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Multiscale identification of spatio-temporal
dynamical systems using a wavelet multiresolution

analysis
Lingzhong Guo, Stephen A Billings, and Daniel Coca

Abstract— In this paper, a new algorithm for the multiscale
identification of spatio-temporal dynamical systems is derived.
It is shown that the input and output observations can be
represented in a multiscale manner based on a wavelet multires-
olution analysis. The system dynamics at some specific scaleof
interest can then be identified using an orthogonal forward least-
squares algorithm. This model can then be converted between
different scales to produce predictions of the system outputs at
different scales. The method can be applied to both multiscale and
conventional spatio-temporal dynamical systems. For multiscale
systems, the method can generate a parsimonious and effective
model at a coarser scale while considering the effects from finer
scales. Additionally, the proposed method can be used to improve
the performance of the identification when measurements are
noisy. Numerical examples are provided to demonstrate the
application of the proposed new approach.

Index Terms— Multiscale identification, spatio-temporal sys-
tem, orthogonal least squares algorithm, multiresolutionanalysis

I. I NTRODUCTION

T HE identification of spatio-temporal systems has recieved
increasing attention in recent years with applications in

a variety of scientific and engineering areas (Voss, Bunner,
Abel 1998, Coca and Billings 2001, 2002, McSharrya, Elle-
polab, von Hardenberga, Smitha, Kenning 2002, Yan, Hu,
Zhou, and Liu 2004, Billings, Guo, and Wei 2006, Guo and
Billings 2006, Guo, Billings, and Wei 2006). Both discrete
and continuous time models have been developed including
coupled map lattice (CML) models, lattice dynamical system
(LDS) models, and partial differential equations (PDE) to
describe the underlying spatio-temporal dynamical systems
based on observations of the system response. In addition,
many useful identification algorithms have also been derived
for the detection of the system structure, determination ofthe
unknown system parameters, and the removal or modelling
of noise. However, identifying a model of a spatio-temporal
system from observations is still far from straightforward.
Among the major difficulties that remain, two will be given
special attention in this paper. The first arises from multiscale
problems, and the second is associated with noise on the
observations.

Multiscale phenomena have been widely observed in many
diverse fields including physics, chemistry, biology, ecol-
ogy, and network traffic systems (Mandelbrot 1967, Car
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and Parrinello 1985, Littlewood and Maniatty 2005, Lorenz
1996, Chaudhari, Yan, and Lee 2003, Bindal, Khinast, and
Ierapetritou 2003, Muller-Buschbaum, Bauer, Pfister, Roth,
Burghammer, Riekel, David, and Thiele 2006, Louie and
Kolaczyk 2006, Huerta, Rabinovich, Abarbanel, Bazhenov
1997, Feldmann, Gilbert, Willinger, and Kurtz 1998, Eck
2004). There are also a variety of multiscale systems including
chaotic systems, molecular dynamics, and solar systems. Due
to the presence of different scales, modelling, analysis and
prediction of multiscale problems often involves the problem
of how to describe the interactions between the different laws
of physics at different scales, how to analyse the properties
of such systems both qualitatively and quantitatively, how
to cope with irregularly sampled data, and how to obtain
exact/approximate solutions either analytically or numerically.
All these problems require new methods and tools to find
a solution. Existing methods of modelling, analysis and
computation of multiscale systems include Fourier analysis,
multigrid methods, domain decomposition methods, fast mul-
tipole methods, adaptive mesh refinement methods, wavelet-
based methods, homogenisation methods, quasi-continuum
methods, and the Heterogeneous Multiscale Method (HMM)
(see reviews given by E and Engqiust (2003), E, Engquist,
Li, Ren, and Vanden-Eijnden (2006) and references therein).
Considering the difficulties of modelling such systems, it
would be advantageous if a model could be identified from
the observed multiscale data. The model could then be used
for the analysis of system behaviour or in control. To the best
of our knowledge, there is currently very little research onthe
identification problem for multiscale systems from observed
data and this important problem will therefore be studied in
this paper.

Noise is another important issue in system identification.
It is well known that the presence of noise on the measured
data will affect the accuracy of the identified models for both
multiscale systems and conventional systems. In some cases
filtering techniques can be used to improve the performance
of the identification. However, modelling with directly filtered
data does not usually provide satisfactory identification results
because applying data filtering without taking into accountthe
dynamical properties of the original systems may result in the
removal of important features from the data, this is particularly
severe for nonlinear and multiscale data because the signals
generated by these systems generally contain features and
noise that have varying contributions over both time, space
and frequency.
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In this paper, a new solution to the identification problem of
spatio-temporal dynamical systems directly from observations
is proposed to tackle the above mentioned two difficulties. The
idea behind the proposed method is that an infinite dimensional
spatio-temporal system is projected onto a finite dimensional
subspace using a wavelet multiresolution analysis so that the
system can be viewed at different scales. It has been shown
in Coca and Billings (2002) that the wavelet coefficients at a
scale form a finite dimensional system of ordinary differential
equations which can be used to represent an finite dimensional
approximation at some scale of the original system . The
system dynamics at a specific scale of interest can then be
identified using an orthogonal forward regression (OFR) least-
squares algorithm (Billings, Chen, and Kronenberg 1989). It is
shown that this model can then be converted between different
scales to produce predictions of the system outputs at dif-
ferent scales using wavelet decomposition and reconstruction
techniques. Because of the filtering properties of waveletsit
is also shown that the new method naturally combines the
identification procedure with a filtering process.

Section 2 presents a multiscale representation of spatio-
temporal dynamical systems using a wavelet multiresolution
analysis. In section 3, the identification method and the imple-
mentation strategy are presented including a discussion about
the properties of the OFR algorithm. Section 4 illustrates the
proposed approach using some examples. Finally conclusions
are drawn in section 5.

II. A MULTISCALE REPRESENTATION OF

SPATIO-TEMPORAL DYNAMICAL SYSTEMS

Consider the following evolution equation of a spatio-
temporal dynamical system

du

dt
+ Lu = f, u(0) = u0 (1)

where L : V → V ∗ is a nonlinear operator withV ⊂
L2(Ω) a Sobolev space, and whereΩ ⊂ Rn is a nice
spatial domain. The evolution of equation (1) can represent
a partial differential equation model for both conventional and
multiscale spatio-temporal dynamical systems.

To generate a multiscale representation of the system (1),
let Vj ⊂ V, j ∈ Z be a multiresolution approximation of the
spaceV . That is,Vj , j ∈ Z is an increasing sequence of closed
subspaces ofL2(Ω) with the following properties (Chui, 1992)

1) Vj ⊂ Vj+1,
2) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, j ∈ Z,
3)

⋃

j∈Z Vj is dense inL2(Rn) and
⋂

j∈Z Vj = ∅,
4) A scaling functionφ(x) ∈ V0 exists such that the set

{φ(x− k)|k ∈ Zn} forms a Riesz basis ofV0.

Following the definition of the multiresolution analysis, the set
of functions{φj,k = 2j/2φ(2jx− k)} is a Riesz basis ofVj .
Let Wj be a complementary space ofVj in Vj+1, such that
Vj+1 = Vj

⊕

Wj . Consequently

⊕

j∈Z

Wj = L2(Rn). (2)

Wj is called a wavelet subspace. A functionψ(x) is a wavelet
if the set of functions{ψ(x − k)|k ∈ Zn} is a Riesz basis
of W0. It follows that the set of wavelet functions{ψj,k =
2j/2ψ(2jx− k)} is a Riesz basis ofL2(Rn).

At resolutionj the projectionPj (resp.Qj) of a function
f onto Vj (resp.Wj) that corresponds to the above split of
L2(Rn) can be written with the use of a dual scaling function
φ̃ (resp. dual wavelet functioñψ) as follows

Pjf(x) =
∑

k

< f, φ̃j,k > φj,k(x) (3)

Qjf(x) =
∑

k

< f, ψ̃j,k > ψj,k(x)

where< · > denotes the inner product. Such wavelets are
called biorthogonal wavelets. Generally,φ̃ 6= φ and ψ̃ 6= ψ
except when orthogonality holds. The definition of a multires-
olution analysis implies that for anyf(x) ∈ L2(Ω)

lim
j→∞

Pjf(x) = f(x) (4)

f(x) =
∑

j

Qjf(x).

Since Wj is the complementary subspace ofVj in Vj+1,
that is Vj+1 = Vj

⊕

Wj , it follows that Pj+1f(x) =
Pjf(x) +Qjf(x). This gives an alternative representation of
the projection of a functionf ∈ L2(Ω) at resolutionj + 1
using both the scaling and wavelet functions as

Pj+1f(x) =
∑

k

< f, φ̃j,k > φj,k(x)+
∑

k

< f, ψ̃j,k > ψj,k(x).

(5)
In this way, it is understood that the projectionPj provides
an approximation of the functionf at some resolutionj and
the details left by this approximation are contained inQj. By
iteration, a wavelet decomposition can be obtained as follows

Pj+1f(x) =
∑

k

< f, φ̃j−l,k > φj−l,k(x) (6)

+

j
∑

i=j−l

∑

k

< f, ψ̃i,k > ψi,k(x).

It should be noted that a discretisation of (1) can be
considered as replacing (1) with an approximation inVj+1.
The operatorL is replaced by a operatorLj+1 : Vj+1 → Vj+1

defined by

< Luj+1, wj+1 >=< Lj+1uj+1, wj+1 >,wj+1 ∈ Vj+1.
(7)

Then the discretised dynamics of the system (1) at a
scale/resolutionj+1 can be described as the following initial
value problem inVj

duj+1

dt
+ Lj+1uj+1 = fj+1, uj+1(0) = u0 (8)
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where uj+1(t, x) = Pj+1u(t, x) =
∑

k <
u(t, x), φ̃j+1,k(x) > φj+1,k(x) and fj+1(t, x) =
Pj+1f(t, x) =

∑

k < f(t, x), φ̃j+1,k(x) > φj+1,k(x).
Consider the decompositionVj+1 = Vj⊕Wj , the projection

from Vj+1 ontoVj andWj yields

uj(t, x) = Pjuj+1(t, x) =
∑

k

uj,k(t)φj,k(x) (9)

fj(t, x) = Pjfj+1(t, x) =
∑

k

fj,k(t)φj,k(x)

on Vj with uj,k(t) =< uj+1(t, x), φ̃j,k(x) > andfj,k(t) =<
fj+1(t, x), φ̃j,k(x) >, and

u′j(t, x) = Qjuj+1(t, x) =
∑

k

u′j,k(t)ψj,k(x) (10)

f ′

j(t, x) = Qjfj+1(t, x) =
∑

k

f ′

j,k(t)ψj,k(x)

onWj with u′j,k(t) =< uj+1(t, x), ψ̃j,k(x) > andf ′

j,k(t) =<

fj+1(t, x), ψ̃j,k(x) >, which satisfies

uj+1(t, x) = uj(t, x) + u′j(t, x) (11)

fj+1(t, x) = fj(t, x) + f ′

j(t, x).

Applying the projectionsPj andQj to eqn. (8) generates the
following two equations

duj

dt
+ PjLj+1(uj + u′j) = fj (12)

du′j
dt

+QjLj+1(uj + u′j) = f ′

j .

Following the Corollary 3.1 (Coca and Billings 2002), there
exists a finite dimensional system of ordinary differential
equations with the wavelet coefficients{uj,k, u

′

j,k}j and
{fj,k, f

′

j,k}j as the output and input of the system such
that uj(t, x) =

∑

k uj,k(t)φj,k(x) forms a finite dimensional
approximation at the scalej of the solution of the original
system. Furthermore, this finite dimensional system of ordi-
nary differential equations can generally be decoupled into
two effective equations: one describes the coarse dynamicsat
scalej

duj,k

dt
= Fj(uj,k(t), fj,k(t), f ′

j,k(t)) (13)

and the second describes the corresponding detailed dynamics
for this scale

du′j,k
dt

= F ′

j(u
′

j,k(t), fj,k(t), f ′

j,k(t)). (14)

By repeating the above decomposition process, a multiscale
representation as eqns. (13) and (14) of the original spatio-
temporal dynamical system is obtained.

It should be noted that eqn. (13) represents an approxima-
tion to the original dynamical systems at scalej. The presence
of the detailsf ′

k,j in eqn. (13) indicates that the influence from
a finer scale is accommodated within this model.

III. M ULTISCALE IDENTIFICATION OF SPATIO-TEMPORAL

DYNAMICAL SYSTEMS

For spatio-temporal dynamical systems, experimental mea-
surements are often available in the form of a series of
snapshotsu(x, n∆t), n = 0, 1, 2, · · · , x ∈ Ω, where∆t is the
time sampling interval. Assume the system to be considered
is spatially sampled at a sampling interval∆x, then the
observations are discrete measurementsu(xi, tj) both in time
and space. This is equivalent to replacing the original system
in the infinite dimensional spaceV with an approximation
in some finite dimensional subspaceVj . The objective of the
identification is to obtain one model for the system from these
observations.

A. Comments on multiscale identification problems

As mentioned earlier, the objective of multiscale identi-
fication for spatio-temporal dynamical systems is to obtain
an effective model or a set of models from observed spatio-
temporal patterns. Eqns. (13) and (14) at any scale can be
used to describe the underlying spatio-temporal dynamics at
that specific scale once the representation is estimated or
extracted by using some identification algorithm. Ideally,the
identification technique should be able to produce a concise
model structure with a low spatial dimension. This ensures
that the obtained model is parsimonious and can readily be
interpreted either for simulation or analysis. Once eqns. (13)
and (14) are approximated by some function space such as
polynomials, they will be in the form of a linear-in-the-
parameters model, therefore, theoretically any least-squares-
type algorithm can be employed to produce a model. However,
there are several problems related to multiscale identification
which also need to be addressed:

1) Choosing the proper approximation subspaceVj , that is
the mesh size over a spatial domain is very important.
In identification, the mesh size represents the sampling
period in the spatial domain and reflects the number
of measurement locations and determines the scale of
interest. In the case that the mesh size can be made
sufficiently small, a system model can theoretically be
identified using the data from the finest scale, which can
resolve the dynamical behaviours at all scales. However,
the finer the mesh size is, the higher the dimension of
the approximation subspace becomes, that means the
dimension of the resulting finite dimensional model will
be extremely large and computationally expensive if
not formidable. In this case, it is worth considering
projecting the data into a coarser scale to obtain a
lower dimensional and effective model. In some other
cases, it will be of interest to construct system equations
on a coarse scale that account for the contributions
from these finer scales, such as in molecular dynamics.
These requirements translate into the need to identify
an effective and economical model for the coarse scale
with a lower dimension.

2) Often the measured data from the system of interest
can not be obtained at the finest scale. In this case, it
is impossible to identify a system model at the finest



4

scales directly from the measurements. However, the
observations from the best obtainable scale can be used
to identify a model at the specific scale, which represents
a coarse behaviour of the original system and it would be
beneficial if an equivalent finer model could be obtained
whose solutions have the same coarser behaviour as the
original unknown complicated systems.

3) The presence of noise on the measured data can affect
the accuracy of the identified models.

To overcome these problems, in this paper a new approach
is proposed by applying the Orthogonal Forward Regression
(OFR) least-squares algorithm to data at some available scale.
The proposed method has the following characteristics.

1) The proposed method does not assume any a priori
knowledge regarding the structure or parameters of the
underlying spatio-temporal dynamical system.

2) The measured data are not limited to the finest scale. In
the case that the system can be observed at the finest
scale, the proposed method can be used to obtain a
simpler model at some coarse scale and this identified
model can be used to predict the outputs of the system
at different scales including the finest scale. In the case
that the system can not be measured at its finest scale, a
coarser model can be identified at some observable scale,
by which an approximation of the finest scale behaviour
can be made.

3) The multiscale representation using wavelets provides a
natural filter for systems with measurement noise. This
is because the coarser the data are, the less the noise is.

4) The OFR least-squares algorithm can effectively deter-
mine the model structure and provide parameter esti-
mates in a forward term selection manner.

In what follows, the multiscale identification method and some
simulation examples will be presented.

The multiscale identification algorithm proposed in this
paper can be summarised as follows.

1) Perform a multiresolution analysis for the measured data
to obtain a multiscale representation of the system.

2) Choose a suitable scale and apply the OFR algorithm to
generate a model structure and parameter estimates.

3) Using wavelet decomposition and reconstruction meth-
ods predict the outputs of the system at different scales.

B. The OFR algorithm

Given a set of (candidate terms) basis functions from a
regressor class, the objective of the identification algorithm
is to select the significant terms from this set while estimating
the corresponding monomial coefficients. In this paper, the
OFR least-squares algorithm is applied to a set of polynomial
basis functions. The OFR algorithm involves a stepwise or-
thogonalisation of the regressors and a forward selection of the
relevant terms based on the Error Reduction Ratio criterion.
The algorithm provides the optimal least-squares estimateof
the polynomial coefficients.

Formally, the classical OFR least-squares algorithm can be
stated as follows (Billings, Korenberg, and Chen 1988).

Consider the following linear relationship

y(t) =

n
∑

i=1

θipi(t) + ξ(t) (15)

wherepi(t) are regressors andy is the dependent variable.
Let p0(t), p1(t), · · · , pn(t) andy(t), t = 1, 2, · · · , N be the

series of observations. DenoteY = (y(1), y(2), · · · , y(N))T

and Pi = (pi(1), pi(2), · · · , pi(N))T , i = 0, 1, · · · , n, then
the following linear regression model can be formed

Y = Pθ + Ξ (16)

where P = (P0, P1, · · · , PN ) is the regression matrix,
θ = (θ1, θ2, · · · , θn)T represents the unknown parameters
to be estimated, andΞ = (ξ(1), ξ(2), · · · , ξ(N))T is some
modelling error vector.

Assume that the matrixPTP is symmetric and positive
definite, the matrix decomposition theorem states that the
matrix PTP can be repressed as

PTP = ATDA (17)

whereA is a unit upper-triangle matrix withA−1A = I and
D is diagonal with all positive elements. Then (16) can be
written as follows

Y = Pθ+Ξ = P (A−1A)θ+Ξ = XAθ+Ξ = Xg+Ξ (18)

whereX = PA−1 is anN × (n+ 1) matrix with orthogonal
columns Xi such thatXTX = D, and g = Aθ. The
orthogonal least squares solutionĝ to (18) is then given by

ĝ = D−1XTY. (19)

The parameterŝg and θ̂ satisfy the triangular equation

Aθ̂ = ĝ. (20)

Because of the orthogonality properties, the termXi and the
quantitygi can be calculated in an independent manner. This
is achieved by applying the algorithm in a forward way with
the error reduction ratio (ERR) as selection criterion at each
step. The ERR caused by termi, i = 0, 1, · · · , n is defined as

ERRi =
g2

iX
T
i Xi

Y TY
. (21)

C. Properties of the OFR least-squares algorithm

In order to discuss the properties of the OFR algorithm,
some assumptions are needed.

Assumption 1: There is no undermodelling, that is, the
input-output data was generated by some true dynamic system
that can be represented by (15) with the parametersθi, i =
1, · · · , n, and the system is input-output bounded uniformly
with probability one.

Assumption 2: ξ(t) is a zero mean white sequence with
a finite covarianceσ2 and is uncorrelated withpi(t), i =
1, · · · , n.
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Assumption 3: All processes involved are (jointly) ergodic
of at least second order and the inputs are persistently exciting
of sufficiently high order with probability one.

Assumption 4: The matrixPTP is symmetric and positive
definite.

From (19)

ĝ = D−1XTY = D−1XT (Xg + Ξ) = g +D−1XT Ξ. (22)

Let g̃ = ĝ− g, then it is easy to show that under Assumptions
1 and 2 the estimates will be unbiasedE{ĝ} = g (Korenberg,
Billings, Liu, and Mcilroy 1988).

In what follows, the convergence issue of the OFR algorithm
will be addressed. Here,̂g will be written asĝ[N ] to indicate
that there areN observations used for identification. Note that
the covariance of the parameter errorg̃[N ] is given by

cov(g̃[N ]) = E{(ĝ[N ]−g)(ĝ[N ]−g)T } = σ2(XTX)−1. (23)

From (23) andPTP = ATXTXA with A a unit upper-
triangle matrix, the following result can be given

Theorem 1. Under Assumptions 1 and 2,

lim
N→∞

‖g̃[N ]‖ = 0 (24)

if and only if

lim
N→∞

λ(PTP ) = ∞ (25)

or equivalently

lim
N→∞

λ(XTX) = ∞ (26)

where ‖ · ‖ denotes the Euclidean norm andλ(M) is the
minimum eigenvalue of the matrixM .

Theorem 2. Under Assumption 1 to 4limN→∞ĝ
[N ] = g

with probability one.
Outline of the proof. Assumptions 1 and 3 mean the

system is input-output bounded uniformly and there is no
any particular eigenvector ofPTP along with the energy
of the system is concentrated with probability one and it
follows that the ratio of the largest to the smallest eigenvalues
of PTP is bounded uniformly inN with probability one.
Then according to Aderson and Taylor (1979), it only needs
to prove thatlimN→∞ λ(PTP ) = ∞ with probability one.
This is equivalent to showinglimN→∞ λ(XTX) = ∞ with
probability one. Note thatXTX is a diagonal matrix as

XTX =











∑N
t=1X

2
0 (t)

∑N
t=1X

2
1 (t)

. . .
∑N

t=1X
2
n(t)











(27)
Note that

∑N
t=1X

2
i (t), i = 0, 1, · · · , n are the

eigenvalues of PTP . Without loss of generality, let
∑N

t=1X
2
0 (t) be the minimum eigenvalue ofXTX . Suppose

limN→∞

∑N
t=1X

2
0 (t) < ∞ with probability one, then there

must exist an integerT > 0 such thatX0(t) = 0 for all
t ≥ T with probability one, which is in contradiction with
Assumption 3.

D. Predictions between different scales

Once a system model at certain scale is identified, it can be
used to calculate the wavelet coefficients at different scales
in terms of the wavelet decomposition and reconstruction
method.

DecompostionVj = Vj−1 ⊕Wj−1:

ul,j−1(t) =
∑

k

hk−2luk,j(t) (28)

u′l,j−1(t) =
∑

k

gk−2luk,j(t)

whereh andg are the wavelet filter coefficients.
ReconstructionVj+1 = Vj ⊕Wj :

ul,j+1(t) =
∑

k

hl−2kuk,j(t) +
∑

k

gl−2ku
′

k,j(t) (29)

whereh andg are the wavelet filter coefficients.
Note that if the details at all scales are available, then the

reconstruction process (29) can be carried out up to the finest
scale. If the details are not available, the reconstructionprocess
can still be performed by just ignoring all the details at finer
scales. In this case, the obtained prediction is an approximation
of the original behaviours at these finer scales.

E. Noise reduction analysis

The presence of noise in the observations generally prevents
the OFR algorithm from selecting the correct terms in the
model and consequently can produce erroneous parameter
estimates. The relationship between the values ofERRi and
the signal-to-noise ratio has been analysed in detail in Guo
and Billings (2007). Here a brief discussion is given.

Note that from the definition of ERR (21), it can be observed
that the OFR is equivalent to maximising the product moment
correlation coefficient. In fact, the product moment correlation
coefficientρi of term i satisfies

ρ2
i =

cov(Y,Wi)
2

var(Y )var(Wi)
= ERRi (30)

Let ρ̄i be the correlation coefficient of the termi obtained
from noisy data, then

ρ̄i =
ηY

√

η2
Y + 1

√

< Wi,Wi >

< W̄i, W̄i >
ρi (31)

+

i−1
∑

j=0

< Pi,Wj >

< Wj ,Wj >

ηY
√

η2
Y + 1

√

< Wj ,Wj >

< W̄i, W̄i >
ρj

−
i−1
∑

j=0

< P̄i, W̄j >

W̄j , W̄j

√

< W̄j , W̄j >

< W̄i, W̄i >
ρ̄j
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where P̄ and W̄ are the noisy version ofP and W .
ηY = var(Y )/σ2

ε with ε the output noise. Note thatηY =
var(Y )/σ2

ε can be considered as the signal-to-noise ratio.
From (31) it can be observed that when the signal-to-noise
ratio is sufficiently high, then̄ρ will be sufficiently close to
the true valueρ. Therefore it is highly desirable to have a
signal with a high signal-to-noise ratio. Wavelet decomposition
provides such a way to reduce the noise from observations
and therefore increase the signal-to-noise ratio. By applying
a wavelet multiresolution analysis to the data space, a set
of coarser signals with high signal-to-noise ratios can be
obtained. It follows that an accurate model can be obtained
from data at a coarse scale. It can be expected that better
predictions of the system behaviour at different scales canbe
given by using such an accurate model.

IV. SIMULATION STUDIES

A. Example 1 - Non-homogeneous wave equation

Consider the following non-homogeneous wave equation

∂2u(t, x)

∂t2
− C

∂2v(t, x)

∂x2
= f(t, x), x ∈ [0, 1] (32)

with initial conditions

u(0, x) = 0 (33)
du(0, x)

dt
= 4exp(−x) + exp(−0.5x)

where

f(t, x) = −13exp(−x)cos(1.5t) − 9.32exp(−0.5x)cos(2.1t)
(34)

For C = 1.0 the exact solutionu(t, x) of the initial value
problem (32), (34) is

u(t, x) = 4exp(−x)cos(1.5t) + 2exp(−0.5x)cos(2.1t)(35)

−4exp(−x)exp(−t) − 2exp(−0.5x)exp(−0.5t)

The measurement function was taken as

y(t, x) = u(t, x) (36)

The reference solution was sampled at24 = 16 equally
spaced points over the spatial domainΩ = [0, 1], x =
{x0, · · · , x15}. This sampling process can be viewed as re-
placing (35) with an approximation in a finite dimensional
subspaceVn, n = 4. From each location,1000 input/output
data points sampled at∆t = π/105 were generated. To test
the performance of the proposed approach, a sequence of
noise with zero-mean and variance0.01 is added to the output
y(t, x), which results in a signal-to-noise ratio of26.212dB.
After applying a single level wavelet decomposition with
Haar wavelets (other wavelets can be also used), a coarse
approximation of the original data in subspaceVn−1 was
obtained with a signal-to-noise ratio of29.256dB. Note that
the signal-to-noise ratio has been increased for the signalat the

Terms Estimates ERR STD
yi(t − 1)) 1.8166e-001 9.9598e-001 2.1673e-001
yi(t − 2)) 1.3340e-001 5.8750e-004 2.0024e-001

yi+1(t − 1)) 6.8620e-002 6.1609e-004 1.8140e-001
yi−1(t − 1)) 1.3783e-001 4.4141e-004 1.6658e-001
yi−1(t − 2)) 2.3862e-001 1.2535e-004 1.6212e-001

u′

i
(t − 2) 8.4634e+000 1.3364e-005 1.6160e-001

u′

i(t − 1)) -8.4172e+000 1.0446e-003 1.1793e-001
ui(t − 1) -2.0234e-001 7.3185e-005 1.1429e-001
ui(t − 2) 1.9207e-001 9.5179e-005 1.0932e-001

yi+1(t − 2) 1.8647e-001 3.4899e-005 1.0744e-001
constant 1.2969e-004 1.2338e-009 1.0744e-001

TABLE I

EXAMPLE 1: THE TERMS AND PARAMETERS OF THE FINAL MODEL AT THE

COARSE SPACEVn−1
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Fig. 1. Example 1: Spatio-temporal signal at the original scale n = 4

coarse scale and this should significantly increase the accuracy
of the model. The data are plotted in Fig.(1) and Fig.(2).

In this simulation, a model at the coarse scale is to be
identified. The inital neighbourhood was selected to bei− 1
and i + 1 in the spatial domain andt − 1, t − 2 in the time
domain. A set of 200 observations randomly selected among
the data set was used for identification. In addition, 200 input
and output dataui(t), yi−1(t) andyi+1(t) from neighbouring
locationsi− 1, i+ 1 acted as inputs during the identification.
The identified model using the OFR least squares algorithm
with a linear model structure, are listed in Table (I), where
ERR denotes the Error Reduction Ratio and STD denotes the
standard deviations.

The model predicted output of the identified model is plotted
in Fig.(3). Fig.(4) shows the model predicted error betweenthe
exact solution and the identified CML model predicted output.
Although there are errors between the real output and the
model predicted output it is clearly observed that the identified
CML model is able to reproduce the system behaviour inVn−1

with very high fidelity. Furthermore, the obtained model in
Table (I) was used to produce a prediction for the system
behaviour at the original scalen = 4. The prediction has been
done for two cases: one is with the original high frequency
details and the other is where the high frequency details have
been ignored. The predicted result and error for case one are
shown in Figs. (5) and (6). Fig. (7) shows the model prediction
without any high frequency information from the identified
model.
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Fig. 2. Example 1: Spatio-temporal signal at single-level coarser scalen−1
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Fig. 3. Example 1: Model predicted output at the coarse scale

0
200

400
600

800
1000

0

2

4

6

8
−1

−0.5

0

0.5

1

tx

e(
t,x

)

Fig. 4. Example 1: Model predicted error at the coarse scale
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Fig. 5. Example 1: Model predicted output with high frequency detail at the
original scale using the identified coarse model
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Fig. 6. Example 1: Model predicted error with high frequencydetail at the
original scale using the identified coarse model
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Fig. 7. Example 1: Model predicted output without high frequency detail at
the original scale using the identified coarse model

B. Example 2 - Two-dimensional deterministic CML

Consider the following two-dimensional deterministic CML
with symmetrical nearest neighbour coupling

xi,j(t) = (1 − ε)f(xi,j(t − 1)) +
ε

4
(f(xi,j−1(t − 1)) (37)

+f(xi,j+1(t − 1)) + f(xi−1,j(t − 1)) + f(xi+1,j(t − 1)))

wherexi,j(t)i, j = 1, · · · , N is the state of the CML located
at site (i, j) at discrete timet, ε is the coupling strength,
and N is the size of lattice. Periodic boundary conditions,
that is x1,j(t) = xN,j(t), xi,1(t) = xi,N (t) for all i, j and
t, are used throughout this study. The evolution of the CML
on the lattice sites is governed by the local mapf , which is
generally a nonlinear function chosen to be the logistic map
in this simulation

f(x) = 1 − ax2. (38)

This model has been extensively studied. It has been observed
that for smallε (< 0.3) the system evolves from a frozen
random state to pattern selection and to fully developed spatio-
temporal chaos via spatio-temporal intermittency. For stronger
couplingε > 0.3 neither a frozen random pattern nor a pattern
selection regime is formed which implies there are no pattern
changes in this case (Kaneko 1989).

The model (37) with (38) was simulated for a lattice of
the size 50 × 50 with random initial conditions, periodic
boundary conditions, and parametersε = 0.4, a = 1.55.



8

Terms Estimates ERR STD
yi,j(t − 2) -3.1531e-001 8.7128e-001 3.9711e-001
y2

i,j
(t − 2) 3.7868e-001 3.4649e-002 3.4637e-001

yi,j(t − 1)yi,j(t − 2) 2.0228e-001 3.0380e-002 2.7692e-001
yi,j(t − 1)yi−1,j (t − 2) -3.3424e-002 2.1891e-002 2.3042e-001

yi,j+1(t − 1)yi+1,j(t − 1) -3.8419e-002 5.2035e-003 2.1488e-001
constant 1.2349e+000 4.0395e-003 2.0377e-001
y2

i,j
(t − 1) -4.2798e-001 2.0705e-002 1.2293e-001

y2
i,j−1

(t − 1) -4.1401e-002 1.4045e-003 1.1542e-001
y2

i−1,j(t − 2) 5.0840e-002 1.2054e-003 1.0855e-001
y2

i+1,j
(t − 1) -3.2564e-002 8.0166e-004 1.0373e-001

TABLE II

EXAMPLE 2: THE TERMS AND PARAMETERS OF THE FINAL MODEL AT THE

COARSE SCALE

The observation variable was set to beyi,j = xi,j . Some
snapshot patterns are shown in Fig.(8). With these parameters,
the system is actually in a chaotic regime with a maximal
Lyapunov exponentλ1 = 0.016046, which was calculated
from the spatial average values of the snapshots by using
a numerical algorithm proposed by Rosenstein, Collins, and
De Luca (1993). A double-level wavelet decomposition was
applied to the data with Haar wavelets as a basis, the obtained
coarse snapshots are shown in Fig. (9) at the first level and Fig.
(10) at the second level. For the coarser data, the numerically
calculated maximal Lyapunov exponent is0.016046 at the
first scale which is the same as the one calculated from the
finer data and0.018615. This shows that chaotic systems are
essentially self-similar and multiscale.

In the identification, the same set of200 observation pairs
randomly selected among the coarse data set were used. The
neighbourhood was set to be the nearest four sites, that is,
(i, j − 1), (i, j + 1), (i− 1, j), and(i+ 1, j) and the time lag
was set to be 2. The identified model is listed in Table (II)

The model predicted snapshots of the identified model are
plotted in Fig.(11) and the maximal Lyapunov exponent for
the model predicted data is0.014055 which is quite close to
the value0.016946. The obtained model in Table (II) was
also used to produce predictions for the system behaviour ata
finer scale and a coarser scale. The results are shown in Figs.
(12) to (14). The corresponding maximal Lyapunov exponents
are 0.014055 and 0.014055 for the finer scale predictions
with and without high frequency details, and0.015152 for
the coarser scale prediction. From the simulation results it can
be observed that the identified model is able to reproduce the
chaotic behaviour at different scales of the underlying spatio-
temporal system with high performance.

V. CONCLUSIONS

A novel approach to the multiscale identification of spatio-
temporal dynamics has been introduced. It has been demon-
strated that the wavelet multiresolution analysis provides a
powerful approximation tool for the multiscale representation
of the spatio-temporal dynamics. It is also shown that it is
possible to extract a system model at some coarse scale,
which can then be used to produce predictions for the system
behaviour at different scales with or without high frequency
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Fig. 8. Example 2: Some snapshots of data (att = 1, 10, 50, and100)
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Fig. 9. Example 2: Some snapshots of data (att = 1, 10, 50, and100) at
the first coarse scale
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Fig. 10. Example 2: Some snapshots of data (att = 1, 10, 50, and 100)
from the second-level wavelet decomposition
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1, 10, 50, and100) at the first coarse scale
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Fig. 12. Example 2: Some snapshots of reconstructed outputs(at t =
1, 10, 50, and100) with details at the original scale using the identified coarse
model
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Fig. 13. Example 2: Some snapshots of reconstructed outputs(at t =
1, 10, 50, and 100) without details at the original scale using the identified
coarse model

information of the original dynamics. The proposed approach
can not only generate a simple, effective model for the system
but can significantly reduce the noise contained in the signals.
Simulation results were included to demonstrate that the new
wavelet-based identification procedure can produce excellent
models with a very good model predictive performance.
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