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Abstract

A novel approach to suppress resonant vibration is presented by employing a single

degree of freedom transmissibility system which utilizes a nonlinear damping

element. Studies have shown that the nonlinear damping element can reduce the

output energy at the driving frequency and at the same time spread the output signal

energy over a wider range of harmonics. It will also be shown that the reduction
becomes larger as the nonlinear damping characteristic gets stronger and in most

cases, the power at the harmonics in the output spectrum will be much less if the

nonlinear damping characteristic is an odd function. Hence, an odd polynomial

nonlinear damping element can be introduced between the incoming signal and the

structure of interest to suppress resonant vibration. An expression is derived to
express the transmitted force spectrum in terms of the nonlinear generalized

frequency response functions, to clearly show how the energy, at the excitation

frequency, is modified by the nonlinearity.

Keywords: energy transfer; damping; vibration transmissibility; nonlinear materials;
higher-order frequency response functions

1. Introduction

Resonance is a well-known phenomenon in engineering, which arises when the

excitation frequency at an operating condition is near a natural frequency of the

system. When a resonance occurs for a system, the resulting vibration levels can be

very high and this can cause considerable damage. Suppressing resonant vibration is

therefore very important to ensure an appropriate running condition and a desired
behaviour of the system [1-4]. The standard approach to suppress resonant vibration is

to either introduce damping or a vibration absorber which can be passive, active or a

combined approach [5, 6].

This paper describes an entirely different approach which results in a novel way of
avoiding resonant vibration. The concept is to transfer or distribute the incoming

energy in such a way that the energy entering the resonant region of the structure of

interest is reduced to a level which avoids significant problems by introducing a non-

linearity between the input and the structure. A analytic relationship between the

system output frequency response and the non-linearity is derived in this study to



reveal how the energy entering the structure is modified by the non-linearity, which

results in energy transfer.

2. System description

In order to explain the concept of energy transfer in an analytical sense, the effect of

introducing a nonlinear element (in this case a nonlinear damper) at the interface

between the input of a single degree of freedom (SDOF) system and the output will be

studied.

Consider the SDOF system shown in Fig. 1. This represents a mass supported on a

linear elastic spring k in parallel with a nonlinear damper  f  . The mass is

subjected to a harmonic excitation force of amplitude dF and frequency  and the

output of interest is the force  sF t transmitted to the support via the linear spring and

the nonlinear damper.

The nonlinear damping element is described by a polynomial function of velocity
such that

     31 3
f a a    

(1)

where 1a , 3a are the parameters of the damping characteristic and 3a represents the

system nonlinearity.

The equilibrium equation for the system in Fig. 1 and corresponding force at the
support can be expressed as

3

1 3( ) ( ) ( ) ( ) cos( )dmx t a x t a x t kx t F t      
(2)

3

1 3( ) ( ) ( ) ( )sF t a x t a x t kx t   
(3)

For convenience of analysis, denote

( ) ( )dy t x t
(4)

( ) ( )F sy t F t
(5)

and

( ) cos( )du t F t 
(6)

The system can then be described by a single input two output system
3

1 3
( ) ( ) ( ) ( ) ( )

d d d d
my t a y t a y t ky t u t     

(7)
3

1 3( ) ( ) ( ) ( )F d d dy t a y t a y t ky t   
(8)



What is of interest in this study is how the spectrum of the transmitted force

 2 FY j depends on the nonlinear damping element which in turn creates

harmonics that spread the incoming energy to other frequencies, resulting in a

reduction in the transmitted force level of  2 FY j at the excitation frequency  .

Notice that  2 FY j not  FY j is used because  2 FY j represents the

physical magnitude of the system output  Fy t at the frequency  .

3. Volterramodelling of the system in the time and frequency domain

The output  y t of a single input single output (SISO) analytical system can be

expressed as a Volterra functional polynomial of the input  u t to give

     
N

n

n=1

yy t t
(9)

where N is the maximum order of the system nonlinearity and    n
y t is the nth-

order output of the system, which is given by

       1

1

, ,
n

n

n n i i

i

y t h u t d   
 

 


       1n 

(10)

where  1, ,n nh     is a real valued function of 1 , , n   called the nth order impulse

response function or Volterra kernel of the system [7, 8]. Volterra generalised the

linear convolution concept to deal with nonlinear systems by replacing the single

impulse response with a series of multidimensional integration kernels. The nth-order

Volterra kernel describes nonlinear interactions among n copies of the input. The

multidimensional Fourier transform of the nth-order Volterra kernel yields the nth-
order transfer function or generalised frequency response function (GFRF)

     1 1

1 1 1
, , , , n nj

n n n n n
H j j h e d d

        
   

 
            

(11)

Using the concept of GFRF, the general relationship between the input spectrum

 U j and the output spectrum  Y j can be obtained as [9]
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(12)

where  
1 n

nd   


 
 denotes the integration of   over the n-dimensional

hyperplane 1 n    .

When the system is subject to a multi-tone input such as



   
1
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K
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(13)

Lang and Billings [9] showed that Eq. (12) can be expressed as

       
1 1

1
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(14)

where

 , , 1,1, ,lk K K      , 1, ,l n  ,

   , 1, ,

0

kj A

k kA e if k K
A

otherwise

 


     
 


,

k k   
and

k kj A j A

k kA e A e  
 

In our case, we have a single input, the force excitation, and two outputs, the

displacement of the mass m and the force transmitted to the support. Eq. (14) now

takes the form [10, 11]

       
1 1 1 1

1
1

1
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k kn

N

j nj k k k kn
n

Y j H j j A A
  

    
  

      1 1,2j 

(15)

where

     1 1

1 11 1 1, , , , n nj

nj n nj n nH j j h e d d
        

   

 
            

is the nth order GFRF of the system corresponding to the 1j th output and

 1, 1lk    , 1, ,l n  ,

   , 1

0

kj A

k kA e if k
A

otherwise

 


   
 


,

where 1 dA F  , 1   , 1 0A  .

4. The effects of system nonlinearity on the output frequency response

The focus of this section is to investigate the effects of the nonlinear damping

characteristic of the systems (2) and (3) on the output frequency response when the
system is subject to a multi-tone or a harmonic input. This study involves two steps.

First the GFRF matrices of the system

   1 1, , , , ,nd R nF RH j j H j j          , n=1,2,3,   

are derived. Then a relationship between the system output frequency response

 FY j and the system GFRFs is determined.

4.1 The probing method



Given a parametric model of a nonlinear system, there are a number of methods to

obtain the GFRFs of the system. Arguably the most direct is the harmonic probing

method of Bedrosian and Rice [12] and Bussgang et al [13]. In the case of single input

single output nonlinear systems, the basic idea of the probing method can be
introduced as below.

It was shown by Rugh [14] that for nonlinear systems which are described by the

Volterra model (9), (10) and excited by a combination of exponentials
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(16)
the output response can be written as
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(17)

where
 m n

 indicates a R-fold sum over all integer indices    1 , , Rm n m n   such that

 0 im n n  ,    1 Rm n m n n   , and
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(18)

Notice that in Eq. (18) when n R ,   1im n  , 1, ,i R  , therefore

       
1 1 1, , ! , ,

R R R Rm R m RG j j R H j j         

(19)

Considering Eq. (19), Eq. (17) can be written as
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1! , , Rj t

R RR H j j e
    

(20)

For nonlinear systems which have a parametric model with parameter vector  ,
      0 , , ,y t f t y t u t

(21)

and which can also be described by the Volterra model (9) and (10), substituting Eqs.
(16) and (20) into Eq. (21) for y(t) and u(t), and extracting the coefficient of

 1 Rj t
e

 
from the resulting expression produces an equation from which the GFRF

 1, ,R RH j j    can be obtained.



If the system is of a single input and two outputs and can be described by the

parametric model

        
        

1 1 1 2 1

2 2 1 2 1
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,

(22)

Eq. (20) can be written as
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where
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(24)

Then substituting  1

1

i

R
j t

i

u t e




 , and  1y t and  2y t given by Eq. (23) into Eq.

(22), and extracting the coefficient of
 1 Rj t

e
 

from the resulting expressions
produces two coupled equations for which the GFRF matrix

   1 1, , , , ,Rd R RF RH j j H j j        
can be obtained.

4.2 Derivation of the system GFRFs

4.2.1 Derivation of the GFRFs for  dy t

The expression for  1, ,nd nH j j    was derived by Zhang et al [15] and will simply

be quoted here.

When 1n  ,

   1 1

1

1
dH

j


 


(25)

When n is an even number,  1, , 0nd nH     .

When 3n  and is an odd number,
 31

33! n

nd nH a c M
(26)

where
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(28)
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(29)

Formally,

   
3

3 3

1

nS

n

p

M S p



(30)

where
3

nS , the Stirling Set of the second kind, denotes the set whose elements cover

all the partitions of a set  1,2, ,n  into 3 blocks.

In the case 3n  ,

   3123 123

3 1 2 3 3 3 111 3 3, , 3! 3! (1)(2)(3)dH c a M a c    
(31)
where

 
123

3

1 2 3

1 1

3!
c

j j j   
  

 
(32)

and

         1 1 1 2 1 2 3 1 3(1)(2)(3) d d dj H j H j H     
(33)

In the case 5n  ,

   312345

5 1 2 3 4 5 3 5 113, , , , 3!dH a c M      ,

(34)
where

12345

5 5

1

1 1

5!
i

i

c
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(35)
 3
113M = (5)(4)(321) + (5)(3)(421) + (5)(2)(341) + (5)(1)(324) + (4)(3)(521)

+

(4)(2)(351) + (4)(1)(325) + (3)(2)(541) + (3)(1)(524) + (2)(1)(354)

(36)



where

          5 1 5 4 1 4 3 2 1 3 3 2 1(5)(4)(321) 3! , ,d d dj H j H j j j H            ,

(37)

and so on.

In the case 7n  ,

      3 31 7

7 1 2 3 4 5 6 7 3 7 115 331, , , , , , 3!dH a c M M        

(38)

where
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(39)
 3
115M has 21 terms and is given as

 3
115M

= (7)(6)(54321) + (7)(5)(64321) + (7)(4)(56321) + (7)(3)(54621) + (7)(2)(54361) +

(7)(1)(54326) + (6)(5)(74321) + (6)(4)(57321) + (6)(3)(54721) + (6)(2)(54371) +
(6)(1)(54327) + (5)(4)(76321) + (5)(3)(74621) + (5)(2)(74361) + (5)(1)(74326) +

(4)(3)(57621) + (4)(2)(57361) + (4)(1)(57326) + (3)(2)(54761) + (3)(1)(54726) +

(2)(1)(54376)

(40)
 3
331M has 70 terms and is given as

 3
331M

= (764)(531)(2) + (764)(521)(3) + (764)(321)(5) + (763)(452)(1) + (763)(451)(2) +

(763)(421)(5) + (763)(521)(4) + (762)(435)(1) + (762)(431)(5) + (762)(451)(3) +
(762)(351)(4) + (761)(432)(5) + (761)(435)(2) + (761)(425)(3) + (761)(325)(4) +

(754)(632)(1) + (754)(631)(2) + (754)(621)(3) + (754)(321)(6) + (753)(462)(1) +

(753)(461)(2) + (753)(421)(6) + (753)(621)(4) + (752)(436)(1) + (752)(431)(6) +

(752)(461)(3) + (752)(361)(4) + (751)(432)(6) + (751)(436)(2) + (751)(426)(3) +
(751)(326)(4) + (743)(652)(1) + (743)(651)(2) + (743)(621)(5) + (743)(521)(6) +

(742)(635)(1) + (742)(631)(5) + (742)(651)(3) + (742)(351)(6) + (741)(632)(5) +

(741)(635)(2) + (741)(625)(3) + (741)(325)(6) + (732)(465)(1) + (732)(461)(5) +

(732)(451)(6) + (732)(651)(4) + (731)(462)(5) + (731)(465)(2) + (731)(425)(6) +

(731)(625)(4) + (721)(436)(5) + (721)(435)(6) + (721)(465)(3) + (721)(365)(4) +
(654)(321)(7) + (653)(421)(7) + (652)(431)(7) + (651)(432)(7) + (643)(521)(7) +

(642)(351)(7) + (641)(325)(7) + (632)(451)(7) + (631)(425)(7) + (621)(435)(7)

(41)

where

(7)(6)(54321)

=           7 1 7 6 1 6 5 4 3 2 1 5 5 4 3 2 15! , , , ,j H j H j j j j j H                
(42)

(764)(531)(2)

=           7 6 4 3 7 6 4 5 3 1 3 5 3 1 2 1 23! , , 3! , ,j j j H j j j H j H                
(43)



and so on.

In the case 9n  ,

        3 3 31 9

9 1 2 3 4 5 6 7 8 9 3 9 117 135 333, , , , , , , , 3!dH a c M M M           

(44)

where 1 9
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(45)
 3
117M ,

 3
135M and

 3
333M have 36, 504 and 280 terms respectively. These expressions are

omitted here due to space limitations, but the results will be used in section 6 to obtain
a more accurate analysis of the system output frequency response.

More GFRFs for  dy t can be derived easily according to Eqs. (26) – (30).

4.2.2 Derivation of the GFRFs for  Fy t

Substituting Eq. (8) into Eq. (7) yields

     d Fmy t y t u t 
(46)

According to Eq. (23), the second-order derivative of  dy t can be expressed as
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 Fy t can be written as
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(48)

Substituting Eqs. (47), (48) and (16) into Eq. (46) gives
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(49)

When 1n  , equating the coefficients of 1j t
e


from Eq. (49) yields

     2

1 1 1 1 1 1d Fm j H j H j   
(50)

Therefore,
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1

F d
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Substituting Eq. (25) into Eq. (51) gives
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When 2n  , equating the coefficients of 1

n
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e





from Eq. (49) yields
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(53)

That is
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1
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n
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i

H j j m j H j j    


       


(54)

The GFRFs for  Fy t ( 2n  ) can be given by substituting the expressions of

 1, ,nd nH j j    derived in Section 4.2.1 into Eq. (54).

4.3. The effects of system nonlinearity on the output frequency response

The expressions for the system GFRFs in terms of the nonlinear damping
characteristic parameters can now be used to derive an expression for the output

spectrum  FY j . Substituting the expressions for higher order GFRFs derived in

section 4.2 into Eq. (15) yields
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where
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Generally,

   
 1 2

2 1 3

0

N

k
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Y j p a
  




 
(58)

where 1

2

N 
  

denotes the floor function, also called the greatest integer function or

integer value, which gives the largest integer less than or equal to
1

2

N 
.

Note that  ip j , 1,3,i   , produced by the system GFRFs, depends on the applied

multi-tone input and the parameters which describe the linear characteristic of the

system but are independent of 3a .

Denote

2 1 2 1 3

k

k kP p a 
(59)

Then substituting Eq. (59) into Eq. (58) gives

 
 1 2

2 1

0

N

F k

k

Y j P
  




 
(60)

Eq. (60) is a very important result which describes the relationship between the
system frequency response and the characteristic parameters of the system

nonlinearity. The result extends the fundamental analytical relationship between the

linear characteristic parameters and the output frequency response to the nonlinear

case for system (2) and (3) when the system is subject to a multi-tone input, and can

be easily extended to other general situations.

For a given multi-tone input and the linear characteristic parameters m ,
1
a , k ,

 ip j , 1,2,i   in Eq. (60) are known functions of frequency  . Eq. (60)

indicates that at each frequency component the system output spectrum is a

polynomial function of the nonlinear damping characteristic parameter 3a .

When the system is subject to the harmonic input (6), and the output frequency of

interest in the analysis is the same as the input frequency  ,
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where
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               3 3, , , ,F FH A A A H A A A             
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(62)

Since GFRF  1, ,n nH j j    is symmetric,

     3 3 3, , , , , ,F F FH H H         ᧩ = ᧩
(63)

Substituting Eq. (63) into Eq. (62) yields
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Generally,
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where  
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Substituting Eq. (65) into Eq. (61) gives
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Eq. (67) can also be written as
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where
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Eq. (68) shows that the output energy at the driving frequency  contributed by the

linear term   1,0

1

2
A H is modified by the higher-order system nonlinear effects to

yield the output frequency response  FY j .

Simulation studies will be conducted in section 5 for systems (2) and (3) to evaluate

the output frequency response to the harmonic input (6) for different damping

characteristics. The results will then be compared with the output spectrum  FY j
determined using Eq. (68) in section 6. The objective is to investigate how a

nonlinearity reduces the energy in the output spectrum at the driving frequency and
modifies the energy distribution and to present a new approach to suppress resonant

vibration by designing the system nonlinearity.

5. Simulation Studies

Consider the system (2) and (3) subject to the harmonic input (6). Take the system

linear characteristic and input parameters as follows:

m=240 kg, k=16000 N m-1, 1a =29.6 s N m-1, dF =100 N, Ω=8.1
rad s

-1

where Ω=8.1 rad s-1 corresponds to the natural undamped frequency. The damping

characteristic is defined by
3

1 3( ) ( ) ( )f a a    .

5.1 Systems Stability

Define the state of the system as follows

1

2

x x

x x


  

(70)

The state space equation of system (7) without the disturbance input

   cosdu t F t  can be expressed as

 
1 2
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x x
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Choose a Lyapunov function as



  2 2

1 2

1 1
,

2 2
V x t kx mx 

(72)

Taking the derivative of V along trajectories of the system gives

  1

1 2

2

x
V kx mx

x
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 2 4

1 2 3 2a x a x  

(73)

The function V can be made negative definite if
1

3

0

0

a

a


 

, and hence the system is

asymptotically stable at 021  xx . Additionally, if
1

3

0

0

a

a


 

, the system with a

disturbance input is asymptotically stable to a ball [16].

5.2 Simulation Studies

Since the system is always stable if
1

3

0

0

a

a


 

according to section 5.1, the value of the

nonlinear damping parameter 3a can be any positive real number. The system was

simulated to generate the output frequency response  FY j for the following three

cases:

(i) 3

1 3( ) ( ) ( )f a a    where 3 0a  s Nm
-1

(ii) 3

1 3( ) ( ) ( )f a a    where 3

3 1 10a   s N m
-1

(iii) 3

1 3( ) ( ) ( )f a a    where 6

3 1 10a   s N m
-1

Figs. 2, 3 and 4 show the numerical simulation results of the output spectrum obtained

by performing a FFT operation on the system time domain output  Fy t for cases (i),

(ii) and (iii) respectively.

The numerical simulation results indicate that the magnitude of the system output

spectrum  2 FY j at 8.1  rad s
-1
reduces from 4585.0818 N to 959.0752 N as

the nonlinear damping characteristic parameter 3a increases from 0 sN/m where the

system is linear to 31 10 s N m
-1
. Then when 3a increases to 61 10 s N m

-1
,

 2 FY j reduces again to 136.4987 s N m
-1
. Figs. 2, 3 and 4 also clearly show that

some of the energy at the excitation frequency 8.1  rad s-1 is transferred to

higher frequencies. Therefore, nonlinear damping can reduce the output energy at the

driving frequency and at the same time spread the output signal energy over a wider

range of harmonics. This reduction at the resonance becomes larger as the



nonlinearity gets stronger.

5.3 Other damping characteristic cases

In order to investigate the way in which nonlinearity modifies the energy distribution,

three other damping characteristic cases are studied in this section:

(iv) 3 5

1 3 5( ) ( ) ( ) ( )f a a a      where 3

3 1 10a   s N m-1 and 6

5 1 10a   s Nm-1

(v) 3

1 2 3( ) ( ) ( ) ( )f a a a      where 2 20a  s N m-1 and 3

3 1 10a   s N m-1

(vi)   1 2( ) ( ) 10 1f a a
    where 3

2 1 10a   s Nm-1

The numerical simulation results of the output spectrum for cases (iv), (v) and (vi) are

shown by Figs. 5, 6 and 7 respectively.

5.4 Simulation conclusions

5.4.1 Proposition 1

The magnitude reduction percentage and the relative nonlinearity will be defined

below and used to assess the simulation results.

TheMagnitude Reduction Percentage (MRP) is defined as
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Y j Y j
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(74)

where  2
L

F iY j is the magnitude of  FY j at the dominant frequency when

( )f  is a linear function and  2
NL

F iY j is the magnitude of  FY j at the

dominant frequency when ( )f  is a nonlinear function.

The Relative Nonlinearity (RN) is defined as

     
1

df d
RN

a

 


(75)

From the simulation results and the definitions above, a summary of the results

relating to the six cases are given in Table 1.

Proposition 1 easily follows by inspection of Figs. 2-7 and Table 1.

Proposition 1: When the input magnitude dF and the input frequency Ω are fixed,

 MRP will increase if  RN increases.

5.4.2 Proposition 2

Proposition 2: In most cases, there will be much less power at the harmonics in the



output spectrum when  f  is an odd function than when it is not.

Proposition 2 easily follows by comparing the Bode response in Figs. 2-5 to Fig. 6.

The proof is given as follows.

Proof:

Let     2 1

2 1

1

N
k

k

k

f a





  
(76)

The equilibrium equation for the system in Fig. 1 and corresponding force at the

support can be expressed as
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(77)

2 1
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(78)

Since 2 0ka  where 1,2,3,k   in Eq. (77),

 2 1 , , 0kd nH j j    
(79)

[17].

Following the procedure of section 4.2.2 yields

   
2

1 1

1

, , , ,
n

nF n i nd n

i

H j j m j H j j    


      
 


(80)

Substituting Eq. (79) into Eq. (80) gives

 2 1 , , 0kF nH j j     , 1,2,3,k  
(81)

Substituting Eq. (81) into Eq. (55) yields

           
1 2 2 1 1 2 2 1
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2 12 1
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1
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k k k i

N

F k k k k k ki Fi

i
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(82)

When the system is subject to the harmonic input (6),

2 1ik 
  , 1,2,3,i  

(83)



Therefore,

1 2 2 1
, 3 , 5 ,

ik k k   


         
(84)

That is

 2 0FY j k  , 1,2,3,k  
(85)

which means that the energy at the even harmonics is transferred to the odd harmonics

and the number of harmonics in the output spectrum when  f  is an odd function is

only half that when it is not odd. This completes the proof.

5.4.3 Summary

According to proposition 1 and 2, a nonlinear damping element described by the odd

polynomial function    
N

2 1

2 1

l=1

l

lf a


   can be introduced between the incoming

signal and the structure of interest to suppress resonant vibrations.

6. Analysis

Consider the system (2) and (3) subject to the harmonic input (6) and using the

following system linear characteristic and input parameters:

m=240 kg, k=16000 N m-1, 1a =29.6 s N m-1, dF =10 N, Ω=8.1
rad s

-1

where Ω=8.1 rad s-1 is corresponding to the natural undamped frequency.

In order to investigate how nonlinearity reduces the energy in the output spectrum at

the driving frequency, the output spectra  FY j are determined using Eq. (68) and

the expressions of the GFRFs for  Fy t derived in section 4.2, and the results

obtained are then compared to the results obtained by simulation for three different

damping characteristics as follows:

(vii)
3

1 3( ) ( ) ( )f a a    where 3 0a  s N m
-1

(viii)
3

1 3( ) ( ) ( )f a a    where 3 100a  s N m
-1

(ix)
3

1 3( ) ( ) ( )f a a    where 3 200a  s N m
-1

Figs. 8, 9 and 10 show the results for cases (vii), (viii) and (ix) respectively. In Figs.

8, 9 and 10, the solid lines show the output spectrum  FY j at the driving frequency

determined using the analytical description (68) when the system nonlinearities up to

ninth order are taken into account. The dashed lines show the numerical simulation

results of the output spectrum obtained by performing a FFT operation on the system

time domain output  Fy t .

Inspection of Figs. 8, 9 and 10 clearly shows that the output energy at the driving

frequency  contributed by the linear term 1P is modified by the higher-order

system nonlinear effects nP ( 2n  ) to yield the output frequency response  FY j .



Comparing Figs. 9 and 10 indicates that the cancellation between the linear term and

the higher-order system nonlinear effects becomes larger when the nonlinearity

becomes stronger.

The general case when the nonlinear damping characteristic is described by a

polynomial function can be analyzed using the same set of procedures. In

mathematics, the Weierstrass Approximation Theorem [18] guarantees that any

continuous function on a closed and bounded interval can be uniformly approximated

on that interval by a polynomial to any degree of accuracy. Therefore, other nonlinear
damping characteristics which are not directly described by a polynomial can be

approximated by a polynomial function and then analyzed by this method.

7. Conclusions

The relationship between the output frequency response and the nonlinear damping

characteristic parameters of an sdof spring damper system has been studied. The

studies demonstrate that the nonlinear damping element can reduce the output energy

at the driving frequency and at the same time spread the output signal energy over a

wide range of harmonics. It has also been shown that the reduction becomes larger as
the nonlinear damping characteristic gets stronger and in most cases, there will be

much less power at the harmonics in the output spectrum if the nonlinear damping

characteristic is an odd function. Hence, an odd polynomial nonlinear damping

element can be introduced between the incoming signal and the structure of interest to

move the energy into higher harmonic frequencies with a corresponding reduction in
the level of the output at the driving frequency. The transmitted force spectrum was

also expressed in terms of the nonlinear generalized frequency response functions to

show how the energy, at the excitation frequency, is modified by the nonlinearity.
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Table 1

Simulation results of cases (i)-(vi)

Case
numbe

r

( )f x
( 1 29.6a  s N m

-1
)

2 ( )
NL

F iY j
(N)

 MRP

i 1( ) ( )f a  4.5851e+003 0%

ii

3

1 3( ) ( ) ( )f a a   
 0.5,0.5x 

3

3 1 10a   s N m-1
959.0752 79.0828%

iii

3

1 3( ) ( ) ( )f a a   
 0.05,0.05x 

6

3 1 10a   s N m
-1

136.4987 97.0230%



iv

3 5

1 3 5
( ) ( ) ( ) ( )f a a a     

 0.2,0.2x 

3

3 1 10a   s N m
-1
,

6

5 1 10a   s N m
-1 346.9872 92.4323%

v

3

1 2 3( ) ( ) ( ) ( )f a a a     

 0.5,0.5x 

3

3 1 10a   s N m-1,

2 20a  s N m-1 959.0655
79.0830%

vi

  1 2( ) ( ) 10 1f a a
   

 0.045,0.045x 
3

2 1 10a   s N m
-1

130.9598 97.1438%

( ) cos( )
d

u t F t 

( )
s

F t ( )x t

( )f 

Fig. 1. The SDOF mass-spring-damper system considered in the study
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Fig. 8. The output frequency response  FY j at the driving frequency  when

3
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0a  s N m-1. Solid lines: analytically determined

results using nonlinear terms up to ninth order; dashed lines: simulation results.
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Fig. 8. The output frequency response  FY j at the driving frequency  when

3

1 3
( ) ( ) ( )f a a    ,

1
29.6a  s N m- 1 and

3
0a  s N m-1. Solid lines: analytically determined

results using nonlinear terms up to ninth order; dashed lines: simulation results.
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Fig. 9. The output frequency response  FY j at the driving frequency  when

3

1 3( ) ( ) ( )f a a    , 1 29.6a  s N m
-1

and 3 100a  s N m
-1
. Solid lines: analytically

determined results using nonlinear terms up to ninth order; dashed lines: simulation results.
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Fig. 10. The output frequency response  FY j at the driving frequency  when

3

1 3( ) ( ) ( )f a a    , 1 29.6a  s N m-1 and 3 200a  s N m-1. Solid lines: analytically

determined results using nonlinear terms up to ninth order; dashed lines: simulation results.


