
This is a repository copy of Learning by observation through system identification.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74610/

Monograph:
Nehmzow, U., Akanyeti, O., Weinrich, C. et al. (2 more authors) (2007) Learning by 
observation through system identification. Research Report. ACSE Research Report no. 
952 . Automatic Control and Systems Engineering, University of Sheffield 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Learning by Observation through System Identification

U Nehmzow
#
, O. Akanyeti

#
, C Weinrich

#
, T Kyriacou

#
, S A Billings

#Dept Computer Science, University of Essex

Department of Automatic Control and Systems Engineering

The University of Sheffield, Sheffield, S1 3JD, UK

Research Report No. 952

May 2007



Learning by Observation through System

Identification

Ulrich Nehmzow1, Otar Akanyeti1, Cristoph Weinrich1, Theocharis Kyriacou1,

Steve Billings2

1Dept. of Computer Science, University of Essex, UK.
2Dept. of Automatic Control and Systems Engineering, University of Sheffield, UK.

Abstract

In our previous works, we present a new method

to program mobile robots —“code identification by

demonstration”— based on algorithmically transfer-

ring human behaviours to robot control code using

transparent mathematical functions. Our approach

has three stages: i) first extracting the trajectory of the

desired behaviour by observing the human, ii) mak-

ing the robot follow the human trajectory blindly to

log the robot’s own perception perceived along that

trajectory, and finally iii) linking the robot’s percep-

tion to the desired behaviour to obtain a generalised,

sensor-based model.

So far we used an external, camera based motion

tracking system to log the trajectory of the human

demonstrator during his initial demonstration of the

desired motion. Because such tracking systems are

complicated to set up and expensive, we propose an

alternative method to obtain trajectory information,

using the robot’s own sensor perception.

In this method, we train a mathematical polynomial

using the NARMAX system identification method-

ology which maps the position of the “red jacket”

worn by the demonstrator in the image captured by the

robot’s camera, to the relative position of the demon-

strator in the real world according to the robot.

We demonstrate the viability of this approach

by teaching a Scitos G5 mobile robot to achieve

door traversal behaviour.

1. Introduction

Increasingly, personalised robots — robots especially de-

signed and programmed for an individual’s needs and pref-

erences — are being used to support humans in their daily

lives, most notably in the area of service robotics. Arguably,

the closer the robot is programmed to the individual’s needs,

the more useful it is, and we believe that giving people the op-

portunity to program their own robots, rather than program-

ming robots for them, will push robotics research one step

further in the personalised robotics field.

However, traditional robot programming techniques —

besides being costly, time-consuming and error prone

(Iglesias et al., 2005) — require specialised technical skills

from different disciplines and it is not reasonable to expect

end-users to have these skills.

In (Nehmzow et al., 2007) and (Akanyeti et al., 2007b) we

presented a novel method to translate human behaviours

into robot control code algorithmically, using system iden-

tification techniques such as Armax (Auto-Regressive Mov-

ing Average models with eXogenous inputs) (Eykhoff, 1974)

and Narmax (Nonlinear Armax) (Billings and Chen, 1998).

These techniques produce linear or nonlinear polynomial

functions that model the relationship between the robot’s sen-

sor perception and motor response.

Our method has three stages: i) The human operator

demonstrates the desired behaviour to the robot. ii) the

robot imitates the desired behaviour blindly (i.e.without us-

ing sensor perception), using recursive, sensor-free poly-

nomials. During this first run through the task the robot

logs perception-action data to obtain a sensor-based con-

trol model, and iii) using the logged data, we obtain a

sensor-based controller, using transparent mathematical func-

tions which capture the fundamental relationship between the

robot’s perception and the desired motor response.

During the human user’s initial demonstration of the de-

sired motion, so far we used an external, camera based mo-

tion tracking system to log the trajectory information. Such

tracking systems are complicated to set up and we can not

expect the end users who want to program their own robots

would have this kind of expensive facility in their houses.

In this paper, we therefore propose a new method replacing

the Vicon motion tracking system with the Narmax polyno-

mial models which are trained to predict the position of the

demonstrator using the robot’s own vision system.

2. Methodology and Experimental Setup

2.1 Narmax system identification methodology

The Narmax modeling approach is a parameter estimation

methodology for identifying both the important model terms

and the parameters of unknown nonlinear dynamic systems.



For multiple input, single output noiseless systems this model

takes the form of equation 1. A detailed discussions can be

found in (Billings and Chen, 1998), (Korenberg et al., 1988,

Billings and Voon, 1986).

y(n) = f (u1(n),u1(n−1),u1(n−2), · · · ,u1(n−Nu), (1)

u1(n)2,u1(n−1)2,u1(n−2)2, · · · ,u1(n−Nu)
2,

· · · ,

u1(n)l ,u1(n−1)l ,u1(n−2)l , · · · ,u1(n−Nu)
l ,

u2(n),u2(n−1),u2(n−2), · · · ,u2(n−Nu),

u2(n)2,u2(n−1)2,u2(n−2)2, · · · ,u2(n−Nu)
2,

· · · ,

u2(n)l ,u2(n−1)l ,u2(n−2)l , · · · ,u2(n−Nu)
l ,

· · · ,

ud(n),ud(n−1),ud(n−2), · · · ,ud(n−Nu),

ud(n)2,ud(n−1)2,ud(n−2)2, · · · ,ud(n−Nu)
2,

· · · ,

ud(n)l ,ud(n−1)l ,ud(n−2)l , · · · ,ud(n−Nu)
l ,

y(n−1),y(n−2), · · · ,y(n−Ny),

y(n−1)2,y(n−2)2, · · · ,y(n−Ny)
2,

· · · ,

y(n−1)l ,y(n−2)l , · · · ,y(n−Ny)
l)

y(n) and u(n) are the sampled output and input signals

at time n respectively, Ny and Nu are the regression orders

of the output and input respectively, d is the dimension of

the input vector and l is the degree of the polynomial. f ()
is a non-linear function and here taken to be a polynomial

multi-resolution expansion of its arguments. Expansions such

as multi-resolution wavelets or Bernstein coefficients can be

used as an alternative to the polynomial expansions consid-

ered in this study.

The representation of the task as a transparent, analysable

model enables us to investigate the various factors that

affect robot behaviour for the task at hand. For in-

stance, we can identify input-output relationships such as

the sensitivity of a robot’s behaviour to particular sensors

(Roberto Iglesias and Billings, 2005), or make predictions of

behaviour when a particular input is presented to the robot

(Akanyeti et al., 2007a).

2.2 Learning by Observation

Human demonstration First, the human user demonstrates

the desired behaviour by performing it in the target environ-

ment. For the purpose of this paper we confined our ex-

periments to 2-dimensional navigation problems due to the

limited motion capabilities of our robot (2 degrees of mo-

tion, translational and rotational, figure 1). During this initial

demonstration, we log the x and y position of the human user

using the motion tracking system. Once the operator’s tra-

jectory is logged, we compute the translational and rotational

velocities of the human by using consecutive (x,y) samples

along the trajectory.

Sensorless trajectory following In a second stage, we

use the Narmax system identification method to obtain two

sensor-free polynomials, one expressing rotational velocity

as a function of time and past rotational velocities, the other

expressing the translational velocity as a function of time and

past linear velocities. We then use these two sensor-free poly-

nomials to drive the robot along the trajectory the human had

taken earlier, now logging sensor readings and velocities.

Obtaining the final, sensor-based controllers The sensor-

free controllers obtained at stage II are essentially ballistic

controllers that drive the robot along the desired trajectory as

long as the robot is started from the same initial positions as

the human. However, for real-world applications it is essen-

tial that sensor feedback is used to control the motion of the

robot.

In the final stage we therefore use the Narmax system iden-

tification method to obtain sensor-based controllers, using the

previously logged sensor-motor pairings. This controller can

subsequently be used to control the robot in the target en-

vironment, copying the original behaviour exhibited by the

human demonstrator.

2.3 Experimental Setup

The experiments described in this paper were conducted in

the 100 square meter circular robotics arena of the University

of Essex. The arena is equipped with a Vicon motion tracking

system which can deliver position data (x,y and z) for the full

range of targets using reflective markers and high speed, high

resolution cameras. The tracking system is capable of sam-

pling the motion upto 100Hz within a 10mm range accuracy.

We used a Scitos G5 mobile robot called REX (figure 1).

The robot is equipped with a ring of 24 sonar and 24 infra-red

sensors, both uniformly distributed. A Hokuyo laser range

finder is also present on the front part of the robot. This range

sensor has a wide angular range (240 degree) with a radial

resolution of 0.36 degree and distance resolution of less than

1cm . The robot also incorporates a colour video camera with

640× 480 pixels resolution which can deliver colour images

upto 60Hz .

3. Human Trajectory Prediction

In this section we propose an alternative method to obtain the

trajectory information of the human user during his demon-

stration of the desired behaviour, using the robot’s own sensor

perception rather than the Vicon motion tracking system.

3.1 Method

Our method is based on training a mathematical polynomial

using the Narmax system identification methodology (see

section 3.2) which maps the position of the “red jacket” —

worn by the demonstrator — in the robot’s camera image,

with the relative position of the demonstrator referenced to

the robot coordinate frame (see figure 2 and 3).
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Figure 1: REX (a). RAX has two degrees of freedom (translational

and rotational) and equipped with the laser range finder. The range

finder has a wide angular range (240 degree) with a radial resolution

of 0.36 degree and distance resolution of less than 1cm. During

experiments, in order to decrease the dimensionality of the input

space to Narmax model, we coarse coded the laser readings into

11 sectors (u1 to u11) by averaging 62 readings for each 22 degree

intervals (b).
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Figure 2: Position prediction models. These models are mathemat-

ical descriptions that define the relationship between the position

of the jacket in the image and the relative position of the demon-

strator referenced to the robot’s coordinate system. (xmin,ymin) and

(xmax,ymax) are the coordinates of the “left up” and “right down”

corners of the rectangle surrounding the red jacket respectively (see

figure 3 ). These coordinates are computed by separating the “red

jacket” from the background of the image using a blob colouring

algorithm.
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Figure 3: The output image after a pre processing stage (a). The

demonstrator’s jacket was isolated from the rest of the image. The

position of the jacket was computed using a blob colouring algo-

rithm based on the image coordinate frame as shown in the figure.

The position information of the jacket is then fed to Narmax poly-

nomials which are trained to predict the real position of the demon-

strator relative to the robot’s reference coordinate system shown in

(b).

Finding the position of the jacket Figure 4 shows the

block diagram that illustrates how we extract the position of

the red jacket from the captured images.

First we rectify the captured images in order to minimize

the effect of distortion due to the oval shape of the camera

lens. Once the image is rectified, we convert it into “chro-

maticity colour space” which is less illumination dependent

that the RGB colour space.

Cr =
R

R+G+B
(2)

Cg =
G

R+G+B
(3)

Cb =
B

R+G+B
(4)

where Cr, Cg and Cb are the red chromaticity, green chro-

maticity and blue chromaticity components respectively, and

R, G and B are the red, green and blue values respectively of

the colour to be described.

In the final stage, we separate the jacket from the back-

ground of the image by using a blob colouring algorithm.

Blob colouring is a technique used to find regions of simi-

lar colour in the image. The connected pixels are grouped

together if they have similar intensity values and assigned to

different regions if the difference in their intensity values is

bigger than a certain threshold.

At the end of the blob coloring algorithm, we assume that

the biggest red coloured region corresponds to the red jacket

— we assume that there is no bigger red coloured object than

the jacket itself in the image. We compute the minimum rect-

angular box which can frame the jacket entirely (figure 3).

The coordinates of the “left up” and “right down” corners of
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Figure 4: The block diagram that illustrates how the position of the

red jacket is extracted from the captured images. First the images are

rectified in order to minimize the effect of distortion due to the oval

shape of the camera lens. Once the image is rectified, it is converted

into chromaticity space which is less illuminant dependent. And in

the final stage, the jacket is separated from the background of the

image by blob colouring algorithm (see figure 3).

the rectangle are then fed to Narmax polynomials obtained as

described in section 3.2 to predict the position of the demon-

strator.

3.2 Acquisition of estimation and training data

set in order to obtain Narmax polynomials

In order to collect training data for the estimation of the

demonstrator’s position, the human trainer wearing a red

jacket walked randomly in the robot’s field of view for half

an hour. During the training session the robot was static and

the robot’s camera was aligned parallel to the floor so that the

robot’s field of view has the maximum coverage area for the

demonstrator.

During this time the position of the jacket in the captured

images and the relative position of the demonstrator refer-

enced to the robot — obtained through the Vicon motion

tracking system — were logged synchronously every 250ms.

Figure 5 shows stream of original and the processed images

captured during the training session.

3.3 Obtaining position prediction models

We then used the Narmax system identification procedure to

estimate the relative position of the demonstrator referenced

to the robot as a function of the position of the jacket in the

image (xmin, xmax, ymin and ymax). The X position prediction

model was chosen to be second degree with no regression in

the input and output (i.e. l = 2, Nu = 0, Ny = 0). The resulting

model contained 6 terms. The Y position prediction model

was chosen to be fourth degree with no regression in the input

and the output (i.e. l = 4, Nu = 0, Ny = 0) and contained 7

1 2 3 4

5 6 7 8

Figure 5: Stream of images captured by the robot’s camera during

the acquisition of the training data set used in obtaining Narmax

model in order to calculate the relative position of the demonstrator

according to the robot. Each image is pre processed using the proce-

dure given in figure 4 in order to extract the position of the red jacket

in the image.

terms. Both models are given in table 1.

X(n) = Y (n) =
+14.684 −4.128
+0.148∗u(n,3) −0.015∗u(n,1)
−0.184∗u(n,4) +0.051∗u(n,2)
+0.001∗u(n,3)2

−0.001∗u(n,2)2

+0.001∗u(n,4)2 +0.001∗u(n,1)∗u(n,2)2

−0.001∗u(n,3)∗u(n,4) +0.001∗u(n,1)∗u(n,1)3

−0.001∗u(n,1)∗u(n,2)3

Table 1: Two position polynomials which link the perception of the

robot to the position of the demonstrator in the robot’s reference

frame. X(n) and Y (n) are the x position (in m) and y position (in

rad/s) of the demonstrator at time instant n and u1 to u4 are the xmin,

xmax, ymin and ymax coordinates of the “red jacket blob” extracted

from the image as described in figure 4.

Figure 6 shows the predicted and actual position of the

demonstrator in the robot’s coordinate frame.

Model validation We compared the predicted position of

the demonstrator with the actual position by analysing the er-

ror distributions. The results show that the average error be-

tween the predicted and actual position of the demonstrator is

less than 10±0.3cm for both models (see figure 7).

4. Experiment: Door Traversal

After obtaining position prediction models, we tested the vi-

ability of our method by teaching the robot to achieve door-
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Figure 6: The predicted and actual position of the demonstrator in

the robot’s coordinate frame.
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Figure 7: The error distributions of the X position prediction model

and the Y position prediction model. The average error between

the predicted and actual position of the demonstrator is less than

10±0.3cm for both models.



traversal behaviour. The demonstrator walked through two

consecutive door like openings of 120cm width. During this

time, the robot calculates the trajectory of the demonstrator

using the trajectory capturing mechanism described in sec-

tion 3. every 250ms. Figure 8 shows the general experimental

scenario in which the demonstrator performed the desired be-

haviour while the robot was observing him. Figure 9 shows

the stream of images which were captured and processed by

the robot during the demonstration.

REX

HUMAN

Figure 8: The trajectory followed by the demonstrator while pass-

ing through the two door like openings of 120cm width. While the

demonstrator was performing the desired behaviour, the robot was

observing him and calculating the demonstrator’s relative trajectory

according to the robot itself using position prediction models given

in table 2.

Analysis of the observed trajectory reveals that there is

noise in the data because of two reasons:

1. There is a constant oscillation in the motion of the demon-

strator, which originates from the swinging motion per-

pendicular to the heading direction. This is a general char-

acteristic of the two legged locomotion in humans.

2. The polynomials that compute the position of the demon-

strator reference to the robot are extremely sensitive to

how accurate the position of the jacket is extracted from

the image. The blob colouring algorithm is not a very ro-

bust method of image segmentation in the environments

where the illumination is variant.

We eliminate the noise by using a low pass filter, assuming

that the demonstrator didn’t do sharp changes in the heading

direction while performing the desired task. We then com-

puted the translational and rotational velocities of the demon-

strator along the trajectory (see figure 10).

Sensorless trajectory following Having obtained the ve-

locity information of the demonstrator along the desired path,

we used them to drive the robot blindly in the test environ-

ment. During this first robot interaction with the environment,

t =18 t =39 t =50

t =61 t =72 t =80

Figure 9: Stream of six images captured by the robot’s camera dur-

ing the demonstration of the desired behaviour. The numbers be-

low each image indicates the frame number of the image where the

robot’s sampling rate of capturing images is 250ms. The captured

images are then pre processed as described in section 3. in order to

extract the position of the “jacket”.
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Figure 10: The translational and rotational speed graphs of the

demonstrator while performing the desired behaviour shown in fig-

ure 8. The noise due to the oscillatory motion of the demonstrator

and also due to the lightning conditions that affect the performance

of the trajectory capturing mechanism while obtaining the trajectory

of the demonstrator was removed from the data by low past filtering.

laser readings and the robot’s translational and rotational ve-

locities were logged in every 250ms (see figure 11).

Sensor signal encoding In order to decrease the dimen-

sionality of the input space to the Narmax model, we

coarse coded the laser readings into 11 sectors by averag-

ing 62 readings for each 22 degree intervals. We then used

the Narmax identification procedure to estimate the robot’s

translational and rotational velocities as a function of the

coarse coded laser readings (u1, u2, · · · , u11 (see figure 1)).

Both the translational and the steering speed model were

chosen to be second degree. No regression was used in the

inputs and output (i.e. l = 2, Nu = 0, Ny = 0) resulting in

non linear Narmax structures. The both models contained 18

terms (table 2).

REX

Figure 11: The trajectory of the robot under the control of the given

velocity commands obtained from the human trajectory. The robot

goes along the human trajectory given in figure without using any

sensory perception. During this time, it logs its own perception per-

ceived along the trajectory and the velocity commands. The logged

data is then used to obatin sensor based controllers which links the

perception of the robot to the desired behaviour.

Model validation We then let the sensor based models

drive the robot in the test environment starting from 15 dif-

ferent locations. Figure 12 shows that the obtained models

are successfull in driving the robot through the both door like

openings without crashing into the walls.

REX

Figure 12: The trajectories of the robot under the control of sen-

sor based controllers given in table 2. The robot was started from 15

different locations and it passed through the both door like openings

successfully.

5. Conclusion and Future Work

In this paper we introduce a new mechanism to program

robots — programming by demonstration — based on al-

gorithmically transferring observed human behaviours into

robot control code, using transparent system identification



lv(n) = av(n) =
−0.751 +2.260
+0.059∗u(n,3) −0.054∗u(n,3)
+0.243∗u(n,4) −0.480∗u(n,4)
+0.040∗u(n,5) −0.144∗u(n,5)
+0.139∗u(n,6) −0.637∗u(n,6)
+0.219∗u(n,7) −0.195∗u(n,7)
−0.040∗u(n,8) +0.212∗u(n,8)
−0.001∗u(n,9) −0.056∗u(n,9)
−0.003∗u(n,3)2

−0.003∗u(n,3)2

−0.008∗u(n,4)2 +0.014∗u(n,4)2

−0.007∗u(n,6)2 +0.004∗u(n,5)2

−0.024∗u(n,7)2 +0.085∗u(n,6)2

+0.008∗u(n,8)2
−0.029∗u(n,8)2

−0.003∗u(n,9)2 +0.013∗u(n,9)2

−0.010∗u(n,3)∗u(n,4) +0.012∗u(n,3)∗u(n,4)
−0.001∗u(n,3)∗u(n,5) −0.004∗u(n,3)∗u(n,8)
−0.028∗u(n,4)∗u(n,6) +0.033∗u(n,4)∗u(n,6)
−0.024∗u(n,4)∗u(n,7) +0.050∗u(n,4)∗u(n,7)

Table 2: Experiment 3. Two sensor-based polynomials which link

the perception of the robot to the desired behaviour shown in figure

11. lv(n) and av(n) are the translational velocity (in m/s) and rota-

tional velocity (in rad/s) of the robot at time instant n and u1 to u11

are the coarse coded laser readings starting from the right extreme

of the robot

techniques.

To obtain such sensor-motor controllers, we first demon-

strate the desired motion to the robot by walking in the target

environment. Using this demonstration, we obtain recurrent,

sensor free models that allow the robot to follow the same tra-

jectory (blindly). During this motion the robot logs its own

perception action pairs, which are subsequently used as train-

ing data for the Narmax modeling approach that determines

the final, sensor-based models which identify the coupling be-

tween sensory perception and motor responses as non linear

polynomials. These models are then used to control the robot.

So far we used an external, camera based motion tracking

system to log the trajectory of the human demonstrator dur-

ing his initial demonstration of the desired motion. Besides

being expensive, such tracking systems are complicated to

set up and we can not expect the end users who want to pro-

gram their own robots would have this kind of facility in their

houses.

Therefore we enhanced our method by replacing the Vicon

motion tracking system with the Narmax polynomial models

which are trained to predict the position of the demonstrator

using the robot’s own vision system. The statistical analysis

showed that the obtained models are able to predict the po-

sition of the demonstrator with a 10± 0.3cm accuracy given

that the position of the jacket is computed accurately during

the image pre processing stage.

5.1 Future Work

The different experimental scenarios of obtaining trajectory

information using robot’s own vision system reveals that the

performance of the position prediction models is dependent

on how accurate the image pre processing stage extracts the

position information of the jacket from the captured images.

The blob colouring algorithm is not a robust method in image

segmentation especially in the environments where illumina-

tion intensity is subject to noise and variant. Therefore we

are currently investigating the alternatives to blob colouring

algorithm which can give us more accurate positioning under

different lightning conditions.

Furthermore, we are investigating the scaling properties of

the presented approach, as well as methods of analysing the

obtained models in order to be able to modify them off-line.

Overall, the work already carried out and that proposed forms

part of our ongoing research to develop a theory of robot-

environment interaction.

Acknowledgments

We gratefully acknowledge that the RobotMODIC project is

supported by the Engineering and Physical Sciences Research

Council under grant GR/S30955/01.

References

Akanyeti, O., Kyriacou, T., Nehmzow, U., Iglesias, R., and

Billings, S. (2007a). Visual task identification and char-

acterisation using polynomial models. accepted for pub-

lication in Int. J. Robotics and Autonomous Systems.

Akanyeti, O., Nehmzow, U., Kyriacou, T., Iglesias, R., and

Billings, S. (2007b). Programming mobile robots by

demonstration through system identification. submitted

to European Conference on Mobile Robots.

Billings, S. and Chen, S. (1998). The determination of

multivariable nonlinear models for dynamical systems.

In Leonides, C., (Ed.), Neural Network Systems, Tech-

niques and Applications, pages 231–278. Academic

press.

Billings, S. and Voon, W. S. F. (1986). Correlation based

model validity tests for non-linear models. International

Journal of Control, 44:235–244.

Eykhoff, P. (1974). System Identification: parameter and

state estimation. Wiley-Interscience, London.

Iglesias, R., Kyriacou, T., Nehmzow, U., and Billings, S.

(2005). Robot programming through a combination of

manual training and system identification. In Proc. of

ECMR 05 - European Conference on Mobile Robots

2005. Springer Verlag.

Korenberg, M., Billings, S., Liu, Y. P., and McIlroy, P. J.

(1988). Orthogonal parameter estimation algorithm for

non-linear stochastic systems. International Journal of

Control, 48:193–210.

Nehmzow, U., Akanyeti, O., Kyriacou, T., Iglesias, R., and

Billings, S. (2007). Robot programming by demonstra-

tion through system identification. submitted to Interna-

tional Conference on Intelligent Robots and Systems.



Roberto Iglesias, Ulrich Nehmzow, T. K. and Billings, S.

(2005). Modelling and characterisation of a mobile

robot’s operation. In CAEPIA 2005, 11th conference of

the Spanish association for Artififcial Intelligence, San-

tiago de Compostela, Spain.


