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Abstract

A novel approach to suppress resonant vibration is presented by employing a single
degree of freedom transmissibility system which utilizes a nonlinear damping
element. Studies have shown that the nonlinear damping element can reduce the
output energy at the driving frequency and at the same time spread the output signal
energy over a wider range of harmonics. It will also be shown that the reduction
becomes larger as the nonlinear damping characteristic gets stronger and in most
cases, the power at the harmonics in the output spectrum will be much less if the
nonlinear damping characteristic is an odd function. Hence, an odd polynomial
nonlinear damping element can be introduced between the incoming signal and the
structure of interest to suppress resonant vibration. An expression is derived to
express the transmitted force spectrum in terms of the nonlinear generalized
frequency response functions, to clearly show how the energy, at the excitation
frequency, is modified by the nonlinearity.

Keywords: energy transfer; damping; vibration transmissibility; nonlinear materials;
higher-order frequency response functions

1. Introduction

Resonance is a well-known phenomenon in engineering, which arises when the
excitation frequency at an operating condition is near a natural frequency of the
system. When a resonance occurs for a system, the resulting vibration levels can be
very high and this can cause considerable damage. Suppressing resonant vibration is
therefore very important to ensure an appropriate running condition and a desired
behaviour of the system [1-4]. The standard approach to suppress resonant vibration is
to either introduce damping or a vibration absorber which can be passive, active or a
combined approach [5, 6].

This paper describes an entirely different approach which results in a novel way of
avoiding resonant vibration. The concept is to transfer or distribute the incoming
energy in such a way that the energy entering the resonant region of the structure of
interest is reduced to a level which avoids significant problems by introducing a non-
linearity between the input and the structure. A analytic relationship between the
system output frequency response and the non-linearity is derived in this study to



reveal how the energy entering the structure is modified by the non-linearity, which
results in energy transfer.

2. System description

In order to explain the concept of energy transfer in an analytical sense, the effect of
introducing a nonlinear element (in this case a nonlinear damper) at the interface
between the input of a single degree of freedom (SDOF) system and the output will be
studied.

Consider the SDOF system shown in Fig. 1. This represents a mass supported on a
linear elastic spring k in parallel with a nonlinear damper f () The mass is

subjected to a harmonic excitation force of amplitude F, and frequency Q and the
output of interest is the force F, (t) transmitted to the support via the linear spring and

the nonlinear damper.

The nonlinear damping element is described by a polynomial function of velocity
such that
3
f()= 4, (~)+a3 ()
(1

where a,, a, are the parameters of the damping characteristic and a, represents the
system nonlinearity.

The equilibrium equation for the system in Fig. 1 and corresponding force at the
support can be expressed as

mi(t) +ax(t)+ax’ () +kx(t)=F, cos(Qt)

()
F.(f) = a, (1) + a, X (1) + kx(1)
(3)
For convenience of analysis, denote
Ya (1) = x(1)
4)
yp(t) =F, (1)
5
and
u(t)=F, cos(Qt)
(6)

The system can then be described by a single input two output system
my, () +a,y, ) +a,y,’ ) +ky, ) =u(®)

(7
Ve (0) = a,3,(0) + a3, () + ky, (1)

®)



What is of interest in this study is how the spectrum of the transmitted force
2 ‘YF ( JjQ )‘ depends on the nonlinear damping element which in turn creates

harmonics that spread the incoming energy to other frequencies, resulting in a
reduction in the transmitted force level of Z‘YF (j Q)‘ at the excitation frequency Q.

Notice that 2 |YF (jQ )| not |YF (jQ)| is used because 2|YF (jQ)| represents the

physical magnitude of the system output y, ( t) at the frequency Q.

3. Volterra modelling of the system in the time and frequency domain

The output y(t) of a single input single output (SISO) analytical system can be

expressed as a Volterra functional polynomial of the input u (t) to give

()= 25(0)
©®)

where N is the maximum order of the system nonlinearity and y(")(t)is the nth-

order output of the system, which is given by

W (1) =JT:J.7+: h, (7, T”)ﬁu(t—ri)dri n>1
i=1

(10)
where h, ( T, rn) is a real valued function of 7,,---,7, called the nth order impulse

response function or Volterra kernel of the system [7, 8]. Volterra generalised the
linear convolution concept to deal with nonlinear systems by replacing the single
impulse response with a series of multidimensional integration kernels. The nth-order
Volterra kernel describes nonlinear interactions among n copies of the input. The
multidimensional Fourier transform of the nth-order Volterra kernel yields the nth-
order transfer function or generalised frequency response function (GFRF)

Hﬂ(]‘a;l,..., ja’n) :J'jmj'_m h, (Tl""’ T )e—_i(wlrl+--+wn7n)dfl edt
(11

Using the concept of GFRF, the general relationship between the input spectrum

U (jo) and the output spectrum Y () can be obtained as [9]
N 1 n
Y(jo)= ) ———— H, (jo, - jo, U(jo,)do,,
(95 gl A )
(12)
where I (-)do,, denotes the integration of (-) over the n-dimensional

O+ -+, =0

hyperplane o, +---+w, = .

When the system is subject to a multi-tone input such as



K

u(r) = 2 |Alcos(ar +24))

i=1
(13)
Lang and Billings [9] showed that Eq. (12) can be expressed as

v( J-w)=g21_n Y H, (o, )A(0,) - A, )

W+t =0

(14)
where
k,e{—K,---,—l,l,---,K}, I=1,---n,
A —+1 ...+
A(w):{Ake if oc{ok =+l 2K}
0 otherwise
o =—@,
and

iZA, _| | —jZA,
|A—k|e = A le

In our case, we have a single input, the force excitation, and two outputs, the
displacement of the mass m and the force transmitted to the support. Eq. (14) now
takes the form [10, 11]

Y, (jo) :i%w Y H,(jo, o, )A(0,)Ale, ) =12

n=l +ot, =0
A/l

(15)
where

th ( ]a)l PR ]a)n ) = J.—(xj o .J.—oo h’lj] (Tl o u T, )e_j(wlrl-*—m*—w”‘r")drl o dTn
is the nth order GFRF of the system corresponding to the j th output and
k, e{—l, +1}, [=1,--,n,

A()- Ale™™ if welo,.k==*1}
0 otherwise ’

where A, |=F,, o, =+Q, ZA, =0.

4. The effects of system nonlinearity on the output frequency response

The focus of this section is to investigate the effects of the nonlinear damping
characteristic of the systems (2) and (3) on the output frequency response when the
system is subject to a multi-tone or a harmonic input. This study involves two steps.
First the GFRF matrices of the system

[H,,(jo, - joy), H,(jo,jo)], n=123,--
are derived. Then a relationship between the system output frequency response
Y. ( jo) and the system GFRFs is determined.

4.1 The probing method



Given a parametric model of a nonlinear system, there are a number of methods to
obtain the GFRFs of the system. Arguably the most direct is the harmonic probing
method of Bedrosian and Rice [12] and Bussgang et al [13]. In the case of single input
single output nonlinear systems, the basic idea of the probing method can be
introduced as below.

It was shown by Rugh [14] that for nonlinear systems which are described by the
Volterra model (9), (10) and excited by a combination of exponentials

R
u(t):Zejw"' , I<R<N
i=1

(16)
the output response can be written as

N R R ay v )
()= 22 2 H, (oo )T
i=1

n=l i=1

=G, (e g e e

my (n)-mpg (1)

a7)

where Z indicates a R-fold sum over all integer indices m, (n),---,m (n) such that
m(n)

0<m,(n)<n, m(n)+--+mg(n)=n,and

Gml(,,)..mR(n)(ja’l""’ja)R): : H,| joy, - jo - jog, - jOg

.. y
ml(”) mR(”)- ) )

18)

Notice that in Eq. (18) when n=R, m,(n) =1, i=1,--+ R, therefore

Gm](R)..AmR(R)(ja)]"”a ]OOR) = R'HR (ja)l, Tt ]wR)
(19)

Considering Eq. (19), Eq. (17) can be written as
N

y( t) = z Z Gm](n)”_mk ) (ja)l, e ij ) ei[ml(n)an +-mp(n)og ]t

n=l,n#R m(n)
+R!HR (ja)l,__', ja)R )e/(”] +etop ¥
20)

For nonlinear systems which have a parametric model with parameter vector 6,

y(1)= £y(£.0.3(1).u(1))
@1
and which can also be described by the Volterra model (9) and (10), substituting Egs.
(16) and (20) into Eq. (21) for y(t) and u(t), and extracting the coefficient of

ortsog)t

e from the resulting expression produces an equation from which the GFRF

Hy ( jo, jo) can be obtained.



If the system is of a single input and two outputs and can be described by the

parametric model
{M(I) = fl(t,@,yl(t),yz (1).u,(1))
¥, ()= fZ(t’@’ N (t),yz(t),ul(t)) ,

22)
Eq. (20) can be written as
y; (1 Z > G, (jar, jog) oM ()t tmg(m)ey Jo
n= ln;tRm n
+R.HRil(]a)l,"',]wR)ei(a)l+'-‘+wR)z j1:1,2
23)
where
Gml(")“'mR(n)jl(-]a)l’“.’v]a)k):m (n)!.”m (n)!Hn]] -]a)l’.”"]a)l"..’.]a)R’.'.’_]a)R
1 R my(n) mpe(n)
24)

Then substituting u, Ze"‘” , and y,(t ) and yz(t) given by Eq. (23) into Eq.

i(wy+-+ar)t

(22), and extracting the coefficient of e from the resulting expressions
produces two coupled equations for which the GFRF matrix

[Hei (jensrsjog)s Hee (o joy) ]
can be obtained.

4.2 Derivation of the system GFRFs

4.2.1 Derivation of the GFRFs for y, (1)

The expression for H,, ( j@,--, jo,) was derived by Zhang et al [15] and will simply

be quoted here.
When n =1,
1
H,(o
1d ( 1) B (le)
25)
When n is an even number, H,, (@, -, ®,)=0.

When n >3 and is an odd number,

H, A = 3!6@0,]1"'”M[3)
(26)
where



o __ 1 L
" B (jo,++ jo,) n!

(28)

MO =3 nl(jo 4o, )H, (o0 )n (jo, .+t jo,, )H, (0.0,,)

(r;3,n)

r3 '(Ja)r|+r2+l oot -]a)n )Hr3 (a)r|+rz+1 ’ ’a)n)

29)
Formally,
(B) A M 3
M 228, [p]
p=1
(30)

where S: , the Stirling Set of the second kind, denotes the set whose elements cover

all the partitions of a set {1,2, -+, n} into 3 blocks.

In the case n =3,
H,, (0,0, 0,)=a"3laM] =31a,d” 1)(2)(3)

(31)
where
123 1 1
G == ; ; ) X—
‘ B (jay + jo, + jo,) 3!
(32)
and
M2)(3) = (ja)l)Hld (a)l)(jwz)Hld (wz)(ﬂ%) H, (a)3)
(33)
In the case n =35,
H,, (wl 50,03, , D5 ): 3!5’3C512345]V[1(133) >
34
where
12345 1 1
CS =T 5— 51
p(Sio) ¥
(35)
M= (5)(@)(321) + (5)(3)(@21) + (5)(2)(341) + (5)(1)(324) + (H)(3)(521)
+

(D351 + (4)(1)(325) + (3)(2)(541) + (3)(1)(524) + (2)(1)(354)
36)



where

(5)4)(321) = (]605 )Hld (a)s )(jw4)Hld (604)3!(]'&)3 +jo, + jo, )H3d (0)3,602,601 ) ’
@37
and so on.

In the case n=17,

H7d (wha)z ,603,6()4,@5,606,607) =3!G3C71M7 (Ml(l35) +M3(§3)

38)
where
o = o 71 oL
. 7!
B (Z JCO,—J
i=1
39)
M) has 21 terms and is given as
M(3)

=(7)(6)(54321) + (7)(5)(64321) + (7)(4)(56321) + (7)(3)(54621) + (7)(2)(54361) +
(7)(1)(54326) + (6)(5)(74321) + (6)(4)(57321) + (6)(3)(54721) + (6)(2)(54371) +
(6)(1)(54327) + (5)(4)(76321) + (5)(3)(74621) + (5)(2)(74361) + (5)(1)(74326) +
@D (B)(57621) + (4)(2)(57361) + (4)(1)(57326) + (3)(2)(54761) + (3)(1)(54726) +
(2)(1)(54376)

(40)
Mgf has 70 terms and is given as
M)

=(764)(531)(2) + (764)(521)(3) + (764)(321)(5) + (763)(452)(1) + (763)(451)(2) +
(763)(421)(5) + (763)(521)(4) + (762)(435)(1) + (762)(431)(5) + (762)(451)(3) +
(762)(351)(4) + (761)(432)(5) + (761)(435)(2) + (761)(425)(3) + (761)(325)(4) +
(754)(632)(1) + (754)(631)(2) + (754)(621)(3) + (754)(321)(6) + (753)(462)(1) +
(753)(461)(2) + (753)(421)(6) + (753)(621)(4) + (752)(436)(1) + (752)(431)(6) +
(752)(461)(3) + (752)(361)(4) + (751)(432)(6) + (751)(436)(2) + (751)(426)(3) +
(751)(326)(4) + (743)(652)(1) + (743)(651)(2) + (743)(621)(5) + (743)(521)(6) +
(742)(635)(1) + (742)(631)(5) + (742)(651)(3) + (742)(351)(6) + (741)(632)(5) +
(741)(635)(2) + (741)(625)(3) + (741)(325)(6) + (732)(465)(1) + (732)(461)(5) +
(732)(451)(6) + (732)(651)(4) + (731)(462)(5) + (731)(465)(2) + (731)(425)(6) +
(731)(625)(4) + (721)(436)(5) + (721)(435)(6) + (721)(465)(3) + (721)(365)(4) +
(654)(321)(7) + (653)(421)(7) + (652)(431)(7) + (651)(432)(7) + (643)(521)(7) +
(642)(351)(7) + (641)(325)(7) + (632)(451)(7) + (631)(425)(7) + (621)(435)(7)

(41)
where

(N(6)(54321)
= (]@7 )Hl (a)7 )(.]wé)Hl (a)e)S!(jws +jo, + jo, + jo, + jo, )Hs (a)s,a)4,ag,a)2,a), )
(42)

(764)(531)(2)
=31(jo, + jo, + jo, ) Hy (o, 0p,0,) 3\ jos + jo, + jo ) Hy (o5, 0;,0,)( jo, ) H, (o,)
@3)



and so on.

In the case n=9,

3 3 3
Hy, (0,0,,0,,0,,05,0,0,,0,,0,) = 3la,c™ (Ml(”) + M)+ M3(33))

“4)

where ey’ =— —91 X 5
B3] *

@5)

M Ml(;s) and M g; have 36, 504 and 280 terms respectively. These expressions are

117>
omitted here due to space limitations, but the results will be used in section 6 to obtain
a more accurate analysis of the system output frequency response.

More GFRFs for y, (t) can be derived easily according to Egs. (26) — (30).

4.2.2 Derivation of the GFRFs for y, (1)

Substituting Eq. (8) into Eq. (7) yields
my, (t)+yF (t):”(t)
46)

According to Eq. (23), the second-order derivative of y, ( 1) can be expressed as

n 2 J ia)i
y, (1)= n!(jz a)ij H,,(jo, - ja)n)e”'Fl + etc.
i=1

@7)

v (1) can be written as
jriwi
yF(t): n!HnF(ja)l"",ja)n)e 4 oefc

43)
Substituting Eqs. (47), (48) and (16) into Eq. (46) gives

n 2 jti“’z jtlzxw’_ R
m n'(]Za)lj Hnd (ja)l,...’ja)n)e il +”!HnF(ja)1,"',ja)n)e = +€IC.:Z€]W

= i=1
49)

When n =1, equating the coefficients of ¢’ from Eq. (49) yields

m(ja’1)2 H, (jw1)+H1F(ja)l) =1
(50)

Therefore,



H, (]a)l) :1_m(ja)l)2 H, (ja)l)

(3D
Substituting Eq. (25) into Eq. (51) gives
a (jo, )+k
H, (wl): l( .l)
B(je,)
(52)
Jt 3 ,

When n > 2, equating the coefficients of e = " from Eq. (49) yields
n 2
m nY(szzj Hnd (ja)l".”ja)n)+n !HnF (jwl’.“’jwn) =0
i=1
53)

That is

o4)

The GFRFs for y, (1) (n>2) can be given by substituting the expressions of
H,,(ja, - jo,) derived in Section 4.2.1 into Eq. (54).

4.3. The effects of system nonlinearity on the output frequency response

The expressions for the system GFRFs in terms of the nonlinear damping
characteristic parameters can now be used to derive an expression for the output

spectrum YF(ja)). Substituting the expressions for higher order GFRFs derived in

section 4.2 into Eq. (15) yields
1

YF(J‘CO):ZA_/;Z" Z HnF(ja)kl"“’ja)kn)A(a)k])“'A<a)kn)

O+t =0

:%HIF(ja))A(w)+2l_3 z |:H3F(jwk]’jwkz’ja)k})]i_‘[A(wki):|+'“

[ +wk2+wk3 =0 i=1

:%HIF(jw)A(w)+2i3 > {—m[j;a)ki} 3!a3c3123(1)(2)(3)1;[A(a)k’_)}+---

=D (ja))"‘ P (ja))a3 e
(55)
where
. 1 .
pl(]a)) = EHIF(]CO)A(CO)
(56)



pg(jco)=21—3 > [—m(ijk,j 31 RG] [ A(w, )

O + O, + O =0 i=1

67
Generally,
[(N-1)/2]
Y, ( ]a)) = z (p2k+1a3k )
k=0
(58)

where %J denotes the floor function, also called the greatest integer function or

integer value, which gives the largest integer less than or equal to

Note that p, (ja)), i=1,3,---, produced by the system GFRFs, depends on the applied

multi-tone input and the parameters which describe the linear characteristic of the
system but are independent of a,.

Denote
P

k
U1 = Porn i

59)

Then substituting Eq. (59) into Eq. (58) gives
[(N-1)/2]

YF(.]CO) = Z P,

k=0

60)

Eq. (60) is a very important result which describes the relationship between the
system frequency response and the characteristic parameters of the system
nonlinearity. The result extends the fundamental analytical relationship between the
linear characteristic parameters and the output frequency response to the nonlinear
case for system (2) and (3) when the system is subject to a multi-tone input, and can
be easily extended to other general situations.

For a given multi-tone input and the linear characteristic parameters m, a,, k,

pi(ja)), i=12,--- in Eq. (60) are known functions of frequency w. Eq. (60)
indicates that at each frequency component the system output spectrum is a
polynomial function of the nonlinear damping characteristic parameter a,_.

When the system is subject to the harmonic input (6), and the output frequency of
interest in the analysis is the same as the input frequency Q,

N
YF(jQ):;;_n Z HnF<ja’kl""’jwkn>A(wkl)"'A(wk“)

a, ++a, =0


http://mathworld.wolfram.com/Integer.html

1 . 1 Y
da (a9 3 | (oo, ) TA(,) -

O+ Oy + O =Q
(61)
where

Y Hy(jo,. oo, ) [TA(o, )}
- i=l

_1:3:(9 Q,Q)A(-Q)A(Q)A(Q)+H,, (Q,-Q.Q)A(Q)A(-Q)A(Q)

+H,, (Q,Q,-Q)A(Q)A(Q)A(-Q)
= |A(Q)|2 A(Q)[Hyp (-Q.Q)+ Hy, (Q, - QO)+ H,, (0, - Q)]
(62)

Since GFRF H , ( jw,, -+, jo,) is symmetric,

Hyp (‘Q’ Q’Q) =H;, (Q’ B Q’Q)=H3F (Q’Q’ ) Q)
63)

Substituting Eq. (63) into Eq. (62) yields

D {HW (ja,. jo . jo, )li_:[A(a)k[ )} =3H,, (-Q.2.0)[A(Q) A(Q)

W+, +0, =Q
kT kg Tk

64)

Generally,

W%ﬂﬁ“”w'"”’“k">A(“)k')"'A(”’kn>:C(”’BDM @ ae)

(©5)
where H { J(Q ,Q,—Q,---,—Q) is a higher-order GFRF with n—{% J arguments of
"l

(2 and {%J arguments of —Q and C(n, {%ﬂ is the number of combinations of {EJ

objects from a set with n objects and given as

66)

Substituting Eq. (65) into Eq. (61) gives

)-S5 Jal a@ya

nl

©7)

Eq. (67) can also be written as



(68)
where

69)

Eq. (68) shows that the output energy at the driving frequency Q contributed by the

1o 1s modified by the higher-order system nonlinear effects to

linear term %A (Q)H

yield the output frequency response Y, (jQ) .

Simulation studies will be conducted in section 5 for systems (2) and (3) to evaluate
the output frequency response to the harmonic input (6) for different damping

characteristics. The results will then be compared with the output spectrum Y, (jQ)
determined using Eq. (68) in section 6. The objective is to investigate how a
nonlinearity reduces the energy in the output spectrum at the driving frequency and
modifies the energy distribution and to present a new approach to suppress resonant
vibration by designing the system nonlinearity.

5. Simulation Studies

Consider the system (2) and (3) subject to the harmonic input (6). Take the system
linear characteristic and input parameters as follows:
m=240 kg, k=16000 N m™, @,=29.6 s Nm™, F,=100 N, Q=8.1
rad s
where Q=8.1 rad s™ corresponds to the natural undamped frequency. The damping
characteristic is defined by f(¢)=a,(s)+a, (-)3 .

5.1 Systems Stability

Define the state of the system as follows
X=X
X, =X

The state space equation of system (7) without the disturbance input
u(r) =F, cos(Qr) can be expressed as

(70)

X =X,

. 1 3
X, :—;(alx2 +ayx, +kx|)

(71)

Choose a Lyapunov function as



V(x,t):%kx2+lmx 2

1 2 2

(72)

Taking the derivative of V along trajectories of the system gives

V = [ks mxz]ﬁ}

X,

- .
- [kxl mxz] - l(alx2 +ax,’ + kx])
m

2 4
:—(alxz +ayx, )

(73)
o : >0 :
The function V can be made negative definite if 0’ and hence the system is
a, >
a, >0

asymptotically stable at x; = x, = 0. Additionally, if { , the system with a

a, >

disturbance input is asymptotically stable to a ball [16].

5.2 Simulation Studies

a, >0

Since the system is always stable if { according to section 5.1, the value of the

a, >
nonlinear damping parameter g, can be any positive real number. The system was
simulated to generate the output frequency response Y, ( JjQ) for the following three
cases:

(i) f() =a,(+)+a,(+)* where a, =0 s Nm"

(ii) f(+) =a,(+) +a;(+)> where a, =1x10* s N m'

(i) f(s)=a,()+ay(-)’ where a, =1x10° sN m’’

Figs. 2, 3 and 4 show the numerical simulation results of the output spectrum obtained
by performing a FFT operation on the system time domain output y, (t) for cases (1),
(i1) and (ii1) respectively.

The numerical simulation results indicate that the magnitude of the system output
spectrum2|YF (jQ)| at Q=8.1rad s” reduces from 4585.0818 N to0 959.0752 N as
the nonlinear damping characteristic parameter a, increases from 0 sN/m where the
system is linear to 1x10° s N m™’. Then when a, increases to 1x10° s N m'l,
2|YF ( JjQ )| reduces again to 136.4987 s N m”. Figs. 2, 3 and 4 also clearly show that

some of the energy at the excitation frequency Q =8.1 rad s is transferred to
higher frequencies. Therefore, nonlinear damping can reduce the output energy at the
driving frequency and at the same time spread the output signal energy over a wider
range of harmonics. This reduction at the resonance becomes larger as the



nonlinearity gets stronger.
5.3 Other damping characteristic cases

In order to investigate the way in which nonlinearity modifies the energy distribution,
three other damping characteristic cases are studied in this section:

(iv) f(*)=a,()+a,(+)* +as(+)> where a,=1x10> s Nm'and a, =1x10° s Nm"
V) f)=a()+a )
(vi) f(s) =a,(-)+a2(10(')—1) where a, =1x10° s Nm™

+a,(+)’ where a,=20 sNm"'and a,=1x10° s N m’

The numerical simulation results of the output spectrum for cases (iv), (v) and (vi) are
shown by Figs. 5, 6 and 7 respectively.

5.4 Simulation conclusions
5.4.1 Proposition 1

The magnitude reduction percentage and the relative nonlinearity will be defined
below and used to assess the simulation results.

The Magnitude Reduction Percentage (MRP) is defined as
2|y, (j,)|-2 ™ ()|

Z‘YFL(J'Q)‘ x100%

[MRP]=

(74)
where Z‘YFL ( jQi)‘ is the magnitude of Y, (jQ) at the dominant frequency when

f() is a linear function and 2‘YFNL( i )‘ is the magnitude of Y, (jQ) at the

dominant frequency when f(-) is a nonlinear function.

The Relative Nonlinearity (RN) is defined as
a,

(75)

From the simulation results and the definitions above, a summary of the results
relating to the six cases are given in Table 1.

Proposition 1 easily follows by inspection of Figs. 2-7 and Table 1.

Proposition 1: When the input magnitude F, and the input frequency Q are fixed,
[MRP] will increase if [RN] increases.

5.4.2 Proposition 2

Proposition 2: In most cases, there will be much less power at the harmonics in the



output spectrum when f () is an odd function than when it is not.

Proposition 2 easily follows by comparing the Bode response in Figs. 2-5 to Fig. 6.
The proof is given as follows.

Proof:

Let f(~)=kzji;a2k_l ()

(76)

The equilibrium equation for the system in Fig. 1 and corresponding force at the
support can be expressed as

N
my, )+ ay 3,7 O) +ky, () =u (@)
k=1
(77
N .
ye(0) = ZaZk—l 3,710 + ky, (1)
k=1
(78)
Since a,, =0 where k =1,2,3,--- in Eq. (77),
H,, (jay, jo,)=0

(79)
[17].

Following the procedure of section 4.2.2 yields
N 2
HnF (ja)p' *Y ja)n ) = _m(lz a)ij Hnd (.ia)l" ) ja)n )
i=1
@0)

Substituting Eq. (79) into Eq. (80) gives
HZkF (ja)l’“.’.ja)n ): O’ k :192939“'
@1)

Substituting Eq. (81) into Eq. (55) yields

YF(jw) - i 21i—1 Z H(zi—l)F (ja)kl ’ ja)"z’“" jwsz‘fl ) A(a)kl )A(wkz ).”A(a)"lifl )

i=0 O +Op ~+ O, =0

@2)

When the system is subject to the harmonic input (6),
o, =tQ, =123,
@3)



Therefore,
0=, +o +o, =1, 130, 350,

84)

That is
YF(jsz)=O, k=123,

@5)
which means that the energy at the even harmonics is transferred to the odd harmonics
and the number of harmonics in the output spectrum when f () is an odd function is

only half that when it is not odd. This completes the proof.
5.4.3 Summary

According to proposition 1 and 2, a nonlinear damping element described by the odd

N
polynomial function f(-)= ZaZH(-)ZH can be introduced between the incoming
I=1

signal and the structure of interest to suppress resonant vibrations.
6. Analysis

Consider the system (2) and (3) subject to the harmonic input (6) and using the
following system linear characteristic and input parameters:
m=240 kg, k=16000 N m™!, @,=29.6 s Nm’, F,=10N, Q=8.1
rad s’
where Q=8.1 rad s™ is corresponding to the natural undamped frequency.

In order to investigate how nonlinearity reduces the energy in the output spectrum at
the driving frequency, the output spectra Y, ( jQ) are determined using Eq. (68) and

the expressions of the GFRFs for yF(t) derived in section 4.2, and the results

obtained are then compared to the results obtained by simulation for three different
damping characteristics as follows:

(vi)) f(s) =a,(+) +a,(+)’ where a;=0 s Nm’'
(viii) f(o)= al(-)+a3(-)3 where a, =100 sN m’
x) f()=a/()+ a3(-)3 where a, =200 s N m’

Figs. 8, 9 and 10 show the results for cases (vii), (viii) and (ix) respectively. In Figs.
8, 9 and 10, the solid lines show the output spectrum Y, ( jQ) at the driving frequency

determined using the analytical description (68) when the system nonlinearities up to
ninth order are taken into account. The dashed lines show the numerical simulation
results of the output spectrum obtained by performing a FFT operation on the system

time domain output y, ().

Inspection of Figs. 8, 9 and 10 clearly shows that the output energy at the driving
frequency () contributed by the linear term P1 is modified by the higher-order

system nonlinear effects P, (n=2) to yield the output frequency response Y, ( jQ).



Comparing Figs. 9 and 10 indicates that the cancellation between the linear term and
the higher-order system nonlinear effects becomes larger when the nonlinearity
becomes stronger.

The general case when the nonlinear damping characteristic is described by a
polynomial function can be analyzed using the same set of procedures. In
mathematics, the Weierstrass Approximation Theorem [18] guarantees that any
continuous function on a closed and bounded interval can be uniformly approximated
on that interval by a polynomial to any degree of accuracy. Therefore, other nonlinear
damping characteristics which are not directly described by a polynomial can be
approximated by a polynomial function and then analyzed by this method.

7. Conclusions

The relationship between the output frequency response and the nonlinear damping
characteristic parameters of an sdof spring damper system has been studied. The
studies demonstrate that the nonlinear damping element can reduce the output energy
at the driving frequency and at the same time spread the output signal energy over a
wide range of harmonics. It has also been shown that the reduction becomes larger as
the nonlinear damping characteristic gets stronger and in most cases, there will be
much less power at the harmonics in the output spectrum if the nonlinear damping
characteristic is an odd function. Hence, an odd polynomial nonlinear damping
element can be introduced between the incoming signal and the structure of interest to
move the energy into higher harmonic frequencies with a corresponding reduction in
the level of the output at the driving frequency. The transmitted force spectrum was
also expressed in terms of the nonlinear generalized frequency response functions to
show how the energy, at the excitation frequency, is modified by the nonlinearity.
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Table 1

Simulation results of cases (i)-(vi)

Case : NL, .
numbe F(x) ¥ 2‘YF (JQ,-)‘
r (a,=29.6 sNm) (N)
i f)=a,*) 4.5851e+003
.. f@)=a @) +a) )
ii .. [_10.5’ 0.;] a;=1x10° s N m’! 959.0752 | 79.0828%
3
o)=q ()4 a, (e
iii f,() 0+ a, =1x10° sN'm’ 136.4987 | 97.0230%
i € [-0.05,0.05]




f@=aE)+a,) +a() | a,=1x10° sNm',

iv e[-02.02] 10° SN ! 346.9872 | 92.4323%
xe[-0.2,0. a; =1x sNm
v f)=a,()+a, () ‘ng(')3 a,=1x10° s Nm™, 9590655 79.0830%
i e[-0.5,0.5] a, =20 sNm’ ’
()=a,()+a (100 -1
vi / ‘ 2( ) a,=1x10° sN'm’' 130.9598 | 97.1438%

i €[-0.045,0.045]

u(t) =F, cos({¥)

m T
F.(1) x(1)
k [

Fig. 1. The SDOF mass-spring-damper system considered in the study
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a, = 1x10* sNm™: (a) Amplitude response, (b) Bode response.
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Fig. 5. The output frequency response when f'(*) =a,() +a3(-)3 + as(-)s, a, =29.6 sNm’',

a, = 1x10° s N m ' and as = 1x10° sNm: (a) Amplitude response, (b) Bode response.
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Fig. 6. The output frequency response when f(¢) =a,(*) +a, +a,(+)’, a,=29.6 s Nm’,
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Fig. 8. The output frequency response Y, (]Q) at the driving frequency €2 when
fE@)=a@)+a, O a,=29.6 sNm'and a, =0 s Nm™. Solid lines: analytically determined

results using nonlinear terms up to ninth order; dashed lines: simulation results.
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N m™: (a) Amplitude response, (b) Bode response.
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Fig. 3. The output frequency response when f(») =a,() +a3(-)3, a,=29.6 sNm' and



a, = 1x10* sNm™: (a) Amplitude response, (b) Bode response.
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Fig. 5. The output frequency response when f'(*) =a,() +a3(-)3 + as(-)s, a, =29.6 sNm’',

a, =1 x10° s N m"' and a, =1x 10° sN mr": (a) Amplitude response, (b) Bode response.
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Fig. 6. The output frequency response when f(*)=q,(*)+a,
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Fig. 8. The output frequency response Y, (]Q) at the driving frequency €2 when
fE@)=a@)+a, O a,=29.6 sNm'and a, =0 s Nm™. Solid lines: analytically determined

results using nonlinear terms up to ninth order; dashed lines: simulation results.
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