This is a repository copy of Multiscale identification of spatio-temporal dynamical systems
using a wavelet multiresolution analysis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74606/

Monograph:

Guo, L.Z., Billings, S.A. and Coca, D. (2007) Multiscale identification of spatio-temporal
dynamical systems using a wavelet multiresolution analysis. Research Report. ACSE
Research Report no. 947 . Automatic Control and Systems Engineering, University of
Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Multiscale identification of spatio-temporal dynamical systems
using a wavelet multiresolution analysis

Guo, L. Z., Billings, S. A., and Coca, D.

Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield, S1 3JD
UK

Research Report No. 947
March 2007



Multiscale identification of spatio-temporal
dynamical systems using a wavelet multiresolution
analysis

Lingzhong Guo, Stephen A Billings, and Daniel Coca

Abstract— In this paper, a new algorithm for the multiscale and Parrinello 1985, Littlewood and Maniatty 2005, Lorenz
identification of spatio-temporal dynamical systems is deéved. 1996, Chaudhari, Yan, and Lee 2003, Bindal, Khinast, and
'rte;ess:r?t"e"g irﬁhstmﬂﬁslcgﬁ):tmgﬂﬁe%tgsué doot’:zr‘\’;;'\?;zt crﬁ?l mge lerapetritou 2003, Muller-Buschbaum, Bauer, Pfister, Roth
olution analysis. The system dynamics at some specific scalé Burghammer, Riekel, David, .and_ Thiele 2006, Louie and
interest can then be identified using an orthogonal forward éast- Kolaczyk 2006, Huerta, Rabinovich, Abarbanel, Bazhenov
squares algorithm. This model can then be converted between 1997, Feldmann, Gilbert, Willinger, and Kurtz 1998, Eck
different scales to produce predictions of the system outds at  2004). There are also a variety of multiscale systems imetud
different scales. The method can be applied to both multisda and chaotic systems, molecular dynamics, and solar systems. Du

conventional spatio-temporal dynamical systems. For muiscale . . .
systems, the method can generate a parsimonious and effeeti to the presence of different scales, modelling, analysts an

model at a coarser scale while considering the effects fromrier ~ Prediction of multiscale problems often involves the pesbl
scales. Additionally, the proposed method can be used to impve  of how to describe the interactions between the differansla

the performance of the identification _vvhen measurements are of physics at different scales, how to analyse the propertie
noisy. Numerical examples are provided to demonstrate the of gch systems both qualitatively and quantitatively, how
application of the proposed new approach. to cope with irregularly sampled data, and how to obtain
Index Terms—Multiscale identification, spatio-temporal sys- exact/approximate solutions either analytically or nuigwty.
tem, orthogonal least squares algorithm, multiresolutionanalysis A these problems require new methods and tools to find
a solution. Existing methods of modelling, analysis and
computation of multiscale systems include Fourier analysi
. INTRODUCTION multigrid methods, domain decomposition methods, fast mul
HE identification of spatio-temporal systems has recieveghole methods, adaptive mesh refinement methods, wavelet-
increasing attention in recent years with applications imased methods, homogenisation methods, quasi-continuum
a variety of scientific and engineering areas (Voss, Bunnefiethods, and the Heterogeneous Multiscale Method (HMM)
Abel 1998, Coca and Billings 2001, 2002, McSharrya, Ellgsee reviews given by E and Enggiust (2003), E, Engquist,
polab, von Hardenberga, Smitha, Kenning 2002, Yan, Hui, Ren, and Vanden-Eijnden (2006) and references therein)
Zhou, and Liu 2004, Billings, Guo, and Wei 2006, Guo an@onsidering the difficulties of modelling such systems, it
Billings 2006, Guo, Billings, and Wei 2006). Both discretavould be advantageous if a model could be identified from
and continuous time models have been developed includithg observed multiscale data. The model could then be used
coupled map lattice (CML) models, lattice dynamical systefor the analysis of system behaviour or in control. To the bes
(LDS) models, and partial differential equations (PDE) tof our knowledge, there is currently very little researchtloa
describe the underlying spatio-temporal dynamical systementification problem for multiscale systems from observe
based on observations of the system response. In additidata and this important problem will therefore be studied in
many useful identification algorithms have also been ddrivéhis paper.
for the detection of the system structure, determinatiothef ~ Noise is another important issue in system identification.
unknown system parameters, and the removal or modelliitgs well known that the presence of noise on the measured
of noise. However, identifying a model of a spatio-temporalata will affect the accuracy of the identified models forthot
system from observations is still far from straightforwardnmultiscale systems and conventional systems. In some cases
Among the major difficulties that remain, two will be giverfiltering techniques can be used to improve the performance
special attention in this paper. The first arises from medlis  of the identification. However, modelling with directly &élted
problems, and the second is associated with noise on thsta does not usually provide satisfactory identificatiesuits
observations. because applying data filtering without taking into accahst
Multiscale phenomena have been widely observed in madynamical properties of the original systems may resulhin t
diverse fields including physics, chemistry, biology, ecokemoval of important features from the data, this is paldidy
ogy, and network traffic systems (Mandelbrot 1967, Caevere for nonlinear and multiscale data because the signal
generated by these systems generally contain features and
The authors are with the Department of Automatic Control &ydtems noise that have varying contributions over both time, space
Engineering, The University of Sheffield, Sheffield, S1 30IK. and frequency.



In this paper, a new solution to the identification problem df’; is called a wavelet subspace. A functiofr) is a wavelet
spatio-temporal dynamical systems directly from obsémmat if the set of functions{y)(z — k)|k € Z"} is a Riesz basis
is proposed to tackle the above mentioned two difficultidse T of W;. It follows that the set of wavelet functiong); , =
idea behind the proposed method is that an infinite dimeasioR?/%¢ (272 — k)} is a Riesz basis of.?(R").
spatio-temporal system is projected onto a finite dimeraion At resolution; the projectionP; (resp.(Q;) of a function
subspace using a wavelet multiresolution analysis so theat tf onto V; (resp.1V;) that corresponds to the above split of
system can be viewed at different scales. It has been shol{R") can be written with the use of a dual scaling function
in Coca and Billings (2002) that the wavelet coefficients at @ (resp. dual wavelet function) as follows
scale form a finite dimensional system of ordinary differant
equations which can be used to represent an finite dimersiona

approximation at some scale of the original system . The Pif(z) = Y <[ dpn>bin(x) 3)
system dynamics at a specific scale of interest can then be k ~

identified using an orthogonal forward regression (OFR3tlea Qif(x) = Z < f, 56 > Yjr(2)

squares algorithm (Billings, Chen, and Kronenberg 19893. | k

shown that this model can then be converted between differgfhare « . ~ denotes the inner product. Such wavelets are

scales to produce predictions of the system outputs at difyeq biorthogonal wavelets. Generally,# ¢ and ¢ # v

ferent scales using wavelet decomposition and reconmmctexcept when orthogonality holds. The definition of a mutire
techniques. Because of the filtering properties of wavetets, tion analysis implies that for an(z) € L2(Q)
is also shown that the new method naturally combines the

identification procedure with a filtering process.

Section 2 presents a multiscale representation of spatio- lim P;f(z) = f(x) (4)
temporal dynamical systems using a wavelet multiresatutio e
analysis. In section 3, the identification method and thdémp fl@)=>"Q;f(x).
mentation strategy are presented including a discussiontab J
the properties of the OFR algorithm. Section 4 illustrates t gjjce W; is the complementary subspace ©f in Vji1,
proposed approach using some examples. Finally conclisigiyi is Viin = V;@W,, it follows that Pj,f(z) =
are drawn in section 5. P;f(z) + Q, f(z). This gives an alternative representation of

the projection of a functiory € L?(Q) at resolutionj + 1

SPATIO-TEMPORAL DYNAMICAL SYSTEMS

Consider the following evolution equation of a spatioPj1f(z) = > < fidjx > ¢jk(@)+Y_ < fhjn > jn(x).
temporal dynamical system k k

()
du In this way, it is understood that the projectidt) provides
= T Lu=fu0) = uo (1) an approximation of the functiofi at some resolutiorj and

the details left by this approximation are containedjn By

where L : V' — V" is a nonlinear operator with” C jeration, a wavelet decomposition can be obtained asvisllo

L?(Q) a Sobolev space, and whefé C R" is a nice
spatial domain. The evolution of equation (1) can represent

a partial differential equation model for both conventiberad Piiif(z) = Z < frbiik > dj_1k(T) (6)
multiscale spatio-temporal dynamical systems. k

To generate a multiscale representation of the system (1), J R
let V; C V,j € Z be a multiresolution approximation of the + Z Z < fihige > Vi p(x).
spacel. Thatis,V}, j € Z is an increasing sequence of closed i=j—1 k
subspaces of*(£2) with the following properties (Chui, 1992) It should be noted that a discretisation of (1) can be
1) V; C Vi, considered as replacing (1) with an approximationVin ;.
2) f(x) €V; <= f(22) € Vjy1,j € Z, The operatot. is replaced by a operatdr; ; : Vj;1 — Vji1
3) Ujcz Vj is dense inL?(R™) and(,c, V; = 0, defined by

4) A scaling functiong(z) € V; exists such that the set
{é(x — k)|k € Z"} forms a Riesz basis dfj.
Following the definition of the multiresolution analysiketset
of functions{¢; » = 2//2¢(27x — k)} is a Riesz basis of/;.
Let W; be a complementary space ©f in V;,, such that
Vi1 = V; @ W;. Consequently

< Lujir, wipr >=< Ljp1ujp1, Wit1 >, Wit € Vg,
(7)
Then the discretised dynamics of the system (1) at a
scale/resolution + 1 can be described as the following initial
value problem inV;

@ W, = L*(R™). 2) duj iy

jez T + Ljyiujrr = fjr1,ui41(0) = uo (8)



where wjii(t,z) = Pju(t,z) = >, < 1ll. MULTISCALE IDENTIFICATION OF SPATIO-TEMPORAL

u(t,:c),gi;j+17k(a:) > ¢juk(r) and fi(t,r) = DYNAMICAL SYSTEMS
Pj+1f(t_, z) = < f(t733)_7_¢j+1,k(33) > @11,k (T)- o For spatio-temporal dynamical systems, experimental mea-
Consider the decompositidry; = V; ©WW;, the projection syrements are often available in the form of a series of
from Vj.1 ontoV; and W yields snapshots(z, nAt), n = 0,1,2, - -, x € , whereAt is the
time sampling interval. Assume the system to be considered
wi(t,r) = Puujpi(t,z) Z“J’“ Yok (@ (9) s spatially sampled at a sampling intervalz, then the

observations are discrete measuremeifis, ¢;) both in time
and space. This is equivalent to replacing the originalesyst
in the infinite dimensional spac¥ with an approximation
in some finite dimensional subspatg The objective of the
on V; with w;(t) =< uj41(t, z), é;k(z) > and f;x(t) =< identification is to obtain one model for the system from ¢hes

fittz) = Pifia(tz)= Zf]k )®j. (2

fir1(t,2), jx(x) >, and observations.
u;(t,x) = Qjuj1(t,z) Zqu )k ( (10) A. Comments on multiscale identification problems
As mentioned earlier, the objective of multiscale identi-
f}(t,x) = Qjfj+1(t, ) ijk Vi k(x fication for spatio-temporal dynamical systems is to obtain

an effective model or a set of models from observed spatio-
temporal patterns. Egns. (13) and (14) at any scale can be
used to describe the underlying spatio-temporal dynantics a
that specific scale once the representation is estimated or
extracted by using some identification algorithm. Idedlhe
w1 (t,x) = w(t,x)+ u;(t,x) (11) identification techn_ique should bfe ab_le to produce_ a concise
Fim(t,z) = fit,2) + fl(t ). model structgre with a Iqw spat_lal d!mensmn. This ensures
I / that the obtained model is parsimonious and can readily be
Applying the projections?; and@; to eqn. (8) generates theinterpreted either for simulation or analysis. Once eqm8) (
following two equations and (14) are approximated by some function space such as
polynomials, they will be in the form of a linear-in-the-

onW; with u;7k(t) =< Uj+1(ﬁ, x), ’(/)Lk(.f) > andfjak(t) =<
fit1(t,z),; x(z) >, which satisfies

du; P Ly (4 ) _ (12) parameter_s model, therefore, theoretically any leastssu

dt J+1G J type algorithm can be employed to produce a model. However,
du; , , there are several problems related to multiscale idertiifica
ar + QL (u; +uz) = fj which also need to be addressed:

Following the Corollary 3.1 (Coca and Billings 2002), there 1) Choosing the proper approximation subspéigethat is
exists a finite dimensional system of ordinary differential ~ the mesh size over a spatial domain is very important.

equations with the wavelet coefficientsu; ;) ,}; and In ifjent_ification, thg mesh s_ize represents the sampling
{fjx: fi,}; as the output and input of the System such period in the spatial (_jomam and refle_cts the number
thatw;(t,z) = 3, u;x(t)d;x(x) forms a finite dimensional pf measurement locations and determ_lnes the scale of
approximation at the scalg of the solution of the original interest. In the case that the mesh size can be made

system. Furthermore, this finite dimensional system of-ordi ~ Sufficiently small, a system model can theoretically be
nary differential equations can generally be decoupled int identified using the data from the finest scale, which can

scalej the finer the mesh size is, the higher the dimension of
the approximation subspace becomes, that means the
duj i = Fy(uj(t), fiu(t), fLo(t) (13) dimension of the resulting finite dimgnsional mode! WiII_
dt be extremely large and computationally expensive if
and the second describes the corresponding detailed dgsami  not formidable. In this case, it is worth considering
for this scale projecting the data into a coarser scale to obtain a
, lower dimensional and effective model. In some other
duj . _ F’( ' NONI0) £1(0). (14) cases, it will be of interest to construct system equations
dt on a coarse scale that account for the contributions

By repeating the above decomposition process, a multiscale from these finer scales, such as in molecular dynamics.
representation as eqns. (13) and (14) of the original spatio = These requirements translate into the need to identify
temporal dynamical system is obtained. an effective and economical model for the coarse scale

It should be noted that eqn. (13) represents an approxima- with a lower dimension.
tion to the original dynamical systems at scal@he presence 2) Often the measured data from the system of interest
of the detailsf,’cyj in egn. (13) indicates that the influence from can not be obtained at the finest scale. In this case, it
a finer scale is accommodated within this model. is impossible to identify a system model at the finest



scales directly from the measurements. However, the
observations from the best obtainable scale can be used
to identify a model at the specific scale, which represents
a coarse behaviour of the original system and it would be
beneficial if an equivalent finer model could be obtaine@herep;(t) are regressors angdis the dependent variable.

y(t) = Z Oipi(t) + £(t) (15)

whose solutions have the same coarser behaviour as th€t po(t), pi(t), -~ ,pn(t) andy(t), t = 1,2,--- , N be the
original unknown complicated systems. series of observations. Denote = (y(1),y(2),---,y(N))"
3) The presence of noise on the measured data can af@ed P; = (pi(1),pi(2),--- ,pi(N))", i = 0,1,--- ,n, then
the accuracy of the identified models. the following linear regression model can be formed
To overcome these problems, in this paper a new approach
is proposed by applying the Orthogonal Forward Regression Y =PO+Z (16)

(OFR) least-squares algorithm to data at some available.sca
The proposed method has the following characteristics.

1) The proposed method does not assume any a prigfi
knzwl:edge reg?rd;ng the slt(rjucture_ orI par?meters of t odelling error vector.

5 #ﬂeer;{:"gg Srzg :;)a-tgrzfggaot Iyr:fi?dlct?) tiésf?nn;t cale nAssume that the matrix’” P is symmetric and positive

) su imi inest s _'(Jefinite, the matrix decomposition theorem states that the
the case that the system can be observed at the fi

H T
scale, the proposed method can be used to obtairr:r?%[mxlD P can be repressed as

simpler model at some coarse scale and this identified T AT
model can be used to predict the outputs of the system PP =A"DA (17)

at different scales including the finest scale. In the cagghere 4 is a unit upper-triangle matrix witil—*A = I and

that the system can not be measured at its finest scal§y s diagonal with all positive elements. Then (16) can be
coarser model can be identified at some observable sc@|gitten as follows

by which an approximation of the finest scale behaviour
can be made.

3) The multiscale representation using wavelets provides ¥ = P+ == P(A ' A))+Z = XA+Z = Xg+= (18)
natural filter for systems with measurement noise. This 1 o
is because the coarser the data are, the less the nois¥/fi€reX = PA™"is an NTX (n +1) matrix with orthogonal

4) The OFR least-squares algorithm can effectively det@'umns X; such thatX®X = D, andg = A¢. The
mine the model structure and provide parameter esifthogonal least squares solutigrto (18) is then given by
mates in a forward term selection manner.

In what follows, the multiscale identification method andso
simulation examples will be presented. _ The parameterg andd satisfy the triangular equation
The multiscale identification algorithm proposed in this

paper can be summarised as follows.
1) Perform a multiresolution analysis for the measured data
to obtain a multiscale representation of the system. Because of the orthogonality properties, the teXmand the
2) Choose a suitable scale and apply the OFR algorithmdgaantity g; can be calculated in an independent manner. This
generate a model structure and parameter estimates.is achieved by applying the algorithm in a forward way with
3) Using wavelet decomposition and reconstruction mettiie error reduction ratio (ERR) as selection criterion athea

where P = (Py, P, -+, Py) is the regression matrix,
= (61,02,---,60,)" represents the unknown parameters
be estimated, an& = (£(1),£(2),---,&(N))T is some

=D 'XTy. (19)

Af = g. (20)

ods predict the outputs of the system at different scaleep. The ERR caused by tefim; =0, 1, - - - , n is defined as
B. The OF Igorithm - g XX
. The OFR algori _9idi A X X;
g ERR; 7Ty (22)

Given a set of (candidate terms) basis functions from a
regressor class, the objective of the identification atari
is to select the significant terms from this set while estintat
the corresponding monomial coefficients. In this paper, theln order to discuss the properties of the OFR algorithm,
OFR least-squares algorithm is applied to a set of polynbmgome assumptions are needed.
basis functions. The OFR algorithm involves a stepwise or-Assumption 1: There is no undermodelling, that is, the
thogonalisation of the regressors and a forward selecfitineo input-output data was generated by some true dynamic system
relevant terms based on the Error Reduction Ratio criteridhat can be represented by (15) with the parameigrs =
The algorithm provides the optimal least-squares estimftel,--- ,n, and the system is input-output bounded uniformly
the polynomial coefficients. with probability one.

Formally, the classical OFR least-squares algorithm can beAssumption 2: £(¢) is a zero mean white sequence with
stated as follows (Billings, Korenberg, and Chen 1988).  a finite covariances? and is uncorrelated withp;(t),i =

Consider the following linear relationship 1,---,n.

C. Properties of the OFR least-squares algorithm



Assumption 3: All processes involved are (jointly) ergodicmust exist an integef” > 0 such thatX,(t) = 0 for all
of at least second order and the inputs are persistentlyirxci ¢ > T with probability one, which is in contradiction with

of sufficiently high order with probability one. Assumption 3.
Assumption 4: The matrix P* P is symmetric and positive

definite. D. Predictions between different scales
From (19)

Once a system model at certain scale is identified, it can be
Lo Lo Lo used to calculate the wavelet coefficients at differentescal
g=D"X'Y=D "X (Xg+E)=g+D X"E (22) in terms of the wavelet decomposition and reconstruction

Let g = g— g, then it is easy to show that under Assumption@ethOd' ) _
1 and 2 the estimates will be unbiasedg} = g (Korenberg, DecompostionV; = V1 & W1
Billings, Liu, and Mcilroy 1988).
In what follows, the convergence issue of the OFR algorithm ) — .
will be addressed. Herg, will be written asg™¥! to indicate w=1(1) zk:hk_muk’] 0 (28)
that there aréV observations used for identification. Note that /
the covariance of the parameter eridt! is given by up 1 (t) = zk:gk—QlUk,j (t)

(V] V] (N] . o oo 1 whereh andg are the wavelet filter coefficients.
cov(g) = E{(3" =9)(§7—9)" } =0 (X" X)"". (23)  Reconstructioi/;, = V; & W;:
From (23) andPTP = ATXTXA with A a unit upper-

triangle matrix, the following result can be given wa®) =S "h , !
1) = 1—2kUk (1) + 1—2kUy, (T 29
Theorem 1.Under Assumptions 1 and 2, silf) zk: 2kt 1) zk:g 2kt 1) 29)

lim (g™ = 0 (24) whereh andg are the v_vavelet filter coefficients_.
N—oo Note that if the details at all scales are available, then the
if and only if reconstruction process (29) can be carried out up to thetfines
scale. If the details are not available, the reconstrugifocess
lim A(PTP) = (25) can still be performed by just ignoring all the details at fine
N—oo scales. In this case, the obtained prediction is an appeticém
or equivalently of the original behaviours at these finer scales.
Aim AXTX) =00 (26) E. Noise reduction analysis
where || - | denotes the Euclidean norm and)) is the The presence of noise in the observations generally prevent
minimum eigenvalue of the matriX/. the OFR algorithm from selecting the correct terms in the
Theorem 2. Under Assumption 1 to 4imy_g! = g model and consequently can produce erroneous parameter
with probability one. estimates. The relationship between the value& &fR; and

Outline of the proof. Assumptions 1 and 3 mean thdhe signal-to-noise ratio has been analysed in detail in Guo
system is input-output bounded uniformly and there is rand Billings (2007). Here a brief discussion is given.
any particular eigenvector oP” P along with the energy  Note that from the definition of ERR (21), it can be observed
of the system is concentrated with probability one and that the OFR is equivalent to maximising the product moment
follows that the ratio of the largest to the smallest eigéues correlation coefficient. In fact, the product moment catiein
of PTP is bounded uniformly inN with probability one. coefficientp; of termi satisfies
Then according to Aderson and Taylor (1979), it only needs

to prove thatlimy .. A(P*P) = oo with probability one. g2 = cou(Y, Wi)? ERR; (30)
This is equivalent to showingmy_.. A(X7X) = oo with var (Y )var(W;)
probability one. Note thaK” X is a diagonal matrix as Let p; be the correlation coefficient of the terirobtained
from noisy data, then
N
Zt:l XOQ(I") N
2
XTx = 21 Xi() 5 "y <Wi, Wi > (31)
- T R < WS
YL XA(t)
b I St A AT

Note that YN, X2(t),i = 0,1,---,n are the < WL W > 1\ < Wi, Wi >
eigenvalues of PTP. Without loss of generality, let il = = —
S, X2(t) be the minimum eigenvalue ot 7 X. Suppose -y <bW; > |<W;W, >ﬁj
limpy oo Yy X2(t) < oo with probability one, then there = WiW; V <Wi,Wi>



= = . . Terms Estimates ERR STD
where P and W are the noisy version ofP and W. JE—1)) 181666001 0.95086-001 2.16736-001
)

ny = var(Y)/o? with ¢ the output noise. Note thaty = yi(t —2) 1.3340e-001  5.8750e-004  2.0024e-001
var(Y)/c? can be considered as the signal-to-noise ratio.  vi+1(t—1))  6.8620e-002  6.1609e-004  1.8140e-001
From (31) it can be observed that when the signal-to-noise z:g:;g; %g;gg::ggi i:gégégzggi i:ggig:ggi
ratio is sufficiently high, therp will be sufficiently close to ul(t —2) 8.4634e+000  1.3364e-005 1.6160e-001
the true valuep. Therefore it is highly desirable to have a ug(t—1))  -8.4172e+000  1.0446e-003  1.1793e-001
signal with a high signal-to-noise ratio. Wavelet decornifims Zzg N ;g e e I haa oot
provides such a way to reduce the noise from observations . ,(t—2) 1.8647e-001  3.4899¢-005 1.0744e-001
and therefore increase the signal-to-noise ratio. By apgly constant 1.2969e-004  1.2338e-009  1.0744e-001
a wavelet multiresolution analysis to the data space, a set
of coarser signals with high signal-to-noise ratios can be
obtained. It follows that an accurate model can be obtain&
from data at a coarse scale. It can be expected that better
predictions of the system behaviour at different scalesbzan

given by using such an accurate model.

TABLE |

éAMPLE 1: THE TERMS AND PARAMETERS OF THE FINAL MODEL AT THE
COARSE SPACEV,,—1

IV. SIMULATION STUDIES
A. Example 1 - Non-homogeneous wave equation
Consider the following non-homogeneous wave equation

y(tx)

O%u(t, x) 3 Cagv(t,x)
ot? Ox?
with initial conditions

= f(t,x),x €[0,1] (32)

1000

u(0,z) = 0 (33)

Fig. 1. Example 1: Spatio-temporal signal at the originalsea = 4

= dexp(—z) + exp(—0.5z)

where
coarse scale and this should significantly increase theacgu

of the model. The data are plotted in Fig.(1) and Fig.(2).
f(t, z) = —13exp(—z)cog1.5t) — 9.32exp(—0.5z)cog2.1¢) In this simulation, a model at the coarse scale is to be
(34) identified. The inital neighbourhood was selected toi bel
For C = 1.0 the exact solutionu(t,z) of the initial value andi + 1 in the spatial domain ant— 1,¢ — 2 in the time
problem (32), (34) is domain. A set of 200 observations randomly selected among
the data set was used for identification. In addition, 20@iinp
_ and output datau; (), y;—1(¢t) andy;+1(¢) from neighbouring
ult,z) = dexp(—z)cod1.5t) + 2exp(—0.5x)c0g 2. 1¢[35) locations: — 1,7 +(1)acted as inputs éu)ring the identification.
—dexp(—z)exp(—t) — 2exp(—0.52)exp(—0.5¢)  The identified model using the OFR least squares algorithm
with a linear model structure, are listed in Table (I), where
ERR denotes the Error Reduction Ratio and STD denotes the
y(t, ) = u(t, ) (36) standard deviatior?s. . - .
The model predicted output of the identified model is plotted
The reference solution was sampled 24t = 16 equally in Fig.(3). Fig.(4) shows the model predicted error betwisen
spaced points over the spatial domdh = [0,1],# = exact solution and the identified CML model predicted output
{zo, -+ ,z15}. This sampling process can be viewed as rélthough there are errors between the real output and the
placing (35) with an approximation in a finite dimensionainodel predicted output it is clearly observed that the iifient
subspacé/,,,n = 4. From each location1000 input/output CML modelis able to reproduce the system behaviol,in,
data points sampled ait = x/105 were generated. To testwith very high fidelity. Furthermore, the obtained model in
the performance of the proposed approach, a sequenceTalfle (I) was used to produce a prediction for the system
noise with zero-mean and varian@®1 is added to the output behaviour at the original scale= 4. The prediction has been
y(t, z), which results in a signal-to-noise ratio 26.212dB. done for two cases: one is with the original high frequency
After applying a single level wavelet decomposition witldetails and the other is where the high frequency detaile hav
Haar wavelets (other wavelets can be also used), a codisen ignored. The predicted result and error for case one are
approximation of the original data in subspabg_; was shown in Figs. (5) and (6). Fig. (7) shows the model predictio
obtained with a signal-to-noise ratio @9.256dB. Note that without any high frequency information from the identified
the signal-to-noise ratio has been increased for the sggtae  model.

The measurement function was taken as
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Fig. 2. Example 1: Spatio-temporal signal at single-lewsrser scale: — 1

y(tx)

1000

Fig. 3. Example 1: Model predicted output at the coarse scale

e(t.x)

1000

Fig. 4. Example 1: Model predicted error at the coarse scale

y(tx)

1000

Fig. 5. Example 1: Model predicted output with high frequedetail at the
original scale using the identified coarse model

e(t.x)

1000

Fig. 6. Example 1: Model predicted error with high frequenigtail at the
original scale using the identified coarse model

y(tx)

1000

Fig. 7. Example 1: Model predicted output without high fregay detail at
the original scale using the identified coarse model

B. Example 2 - Two-dimensional deterministic CML

Consider the following two-dimensional deterministic CML
with symmetrical nearest neighbour coupling

Tip(t) = (= f (@it = D)+ 2 (Fig1(t 1) (37)
(@it — 1)+ fl@io1,; (¢ — 1) + fl@igr,;(t — 1))

wherez; ;(t)i,j = 1,---, N is the state of the CML located
at site (¢, j) at discrete timet, ¢ is the coupling strength,
and N is the size of lattice. Periodic boundary conditions,
that isx; ;(t) = n ;(t),2:1(t) = z; n(t) for all ¢,5 and

t, are used throughout this study. The evolution of the CML
on the lattice sites is governed by the local mgpwhich is
generally a nonlinear function chosen to be the logistic map
in this simulation

f(z) =1—azx? (38)

This model has been extensively studied. It has been oliberve
that for smalle (< 0.3) the system evolves from a frozen
random state to pattern selection and to fully developetispa
temporal chaos via spatio-temporal intermittency. Farreger
couplinge > 0.3 neither a frozen random pattern nor a pattern
selection regime is formed which implies there are no patter
changes in this case (Kaneko 1989).

The model (37) with (38) was simulated for a lattice of
the size50 x 50 with random initial conditions, periodic
boundary conditions, and parameters= 0.4, = 1.55.



Terms Estimates ERR STD

Vi =2 -3.1531e-001  8.71286-001  3.9711e-001
y2(t—2) 3.7868e-001  3.4649¢-002  3.4637e-001 o
Yi i (t = 1)y (t —2) 2.0228¢-001  3.0380e-002  2.7692e-001 _ '

Yij(t—Dyi1,(t—2)  -3.3424e-002 2.1891e-002  2.3042e-001
Yiji1(t — Dyir1;(t—1) -3.8419e-002 5.2035e-003  2.1488e-001 0
constant 1.2349e+000  4.0395e-003  2.0377e-001 o AT N Stk Wos

yf,]. (t—1) -4.2798e-001  2.0705e-002  1.2293e-001 3,650 (100
yﬁj_l (t—1) -4.1401e-002  1.4045e-003  1.1542e-001 -
y?—l,j (t—2) 5.0840e-002  1.2054e-003  1.0855e-001 05
yi2+1 j(t -1) -3.2564e-002  8.0166e-004  1.0373e-001
2 0
TABLE I -05

EXAMPLE 2: THE TERMS AND PARAMETERS OF THE FINAL MODEL AT THE

COARSE SCALE
Fig. 8. Example 2: Some snapshots of datat(at 1, 10, 50, and 100)

The observation variable was set to pg; = z; ;. Some
shapshot patterns are shown in Fig.(8). With these parasyete
the system is actually in a chaotic regime with a maximal
Lyapunov exponent\; = 0.016046, which was calculated ot
from the spatial average values of the snapshots by using 0

a numerical algorithm proposed by Rosenstein, Collins, and
De Luca (1993). A double-level wavelet decomposition was
applied to the data with Haar wavelets as a basis, the olotaine
coarse snapshots are shown in Fig. (9) at the first level and Fi
(10) at the second level. For the coarser data, the numigrical s 1015 20 2
calculated maximal Lyapunov exponent 19016046 at the

first scale which is the same as the one calculated from thg 9. Example 2: Some snapshots of datat(at 1, 10, 50, and 100) at
finer data and).018615. This shows that chaotic systems arée first coarse scale

essentially self-similar and multiscale.

In the identification, the same set 260 observation pairs
randomly selected among the coarse data set were used. The
neighbourhood was set to be the nearest four sites, that is,
(4,5 —1),(4,5+1),(: — 1,4), and(i + 1, j) and the time lag
was set to be 2. The identified model is listed in Table (Il)

The model predicted snapshots of the identified model are
plotted in Fig.(11) and the maximal Lyapunov exponent for
the model predicted data 5014055 which is quite close to
the value0.016946. The obtained model in Table (ll) was
also used to produce predictions for the system behavicar at
finer scale and a coarser scale. The results are shown in Figs.
(12) to (14). The corresponding maximal Lyapunov exponents
are 0.014055 and 0.014055 for the finer scale predictions Fig- 10. Example 2: Some snapshots of datat(at 1,10, 50, and 100)
with and without high frequency details, arid015152 for from the second-level wavelet decomposition
the coarser scale prediction. From the simulation resuttari
be observed that the identified model is able to reproduce the
chaotic behaviour at different scales of the underlyingiepa
temporal system with high performance.

2 4 6 81012 2 4 6 81012
i i

V. CONCLUSIONS 5 10 15 20 25

¥,50) ¥,(100)
A novel approach to the multiscale identification of spatio-

temporal dynamics has been introduced. It has been demon-

strated that the wavelet multiresolution analysis proside

powerful approximation tool for the multiscale represénta .

of the spatio-temporal dynamics. It is also shown that it is P semam

possible to extract a system model at some coarse scale,

which can then be used to produce predictions for the systé&m 11. Example 2: Some snapshots of model predicted qutfait =

behaviour at different scales with or without high frequenc!: 10- 50, and100) at the first coarse scale
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Fig. 12. Example 2: Some snapshots of reconstructed oufjtits =
1,10, 50, and100) with details at the original scale using the identified sear
model

40
0

e
u
10 20 30 40 50

10 20 30 40 50

Fig. 13. Example 2: Some snapshots of reconstructed oufptits =

1,10, 50, and 100) without details at the original scale using the identified

coarse model

information of the original dynamics. The proposed apphoa
can not only generate a simple, effective model for the syste

10 12

i
%100
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Fig. 14. Example 2: Some snapshots of reconstructed oufjtits =
1,10, 50, and 100) at second coarse scale using the identified coarse model

[7] Chui C. K., (1992)An Introduction to WaveletsSan Diego: Academic
Press, Inc.

[8] Coca, D. and Billings, S. A., (2001) Identification of qdad map lattice
models of complex spatio-temporal patterR&ys. Lett. A287, pp. 65-73.

[9] Coca, D. and Billings, S. A., (2002) Identification of fiaidimensional
models of infinite dimensional dynamical systemsitomatica \Vol. 38,
pp. 1851-1856.

[10] E., W. N., Engquist, B., Li, X., Ren, W., and Vanden-Eign,
E., (2006) The heterogeneous multiscale method: A reviewprpmnt,
http://www.math.princeton.edu/multiscale/review.pdf

[11] E., W. N., and Engquist, B. (2003) Multiscale modelliagd Computa-
tion, Notices of the AMS\ol. 50, No.9, pp.1062-1070.

[12] Eck, C., (2004) Analysis of a two-scale phase field mddelliquid-
solid phase transitions with equiaxed dendritic micrastites,Multiscale
Modeling and SimulationVol. 3, No. 1, pp. 28-49.

[13] Feldmann, A., Gilbert, A. C., Willinger, W., and KurtZ, G., (1998)

The changing nature of network traffic: scaling phenomeDamputer

Communications Reviewwol. 28, No. 2, pp. 5-29.

[14] Kaneko, K., (1989) Spatiotemporal chaos in one- and-dimeensional
coupled map latticesPhysica D37, pp. 60-82.

E.S] Korenberg, M., Billings, S. A., Liu, Y. P., and Mcilroyp. J., (1988)

Orthogonal parameter estimation algorithm for non-lingtachastic sys-
tems, Int. J. Contr., Vol. 48, No.1, pp. 193-210.

but can significantly reduce the noise contained in the $gn&16] Guo, L. Z. and Billings, S. A., (2006) Identification ofgial differential

Simulation results were included to demonstrate that thve ne
wavelet-based identification procedure can produce exuell

models with a very good model predictive performance.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from

EPSRC (UK).

REFERENCES

Aderson, T. W. and Taylor, J. B., (1979) Strong consisyenf the least
squares estimates in dynamic model$ie annals of Statisticsvol. 7,
No.3, pp. 484-489.

Billings,S. A., Chen, S., and Kronenberg, M. J. (1988gndfication of
MIMO nonlinear systems using a forward-regression ortimag@stima-
tor, Int. J. Contr, Vol. 49, No. 6, pp. 2157-2189, 1989.

Billings, S. A., Guo, L. Z., and Wei, H. L., (2006) Identifition of
coupled map lattice models of spatio-temporal patternagusiavelets,
Int. J. Syst. Scj.Vol. 37, No. 14-15, pp.1021-1038.

Bindal, A., Khinast, J. G., and lerapetritou, M. G., (3)0Adaptive
multiscale solution of dynamical systems in chemical psses using
wavelets,Computers and Chemical Engineeringpl. 27, pp. 131-142.
Car, R. and Parrinello, M., (1985) Unified approach for lecolar
dynamics and density-functional theoBhysical Review Letters/ol. 55,
No. 22, pp. 2471-2474.

Chaudhari, A., Yan, C., and Lee, S. L., (2003) Multifralctscaling
analysis of autopoisoning reaction over a rough surfdaoefnal of Physics
A: Mathematical and Generalol. 36, pp. 3757-3772.

(1]

[2]

(3]

(4]

(3]

(6]

equation models for continuous spatio-temporal dynansigslems/EEE

Trans. Circuits and Systems — II: Express Briéfsl. 53, No. 8, pp. 657-

661.

[17] Guo, L. Z., Billings, S. A., and Wei, H. L., (2006) Estitian of spatial
derivatives and identification of continuous spatio-terapalynamical
systems,nt. J. Contr, Vol.79, No. 9, pp. 1118-1135.

[18] Guo, L. Z. and Billings, S. A., (2007) A modified orthogainforward

regression least-squares algorithm for system modellirggn f noisy

regressors|nt. J. Contr, \ol.80, No. 3, pp. 340-348.

[19] Huerta, R., Rabinovich, M. I., Abarbanel, H. D. |., anégZbenov,M.,
(1997) Spike-train bifurcation scaling in two coupled ctiaaeurons,
Physical Review EVol. 55, No. 3, pp. R2108-2110.

[20] Littlewood, D. J. and Maniatty, A. M., (2005) Multis@almodelling of
crystal plasticity in AL 7075-T651, irProceedings of VIII International
Conference on Computational PlasticiBarcelona, Spain, pp. 618-621.

[21] Lorenz, E. N., (1996) Predictability: a problem partiglved, inProc.
Seminar on Predictabilif\ol. 1, ECMWF, Reading, Berkshire, UK, pp.
1-18.

[22] Louie, M. M. and Kolaczyk, E. D., (2006) A multiscale rhet for
disease mapping in spatial epidemiolo@tatistics in MedicineVol. 25,
No. 8, pp. 1287-1308.

[23] Mandelbrot, B. B., (1967) How long is the coast of Britai Statistical
self-similarity and fractional dimensiorgcience Vol. 156, pp. 636-638.

[24] McSharrya, P. E., Ellepolab, J. H., von Hardenberga,Sinitha, L.
A., and Kenning, D., (2002) Spatio-temporal analysis ofleate pool
boiling: identification of nucleation sites using non-agjonal empirical
functions, Int. J. Heat & Mass Transfekol. 45, No. 2, pp. 237-253.

[25] Muller-Buschbaum, P., Bauer, E., Pfister, S., Roth, $Bdrghammer,

M., Riekel, C., David, C., and Thiele, U., (2006) Creationnatilti-scale

strip-like patterns in thin polymer blend film&urophysics Lettersvol.

73, No. 1, pp. 35-41.



[26] Rosenstein, M. T., Collins, J. J., and De Luca, C. J.98)9A practical
method for calculating largest Lyapunov exponents fromlsdsda sets,
Physica D65, pp. 117-134.

[27] Schwartz, I. B., Morgan, D. S., Billings, L., Lai, Y. C(2004) Multi-
scale continuum mechanics: From global bifurcations taded high-
dimensional chaosChaos Vol. 14, No. 2, pp. 373-386.

[28] Voss, H., Bunner, M. J. Bunner, and Abel, M., (1998) Itifecation of
continuous, spatiotemporal systeni2ysical Review EVol. 57, No.3,
pp. 2820-2823.

[29] Yan, L. R., Hu, D. W., Zhou Z., and Liu Y., (2004) Spatentporal
Identification of Hemodynamics in fMRI: A Data-Driven Apgch,
Chapter inMedical Imaging and Augmented Realitizecture Notes in
Computer Science, Yang G. Z. and Jiang T. Z.(eds), SpringetinB/
Heidelberg, Vol. 3150/2004, pp.213-220.

10



