the response spectrum map are shown in Figures 10 

and 11 respectively.  

 
Figure 10.  Response curve for the frequency of excitation fixed at ω =1 



 
Figure 11.  Response spectrum map for the frequency of excitation fixed at ω =1 

 
Figure 12.  2D Response spectrum map for the frequency of excitation fixed at ω =1 

 

The parameter 3k  in the Duffing oscillator model (4) was chosen to be small to give a 

weak nonlinearity under some conditions, as shown in the previous analysis. 
However, the validity of the Volterra series also depends externally on the amplitude 

of the excitation. As the amplitude of excitation increases, the dynamics of the 
Duffing oscillator change accordingly, and the system may become severely nonlinear 

and no valid local Volterra representation will exist. By studying the response in both 
the time and the frequency domains using the response curve and the response 

spectrum map with respect to the excitation amplitude, the influence of the amplitude 

on the nonlinear dynamics becomes much clearer.     

From Figure 11 it can be seen that for the lower amplitude range A<12.2, there are 
standard first and odd higher order harmonics in the response, suggesting a weak 

nonlinearity for this region. For  A>12.2, strong second order harmonics are present, 
together with even order super-harmonics, resulting in the significant behaviour 

change shown in Figure 10. The presence of even order harmonics leads to further 
weak occurrences of harmonics at 4.5 rad/sec and 5.5 rad/sec etc. These are more 

visible in Figure 12 which is the 2-dimensional overhead view of Figure 11, at 



A=17.4, which seemly initiates the hysteresis. This is a region that cannot be 
represented by a local Volterra series model. Unlike previous cases where there are 

very apparent changes in the harmonics in the response when the hysteresis is 
initiated, in this case no obvious major harmonic changes occur. Therefore this might 

be an interesting example where very small frequency domain changes result in 

significant changes in the time domain behaviour.  

 

5. Conclusions 

Hysteresis, which is caused by multi-valued solutions, belongs to the class of severe 

nonlinear phenomena and commonly appears in the Duffing oscillator. Hysteresis can 
be initiated by either varying the amplitude or the frequency of excitation.  

Traditionally 2-dimensional response curves have been used for the analysis of this 
important nonlinear phenomenon. In this study a 3-dimensional response curve has 

been generated to provide a comprehensive analysis of hysteresis for variations in 
both the amplitude and the frequency of excitation. The 3-dimensional response curve 

clearly shows that hysteresis is a combined effect of excitation frequency and 
amplitude, resulting in a seemly continuous cliff-effect map.  

Although the response curves are useful in identifying the operating values associated 
with initiating hysteresis in the Duffing oscillator and in assessing the magnitude of 

the jumps, they mainly provide time domain information. It is well known that though 
hysteresis cannot be modelled by a global Volterra series due to the multiple steady 

state solutions, there are local Volterra series representations which exist in some 
situations when the amplitude of excitation is relatively small. In these operating 

conditions, a frequency domain Volterra series analysis can be performed using the 
GFRF’s. It is therefore desirable to have a supplementary frequency domain tool to 

help to identify the characteristics of the nonlinearity. This has been achieved in this 
study by the introductory of the response spectrum map. It has been shown that the 

response spectrum map can provide a quick assessment of the validity of the Volterra 

series representation, the mildness of the nonlinearity, the truncation order of the 

Volterra series, and which harmonics play a part in the dynamic changes. The 

frequency domain information thus provides more clues and a better understanding of 

the mechanisms behind hysteresis.  

 

 
Acknowledgement: The authors gratefully acknowledge that this work was 

supported by the Engineering and Physical Sciences Research Council(EPSRC) UK. 

 

 

 

 

References: 

Bedrosian, E.  and Rice, S. O., 1971,  “The output properties of Volterra systems 

(nonlinear systems with memory) driven by harmonic and Gaussian inputs,” 

Proc. IEEE, Vol 59, pp.1688-1707. 



Billings, S.A. and Boaghe, O.M., 2001,The response spectrum map, a frequency 
domain equivalent to the bifurcation diagram, Int. J. of Bifurcation and Chaos, 

Vol.11, No.7, pp.1961-1975. 

Billings, S.A., Korenberg, M.J., and Chen, S., 1988, Identification of non-linear 

output-affine systems using an orthogonal least-squares algorithm, Int. J. 

Systems Science, Vol. 19, pp. 1559-1568. 

Hagedorn, P., 1982, Non-linear oscillations, Clarendon Press, Oxford. 

Peyton Jones, J.C. and Billings, S.A., 1989, A Recursive algorithm for computing the 

frequency response of a class of non-linear difference equation models, 
Int.J.Control, Vol.50, No.5, pp.1925-1940.  

Stoker, J.J., 1950, Nonlinear vibrations in Mechanical and Electrical Systems, 

Interscience Publishers Inc, New York. 

Thompson, J. M. T. and Stewart, H. B., 2002, Nonlinear Dynamics and Chaos, John 
Wiley & Sons Ltd, England.  

Volterra, V., 1930, Theory of Functionals, Blackie and Sons. 

 

 
 

 


