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Abstract

In this paper, the identification of a class of multiscale spatio-temporal dynamical sys-
tems, which incorporate multiple spatial scales, from observations is studied. The proposed
approach is a combination of Adams integration and an orthogonal least squares algorithm,
in which the multiscale operators are expanded, using polynomials as basis functions, and
the spatial derivatives are estimated by finite difference methods. The coefficients of the
polynomials can vary with respect to the space domain to represent the feature of multiple
scales involved in the system dynamics and are approximated using a B-spline wavelet multi-
resolution analysis (MRA). The resulting identified models of the spatio-temporal evolution
form a system of partial differential equations with different spatial scales. Examples are
provided to demonstrate the efficiency of the proposed method.

1 Introduction

In recent years, the modelling, analysis, and simulation of multiscale systems have been exten-
sively studied. Multiscale systems or processes involving multiple scales are common in nature
(many examples can be found in E, Engquist, Li, Ren, and Vanden-Eijnden 2006 and refer-
ences therein). Alternatively, man-made multiscale processes arise by applying multiresolution
analysis-type techniques to describe signals and systems (Basseville, Benveniste, Chou, Golden,
Nikoukhah, and Willsky 1992, Zhang, Pan, Bao, and Zhang 2002). But no matter how the multi-
scale systems are generated, multiscale problems are becoming more and more important. There
are several reasons for the timing of the current interest, as stated by E and Engquist (2003)
“ Modelling at the level of a single scale, such as molecular dynamics or continuum theory, is
becoming relatively mature, and our computational capability has reached the stage when serious
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multiscale problems can be contemplated. ” Whilst most of the current models of multiscale
dynamical systems are derived from first principles, the identification problem of such systems
should not be ignored.

The identification of conventional spatio-temporal dynamical systems has received a lot of at-
tention recently. This has mainly been driven by the need to determine high quality models,
which can be used as a basis for analysis and control of this class of systems with high accu-
racy. Although partial differential equation (PDE) or coupled map lattice (CML) models for
such systems can sometimes be derived by analytic modelling methods, often a large number
of assumptions have to be made in order to obtain such models. There is a need therefore to
develop identification methods to refine, update and validate these models. The identification of
CML models of spatio-temporal dynamical systems has been extensively studied over the past
few years. Various methods for the identification of local CML models from spatio-temporal
observations have already been proposed (Billings and Coca 2002, Mandelj, Grabec and Govekar
2001, Marcos-Nikolaus, Martin-Gonzalez and Sóle 2002, Grabec and Mandeji 1997, Parlitz and
Merkwirth 2000). Coca and Billings (2002a,b,c) have also investigated identifying finite element
discrete time models of distributed parameter systems based on observations of the evolution of
the system and the forcing function. But there are many instances where it would be valuable
to be able to determine continuous models such as a system of PDEs to describe continuous
spatio-temporal systems. Obviously such models may easily be related to the original system
parameters that can provide a clear physical explanation. The identification of PDE models
of continuous spatio-temporal systems has been studied by several authors (Coca and Billings
2000, Fioretti and Jetto 1989, Voss, Bunner, and Abel 1998, Travis and White 1985, Phillipson
1971, Niedzwecki and Liagre 2003, Guo and Billings 2006). It is worth noting that while all of
the above mentioned methods are for single scale spatio-temporal dynamical systems, there are
a few results about the identification and estimation problem of multiscale systems (Digalakis
and Chou 1993, Daoudi, Frakt, and Willsky 1999, Le 1995). However, very little has been done
for the PDE model identification problem of multiscale systems directly from observations. The
objective of this paper is to tackle this problem.

Considering the variety of multiscale systems and phenomena, in this paper a class of multiscale
spatio-temporal systems is studied. This class of systems involves different scales with respect
to the space domain only. In this paper a novel approach is used to reconstruct the system
of PDEs for the class of unknown multiscale spatio-temporal dynamical systems. This new
approach represents one of the first algorithms to determine the PDE model terms, and estimate
the unknown multiscale parameters, from a given spatio-temporal data set. The approach can
be regarded as the inverse of the classical Adam-Moulton method for the numerical solution
of differential equations, that is, the multiscale operator of the evolution is estimated from the
observed values of the system variables. By using Adams integration, a system of variable
coefficient algebraic equations can be obtained for the underlying continuous spatio-temporal
system that is discrete in time. The advantages of the Adams-Moulton method over Euler
integration is that the former should provide a better fit for less data than the latter, and the latter
works well only when the sampling interval is small which might amplify any possible noise. The
multiscale coefficients are then approximated using a B-spline wavelets multiresolution analysis
method. By adapting system identification techniques, the continuous multiscale operator can
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then be estimated. This is achieved by using a polynomial estimation of the operator and an
orthogonal least squares algorithm (Chen, Billings, and Luo 1989).

The paper is organised as follows. Section 2 introduces the basic idea of the proposed approach
and presents the derivation of the system of algebraic equations by using Adams-Moulton formula.
The identification algorithm is given in section 3. Section 4 illustrates the proposed approach,
and finally conclusions are given in section 5.

2 Problem description

Consider a class of multiscale spatio-temporal dynamical system whose evolution is governed by
a system of partial differential equations as follows

∂y

∂t
= Lx(y), x ∈ Ω, t ∈ T (1)

where y(x, t) ∈ Rn is the state variable of the system, Lx(·) is an unknown differential operator
with respect to space variable x. Ω ⊂ Rd is the spatial domain with boundary ∂Ω. Note that
the subscript x in the operator Lx indicates the operator is of multiple scales with respect to x.
Assume that the initial and boundary conditions for eqn.(1) are

g(y(0, x)) = yi(x) (2)

and

h(y(x, t)) = yb(x, t), x ∈ ∂Ω (3)

For such a continuous spatio-temporal system, experimental measurements are often available in
the form of a series of snapshots y(x, n∆t), n = 0, 1, 2, · · ·, x ∈ Ω, where ∆t is the time sampling
interval. In this paper, it is assumed that all the components of the vector y(x, t) ∈ Rn at one
location x are measurable. The objective is to determine the multiscale differential operator
Lx in eqn. (1) from these discrete measured values and no other a priori knowledge. To this
end, the Adams-Moulton formula (Press, Flannery, Teukolsky, and Vetterling 1992) is used to
obtain a discrete representation of eqn. (1). Consider a point x in the spatial domain Ω, let
yn(x) = y(x, n∆t), then it follows

yn+1(x) = yn(x) +
∫ (n+1)∆t

n∆t

∂y(x, t)

∂t
dt = yn(x) +

∫ (n+1)∆t

n∆t
Lx(y(x, t))dt (4)

The Adams-Moulton formula of order p is obtained by integrating a polynomial that interpolates
Lx,n+1−j(x), j = 0, 1, · · · , p− 1, that is
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yn+1(x) = yn(x) + ∆t
p−1
∑

j=0

αjLx,n+1−j(x) (5)

where Lx,n+1−j(x) = Lx(yn+1−j(x)).

Note that eqn. (5) reduces to Euler integration when p = 1. The advantages of Adams-Moulton
integration over Euler integration is the former should provide a better fit for less data than the
latter and the latter works well only when the sampling interval ∆t is small which might amplify
any possible noise.

Unlike the numerical problem, in our case yn(x), n = 1, 2, · · · , is given, and the task is to
determine the unknown operator Lx in eqn. (5). If the form of Lx is known then the task
is reduced to determining the multiscale parameters only. However, when the form of Lx is
unknown, it is necessary to expand Lx using a known set of basis functions or regressors belonging
to a given function class. In this paper, the regressor class of polynomial functions is used.
Approximating the nonlinear function Lx in (1) using the polynomial approximation space

Lx(y(x, t)) =
M
∑

i=1

βi(x)p
i(x) (6)

yields the following representation of (5)

yn+1(x) = yn(x) + ∆t
p−1
∑

j=0

αj

M
∑

i=1

βi(x)p
i
n+1−j(x) (7)

where M denotes the order of the polynomial, βi(x) is the coefficient of the ith polynomial
term, and pi

n+1−j(x) = pi(yn+1−j(x)) is the corresponding monomial which is the product of
different spatial derivatives of yn+1−j(x) at x. These spatial derivatives are difficult to measure
in practice therefore they are replaced by their finite difference approximations when applying
the identification algorithm. Due to the property of multiple scales, the coefficients βi(x), i =
1, 2, · · · ,M are functions of x or its scaled version x/ǫ, 0 < ǫ < 1, which need to be approximated.
There are many methods can be used to approximate these coefficient functions. In this paper,
a B-spline wavelet based multiresolution analysis is used. This method has the advantage that
the multiresolution analysis naturally deals with signals in a multiple scale manner.

Let Vl ⊂ L2(Rd), l ∈ Z be a multiresolution analysis with a scaling function φ and a wavelet
function ψ. In this paper, the scaling function φ is chosen as a B-spline function of order m. An
approximation to the βi(x), i = 1, 2, . . . ,M in Vl+1 = Vl ⊕Wl, where Wl is the complementary
subspace of Vl in Vl+1, yields (Chui 1992)

βi(x) =
∑

k

c
(i)
l,kφl,k(x) +

∑

k

d
(i)
l,kψl,k(x) (8)
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By the property of a multiresolution analysis, βi(x) can be further decomposed into the following
form

βi(x) =
∑

k

c
(i)
l0,kφl0,k(x) +

∑

l≥l0

∑

k

d
(i)
l,kψl,k(x) (9)

Substituting (9) into (6) yields

Lx(y(x, t)) =
M
∑

i=1

(
∑

k

c
(i)
l0,kφl0,k(x) +

∑

l≥l0

∑

k

d
(i)
l,kψl,k(x))p

i(x) (10)

=
M
∑

i=1

∑

k

c
(i)
l0,kφl0,k(x)p

i(x) +
M
∑

i=1

∑

l≥l0

∑

k

d
(i)
l,kψl,k(x)p

i(x)

The following algebraic equation can then be obtained

yn+1(x) = yn(x)+
M
∑

i=1

∑

k

c
(i)
l0,k(

p−1
∑

j=0

∆tαjp
i
n+1−j(x))φl0,k(x)+

M
∑

i=1

∑

l≥l0

∑

k

d
(i)
l,k(

p−1
∑

j=0

∆tαjp
i
n+1−j(x))ψl,k(x)

(11)

Note that the k and l in eqns (8) to (11) run from −∞ to +∞. However, due to the property of
compact supports of B-spline wavelets, the summations in these equations are always finite. In
principle, both the parameters αj , c

(i)
l0,k, and d

(i)
l,k should be calculated during identification. For

the sake of simplicity, the values of the αj are the ones originally dictated by the Adams-Moulton

formula. Therefore c
(i)
l0,k, and d

(i)
l,k are the only parameters that need to be determined. For the

implementation of the identification algorithm, equation (11) needs to be discretised in the space
variable x. Note that pi

n+1−j(x) contains some spatial neighbour terms of y(x, n + 1 − j) like
y(x− 1, n+ 1 − j) and y(x+ 1, n+ 1 − j) etc. which depend on the highest order of the spatial
derivatives. Therefore, eqn. (11) can be regarded as an implicit Coupled Map Lattice (CML)
model representation of the continuous spatio-temporal dynamical system (1). It follows that
the orthogonal least squares algorithm proposed by Chen, Billings, and Luo (1989) can then be
applied to select the suitable terms and to determine the corresponding coefficients.

3 Identification algorithm

In this section, the identification problem of (11) is considered. Given regression equation (11),
all the terms

∑p−1
j=0 ∆tαjp

i
n+1−j(x)φl0,k(x), and

∑p−1
j=0 ∆tαjp

i
n+1−j(x)ψl,k(x) form a set of candidate

terms. To obtain a simpler model, the objective of the identification algorithm is to select the
significant terms from this set while discarding the other terms. In this paper, an Orthogonal
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Forward Regression algorithm (OFR) (Chen, Billings, and Luo 1989) is applied, which involves
a stepwise orthogonalisation of the regressors and a forward selection of the relevant terms based
on the Error Reduction Ratio criterion (Billings, Chen, and Kronenberg 1988). The algorithm

provides the optimal least-squares estimate of the coefficients c
(i)
l0,k and d

(i)
l,k.

For a given candidate regressor set G = {ϕi}
M
i=1, the OFR algorithm can be outlined as follows

Step 1
I1 = IM = {1, · · · ,M}

wi(t) = ϕi(t), b̂i =
wT

i y

wT
i wi

(12)

l1 = argmax
i∈I1

(b̂2i
wT

i y

yTy
) = argmax

i∈I1
(erri) (13)

w0
1 = wl1 , c

0
1 =

w0T
1 y

w0T
1 w0

1

(14)

a1,1 = 1 (15)

Step j, j > 1

Ij = Ij−1\lj − 1 (16)

wi(t) = ϕi(t) −
j−1
∑

k=1

w0T
k y

w0T
k w0

k

w0
k, b̂i =

wT
i y

wT
i wi

(17)

lj = argmax
i∈Ij

(b̂2i
wT

i y

yTy
) = argmax

i∈Ij

(erri) (18)

w0
j = wlj , c

0
j =

w0T
j y

w0T
j w0

j

(19)

ak,j =
w0T

k ϕlj

w0T
k w0

k

, k = 1, · · · , j − 1. (20)

The procedure is terminated at the Ms-th step when the termination criterion

1 −
Ms
∑

i=1

erri < ρ (21)
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is met, where ρ is a designated error tolerance, or when a given number of terms in the final
model is reached.

The estimated coefficients are calculated from the following equation













θl1

θl2
...

θlMs













=















1 a1,2 · · · a1,Ms

0 1
... a2,Ms

...
...

. . .
...

0 0 · · · 1















−1












c01
c02
...
c0Ms













(22)

and the selected terms are ϕl1 , · · · , ϕlMs
.

4 Numerical simulation and analysis

Consider the following hyperbolic model equation in one space dimension

∂y

∂t
+ a(x)

∂y

∂x
= f(x, t) (23)

with x ∈ Ω = [0, 1], and initial condition

y(x, 0) =

{

sin2(4πx), 0 ≤ x ≤ 0.25
0, otherwise

(24)

and boundary condition y(0, t) = 0. Note that here a backward difference operator is used in a
fourth-order Runge-Kutta method to obtain a numberical solution so that the other boundary
condition y(1, t) is not necessary.

To test the proposed identification algorithm, three cases are investigated.

Case 1. Periodic coefficient

a(x) = 2 − cos(5/2πx) (25)

Case 2. Coefficient with a continuum of scales

a(x) = 2 − sin(π tan(πx)) (26)

Case 3. Random coefficient. In this case a(x) is a random variable on interval [0.1, 1] with a uniform
distribution.
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Figure 1: Data y(x, t) for case 1

For the purpose of identification using the proposed approach, the PDE (23) with f(x, t) ≡ 0,
were numerically solved for all three cases by a fourth-order Runge-Kutta method with a space
step ∆x = 1/512. The data with a time length 1 and a time step ∆t = 0.01 are plotted in
Figs.(1) to (3).

A set of 3000 spatio-temporal observations randomly selected out of 513 × 101 data points was
used for the identification. In the simulation, the highest order of the derivatives with respect to
the spatial variables was set to be 1. The 3rd Adams-Moulton integration formula was used and
the polynomial expansion of order 2 was used. The order of B-spline was set to be 3, 3, 2, initial
scale was 0, 0, 0, and the maximal resolution was 3, 4, 3 for the three cases, respectively. In
order to obtain simple models, the number of final model terms was set to be 10. The identified
terms and parameters using the orthogonal least squares algorithm for all the three cases are
listed in Tables (1) to (3), where ERR denotes the Error Reduction Ratio. The corresponding
approximated coefficient functions are

Case 1

ã(x) = 3.0446φ0,0(x) + 96.774ψ0,0(x) − 63.173ψ1,−1(x) + 13.015ψ1,0(x) (27)

−1.9225ψ1,1(x) + 0.62128ψ2,−3(x) − 0.11742ψ2,−1(x) + 0.031824ψ2,0(x)

−0.15484ψ2,2(x) − 0.16752ψ3,2(x)

Case 2

ã(x) = 4.853φ0,0(x) + 60.837ψ0,0(x) − 34.661ψ1,−1(x) + 9.6247ψ1,0(x) (28)

−0.93658ψ1,1(x) − 1.1917ψ2,0(x) − 1.0972ψ2,2(x) + 0.62602ψ3,−2(x)

−0.47107ψ3,−1(x) − 0.50883ψ4,−4(x)
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Figure 2: Data y(x, t) for case 2

x

t

50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: Data y(x, t) for case 3
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Variables Terms Estimates ERR
yn+1(x) − yn(x) φ0,0(x)∂y/∂x -3.0446e+000 5.1278e-001

ψ0,0(x)∂y/∂x -9.6774e+001 1.3036e-001
ψ1,−1(x)∂y/∂x 6.3173e+001 1.2241e-001
ψ1,0(x)∂y/∂x -1.3015e+001 2.0299e-001
ψ1,1(x)∂y/∂x 1.9225e+000 3.0368e-002
ψ2,−1(x)∂y/∂x 1.1742e-001 6.0335e-004
ψ2,−3(x)∂y/∂x -6.2128e-001 1.0961e-004
ψ2,2(x)∂y/∂x 1.5484e-001 5.2546e-005
ψ2,0(x)∂y/∂x -3.1824e-002 1.4463e-005
ψ3,2(x)∂y/∂x 1.6753e-001 1.0272e-005

Table 1: The terms and parameters of the final model for case 1

Variables Terms Estimates ERR
yn+1(x) − yn(x) φ0,0(x)∂y/∂x -4.8530e+000 6.7578e-001

ψ0,0(x)∂y/∂x -6.0837e+001 6.6260e-002
ψ1,0(x)∂y/∂x -9.6247e+000 4.6171e-002
ψ1,−1(x)∂y/∂x 3.4661e+001 8.8810e-002
ψ1,1(x)∂y/∂x 9.3658e-001 4.2055e-002
ψ2,0(x)∂y/∂x 1.1917e+000 1.1111e-002
ψ4,−4(x)∂y/∂x 5.0883e-001 8.8780e-003
ψ3,−2(x)∂y/∂x -6.2602e-001 1.0917e-002
ψ2,2(x)∂y/∂x 1.0972e+000 5.0819e-003
ψ3,−1(x)∂y/∂x 4.7107e-001 4.2225e-003

Table 2: The terms and parameters of the final model for case 2

Case 3

ã(x) = 1.0456φ0,0(x) + 1.1490ψ0,0(x) − 0.31879ψ1,−1(x) + 0.38996ψ1,0(x) (29)

−0.39072ψ1,1(x) − 0.0013772ψ2,0(x) − 0.00071789ψ2,1(x) + 0.00067881ψ3,−2(x)

+0.0020567ψ3,−1(x) + 0.00084517ψ3,0(x)

The identified coefficient function ã(x) and the original coefficient function a(x) are shown in
Figs. (4) to (6) for the three cases. From (27), it can be observed that the wavelet components
with low frequencies have large wavelet coefficients while the high frequency components have
small coefficients (the coefficients are all less than 1.0 for all of the 22- and 23−components).
This reflects the basic feature of the original function a(x) = 2 − cos(5/2πx) in case 1, which
is smooth, linear with a frequency 5/4. Fig.(4) clearly shows that the proposed identification
algorithm can produce an excellent result for this kind of signals. For case 2, it can be seen from
(28)that the identified ã(x) is a mixture of high and low frequency components. This indicates
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Variables Terms Estimates ERR
yn+1(x) − yn(x) φ0,0(x)∂y/∂x -1.0456e+000 8.3695e-001

ψ2,1(x)∂y/∂x -7.1789e-004 6.1608e-002
ψ1,−1(x)∂y/∂x 3.1879e-001 3.6343e-002
ψ1,0(x)∂y/∂x -3.8996e-001 4.2967e-002
ψ1,1(x)∂y/∂x 3.9072e-001 2.0281e-002
ψ0,0(x)∂y/∂x -1.1490e+000 9.0303e-005
ψ3,−1(x)∂y/∂x -2.0567e-003 5.5705e-006
ψ2,0(x)∂y/∂x 1.3772e-003 4.3753e-006
ψ3,−2(x)∂y/∂x -6.7881e-004 2.2239e-007
ψ3,0(x)∂y/∂x -8.4517e-004 3.5347e-007

Table 3: The terms and parameters of the final model for case 3

that the signal is essentially nonlinear which is coincident with the property of the original
signal a(x) = 2 − sin(π tan(πx)). Moreover, it is interesting to notice from Fig.(5), for the fast
oscillating part (in the middle of the plot) of a(x) the ã(x) look like a smoothed or averaged
version of the original signal. This seems to indicate that the obtained PDE can be considered as
a homogenisation of the original PDE, which represents the coarse behaviour of the underlying
system. This happens for case 3 as well (see Fig. (6)) while note that since a(x) in this case is
a random signal so that it is not possible to identify the signal itself. One of the reasons for this
phenomenon may be from the selected approximation space for the a(x), which is V5 and V4 for
case 2 and case 3 while the frequency ranges of the orignal signal a(x) are 256 = 28Hz and ∞
for case 2 and case 3, respectively. To further verify the identified results, the hyperbolic model
equation (23) were numerically simulated using a fourth-order Runge-Kutta method again but
with ã(x) for case 2 and case 3. The simulation results and the errors are plotted in Figs. (7) to
(10), which show good performance for all two cases. Moreover, Figs. (8) and (10) show that the
evolutions from the identified models are slightly slower than the original systems, which reflects
the influence of the rapidly osillatory parameters on the behavior of the systems at an coarse
scale.

5 Conclusions

A new approach for the identification of PDE models of a class of multiscale continuous spatio-
temporal dynamical systems has been introduced. It has been shown that by combining the
Adams integration and the OFR algorithm, a system of PDEs for the underlying continuous
spatio-temporal system can be obtained. It has been demonstrated that the proposed method
is very effective for systems with mild oscillating parameters. For those systems with high
oscillating parameters, a PDE can be identified to reflect the average behaviour of the original
systems. Further studies involve dealing with noisy data and the systems with both different
time and space scales.
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Figure 4: ã(x) (dashed) and a(x) (solid) for case 1
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Figure 5: ã(x) (dashed) and a(x) (solid) for case 2
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Figure 6: ã(x) (dashed) and a(x) (solid) for case 3
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Figure 7: y(x, t) calculated from (23) with ã(x) for case 2
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Figure 9: y(x, t) calculated from (23) with ã(x) case 3
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