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Abstract: A new concept, called the spatio-temporal transfer function (STTF), is introduced 

to characterise a class of linear time-invariant (LTI) spatio-temporal dynamical systems. The 

spatio-temporal transfer function is a natural extension of the ordinary transfer function for 

classical linear time-invariant control systems. As in the case of the classical transfer function, 

the spatio-temporal transfer function can be used to characterise, in the frequency domain, the 

inherent dynamics of linear time-invariant spatio-temporal systems. The introduction of the 

spatio-temporal transfer function should also facilitate the analysis of the dynamical stability 

of discrete-time spatio-temporal systems. 

Keywords: Linear time-invariant systems; spatio-temporal systems; transfer function; integral 

transformations; frequency response; partial differential (difference) equations. 

 

1. Introduction 

It is known that linear time-invariant (LTI) dynamical systems can be described by ordinary 

differential or difference equations, which can easily be transformed to a compact form of either 

continuous-time or discrete-time transfer functions, by means of the Fourier, Laplace or Z transforms, 

under some assumptions on the system initial conditions. Transfer functions, which can be used to 

uniquely characterize LTI systems, are a useful tool for the analysis, design and control of such 

systems. 

Spatio-temporal dynamical systems are complex systems where the system states evolve spatially 

as well as temporally. Unlike classical temporal systems where the current output is a function of 

previous inputs and outputs only in time, the output of a spatio-temporal system depends not only on 

past values in time but also past values at different spatial locations (Coca and Billings, 2001; Billings 

and Coca, 2002). Spatio-temporal phenomena exist widely in biology, chemistry, ecology, geography, 

medicine, physics, and sociology (Kaneko, 1986; Jahne, 1993; Silva et al., 1997; Bascompte and Sole, 
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1998; Czaran, 1998; Billings et al., 2006; Guo et al., 2006). A commonly used theoretical description 

of spatio-temporal systems is often given in terms of partial differential or difference equations (PDE’s) 

(Ames, 1992; Strikwerda, 1989); Other representations, for example coupled map lattice (CML) 

models (Kaneko, 1986; Coca and Billings, 2001; Billings and Coca, 2002; Billings et al., 2002) are 

also be applied to approximate such systems. It has been noticed that a wide class of spatio-temporal 

dynamical systems and phenomena in the real world can be characterised or approximately described 

by linear PDE’s (Roesser, 1975; Polianin, 1992). In the literature, linear partial differential equations, 

as a class of continuous-time distributed parameter models, have been extensively studied and several 

approaches have been developed to analytically or numerically solve these kind of equations. 

Integral transformations, including the Fourier and Laplace transforms, play an important role for 

the analysis of multivariable systems, which are either linear or nonlinear (Lubbock and Bansal, 1969; 

Parente,1970; Chua and Ng, 1979; Rugh, 1981; Zhang and Billings,1993,1994). These transformations 

are one of a set of the basic tools which can be used to analytically solve linear partial differential 

equations (Duffy, 2004; Evans et al., 2000; Rabenstein and Trautmann, 2002).  

Inspired by the concept of the transfer function for classical LTI dynamical systems, this study 

aims to introduce a parallel concept, depicted by a multivariable function, that can be used to 

characterize, in the frequency domain, the underlying dynamics of dynamical LTI spatio-temporal 

systems described by linear PDE’s. The newly introduced function will be called the spatio-temporal 

transfer function (STTF), which is derived by using multivariable Laplace or Fourier transforms. The 

concept of the STTF is, as far as we are aware, a totally new way of studying spatio-temporal systems 

in the frequency domain. As will be seen, STTF plays an important role for characterizing LTI spatio-

temporal systems. In addition, the introduction of STTF can facilitate the analysis of the dynamical 

stability of given LTI spatio-temporal systems. 

2.   The spatio-temporal transfer function 

For simplicity, the case of 2-D linear partial differential equations is considered as an example to 

illustrate the concept of the STTF, but note that similar derivations can directly be extended to cases of 

arbitrary n-dimensional problems where n>2. A wide class of spatio-temporal systems can be 

described by linear partial differential equations of the form below 

  ),(),( yxuyxgedcba yxyyxyxx =+++++ φφφφφφ                                                                (1) 

where edcba ,,,, and g are constants, x and y are two independent variables, ),( yxφ is a real-valued 

function that is usually known, and u(x, y) is a known input (control) function; the functions xφ , yφ , 

xxφ , xyφ and yyφ are partial derivatives defined by following normal convention, for example, 

xx ∂∂= /φφ and yxxy ∂∂∂= /2φφ .  
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Let ),( 21 ssΦ be the Laplace transform of the functions ),( yxφ , and φR  be the relative region of 

convergence (ROC). The Laplace transform pair associated with the function ),( yxφ , over φR , is 

∫ ∫
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where 1−=j , the real-valued numbers 1σ and 2σ  can be chosen within the region of convergence 

(ROC) of the function ),( 21 ssΦ . Under the assumption that ),(lim yxx φ±∞→ =0, the partial derivative 

function xφ  can be obtained by differentiating both sides of the synthesis equation (3) as below 
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Hence, from the definition (2), the Laplace transform of the functionxφ is 

=Φ ),( 21)( ssx )],([ yxL xφ ),( 211 sssΦ=                                                                                  (5) 

Similarly, with the assumption that 0),(lim =±∞→ yxy φ , 0),(lim =±∞→ yxxx φ , 0),(lim =±∞→ yxyy φ ,  

),(lim yxyx φ±∞→ ),(lim yxxy φ±∞→= =0, the Laplace transform of the partial derivative functionsyφ , 

xxφ , xyφ and yyφ are: ),( 21)( ssyΦ ),( 212 sss Φ= ,  ),( 21)( ssxxΦ ),( 21
2
1 sss Φ= , ),( 21)( ssxyΦ ),( 2121 ssss Φ= , 

and ),( 21)( ssyyΦ ),( 21
2
2 sss Φ= , respectively.  

Let ),( 21 ssU be the Laplace transforms of the functions ),( yxu , and uR  be the relative ROC.  

Taking the Laplace transform for both sides of (1), yields,  

),(),(),( 212121 ssUssssP =Φ                                                                                                 (6) 

where the relative ROC contains uRR φ , and  

gesdscssbsasssP +++++= 21
2
221

2
121 ),(                                                                          (7) 

Thus, the spatio-temporal transfer function (STTF), relative to the PDE (1), can be defined as 

),(

1

),(

),(
),(

2121

21
21 ssPssU

ss
ssG =

Φ
=                                                                                            (8) 

Consequently, for arbitrary input function ),( yxu , the output response function of (1) is  

),(

),(
),(),(),(

21

21
212121 ssP

ssU
ssUssGss ==Φ                                                                              (9) 

The polynomial ),( 21 ssP given by (7) is the associated characteristic polynomial of the system 

described by (1), and 0),( 21 =ssP is the relevant characteristic equation. Following traditional routines 
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for the determination of characteristic polynomials for LTI ODE’s, a simple way to derive the 

characteristic polynomial ),( 21 ssP  here, is to set ysxseyxu 21),( +=  and ysxsessyx 21),(),( 21
+Φ=φ , and 

then substitute these expressions into the partial differential equation (1), the Laplace transform  

),( 21 ssΦ  and the characteristic polynomial ),( 21 ssP  can then be solved by performing some algebra.  

For a given system, the spatio-temporal transfer function (8) is unique, and the response function 

(9) is thus also deterministic once the input has been given. By setting11 ωjs =  and 22 ωjs = , the 

Laplace transform pair (2) and (3) will become to the Fourier transform pairs of the relevant functions, 

and the resultant output frequency response function can then be used to analyze the inherent 

frequency property of given spatio-temporal systems.  

3.   Finite difference schemes and the discrete-time spatio-temporal transfer function 

Finite difference (FD) schemes are a simple approach to solve differential equations by means of 

differencing methods (Ames, 1992; Strikwerda, 1989). Taking the partial differential equation (3) as 

an example, finite difference schemes initially define a grid of points in the (x, y) plane. Let h and k be 

positive numbers, the grid will then be the points ),( mn yx ),( mknh= for arbitrary integers n and m. 

Denote the value of the function ),( yxφ at the grid point ),( mn yx by ],[ mnφ , then the partial derivatives 

can be approximated using the central difference method (Ames, 1992) below 

),(],[ mknhmn xx φφ =
h

mnmn

2
],1[],1[ −−+

≈
φφ

                                                                          (10) 
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By applying the 2-D Z-transform (Dudgeon and Mersereau, 1984) to equations from (10) to (14), and 

then substituting the relevant results to (1), yields  

),(),(),( 212121 zzUzzzzP =Φ                                                                                                       (15) 

where  
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is the associated characteristic polynomial, and the relative coefficients are given below 
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From (15), the discrete-time spatio-temporal transfer function of the system (1) is given by 
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Similar to the spatio-temporal transfer function (8), the transfer function (17) provides a representation 

for given LTI parameter distributed systems. By setting 1
1

ωjez =  and 2
2

ωjez = , (17) can be used to 

analyze given LTI spatio-temporal systems in the frequency domain. Note that for a given system, the 

discrete-time STTF (17) may not be unique, because the derivation of this function is relative to the 

finite difference scheme employed. Different difference schemes will lead to different transfer 

functions. However, once the difference schemes have been determined, the resultant transfer function 

will be unique. 

One advantage of the introduction of the discrete-time STTF is that this function can facilitate the 

analysis of the dynamical stability of the spatio-temporal systems. With regard to the discrete-time 

transfer function (17), the concept of two stabilities is usually distinguished: the numerical stability 

that is relative to different difference schemes, and the dynamical stability that is determined by the 

underlying dynamics of the systems. Generally, numerical stability is independent of the inherent 

dynamics of the systems. Detailed discussions on numerical stability analysis, relative to different 

difference schemes, can be found in Ames (1992) and Strikwerda (1989). This study touches upon 

dynamical stability analysis and BIBO (bounded input and bounded output) stability will be 

considered.  

Whilst it is difficult to analyze the stability of given spatio-temporal systems directly using the 

STTF (8) because of the lack of existing tools, the dynamical stability analysis for the STTF (17) is 

more tractable and several stability theorems are available, see for example Huang (1972), Shanks et 

al. (1972), Justice and Shanks (1973), Anderson and Jury (1974), Strintzis (1977), and Dudgeon and 

Mersereau (1984) (most of the earliest work on stability analysis can be found in this book). Some 

recent results on stability analysis have been reported in Bistritz (1999, 2004), Curtin and Saba (1999), 

Damera-Venkata et al. (2000), and Mastorakis (2000).  

4.   Numerical examples 

This section provides two examples to illustrate the application of the spatio-temporal transfer 

function for LTI spatio-temporal systems. 

4.1   The wave equation 

The wave equation is given below  

  02 =− ttxx φφα , for ∞≤≤∞− x  and t > 0                                                                                 (18) 

whereα is a positive number. In (7), by setting 2α=a , 1−=c , and 0==== gedb , the characteristic 

equation of the system (18) can be calculated to be 

0),( 2
2

2
1

2
21 =−= ssssP α                                                                                                             (19) 
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Let 11 ωjs = , 22 ωjs = , then from (19) 

12 αωω ±=                                                                                                                                  (20) 

Equation (20) clearly shows that the temporal frequency (in the time direction) in the wave system (18) 

is α  times the associated spatial frequency (in the spatial direction). The relationship (20), revealed by 

the STTF approach, is coincident with the result obtained via analytical approaches. For example, 

given the initial condition: )()0,( xx ϕφ = , )()0,( xxt ψφ =  for ∞≤≤∞− x , the well-known 

d’Alembert’s formula, relative to the Cauchy problem, states that  

),( txφ )]()([
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1
txtx αϕαϕ ++−= ∫
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ττψ
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2
1

                                                             (21) 

This formula clearly indicates that the relationship between the temporal frequency and the spatial 

frequency is given by (21), and this is independent of the choice of the initial condition functions 

)(xϕ and )(xψ . 

Now, consider the dynamical stability of the discrete-time spatio-temporal transfer function of the 

wave equation (18). From (16), the characteristic polynomial for the wave equation is given by 

)2(
1

)2(),( 1
222

1
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2

21 −+−−+= −− zz
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zz
h

zzP
α

                                                                        (22) 

The stability condition of ),( 21 zzP  is equivalent to that of the polynomials below 

)2()2(),( 1
11

1
22210 −+−−+= −− zzzzzzQ λ                                                                               (23) 

and  

2
12

2
2121 )1()1(),( zzzzzzQ −−−= λ                                                                                          (24) 

where 222 / hkαλ = . From relevant theorems for stability analysis (Huang, 1972; Anderson and Jury, 

1974),   to demonstrate stability of the two-variable polynomial ),( 21 zzQ , we need to check that  

0)0,( 1 ≠zQ  for ,1|| 1 ≤z                                                                                                            (25) 

and 

0),( 21 ≠zzQ  for ,1||,1|| 21 ≤= zz                                                                                              (26) 

It is clear that (25) holds if and only if 01 =z . Now consider the condition (26). 

Let 1
1

θjez = , 2
2

θβ jez = , with 10 ≤< β , πθ 20 1 ≤≤ , and πθ 20 2 ≤≤ . Clearly, 1||,1|| 21 ≤= zz , and if 

0),( 21 =zzQ then 0),(),( 21
1

2
1

1210 == −− zzPzzzzQ .  From 0),( 210 =zzQ ,  

2)cos()[( 2
1 −+ − θββ )]sin()( 2

1 θββ −−+ j 0]2)cos(2[ 1 =−− θλ                                          (27) 

Thus, by respectively equating the real and imaginary terms in (27), it can be obtained that 

]1)[cos(22)cos()( 12
1 −=−+ − θλθββ                                                                                     (28) 
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0)sin()( 2
1 =− − θββ                                                                                                                (29) 

Noting that 10 ≤< β and 10 ≤< λ  (required by the numerical stability of the relevant finite difference 

scheme), it can be concluded by combining (28) and (29) that either 02 =θ  or 1=β . If 02 =θ , then 

from (28) 01 =θ  and 1=β ; If 1=β , then )cos(1)cos( 12 θλλθ +−= .  

In conclusion, the characteristic polynomial ),( 21 zzP , relative to the wave equation (18), is 

marginally stable; the critical points are: i) 01 =z , 02 =z , and ii) those defined by 1
1

θjez = , 2
2

θjez = , 

satisfying )cos(1)cos( 12 θλλθ +−= . 

4.2   Poisson’s equation 

Consider Poisson’s equation given below  

  ),,( zyxuzzyyxx =++ φφφ , for ∞≤≤∞− zyx ,, ,                                                                     (30) 

where the input signal is of the form  

)sin()sin()sin(),,( 321
)( 321 zyxKezyxu zayaxa ωωω ′′′= ++−                                                            (31) 

and K, 1a , 2a , 3a  and 1ω′ , 2ω′ , 3ω′  are known parameters. The spatio-temporal transfer function of 

Poisson’s equation (34) is  

2
3

2
2

2
1

321
1

),,(
ωωω

ωωω
++

−
=jjjG                                                                                           (32) 

and the output frequency response function of the system driven by the input signal (31) is 

),,( 321 ωωω jjjΦ ),,(),,( 321321 ωωωωωω jjjUjjjG=  

)()()(),,( 3322113210

321

ωωωωωω
ωωω

PPPP

K ′′′
=                                                                                       (33) 

where )(),,( 2
3

2
2

2
13210 ωωωωωω ++−=P  and kkkkkkk ajaP ωωωω 2)()( 222 +−′+= for k=1,2,3. The magnitude 

and phase (angle) spectra of the output frequency response function are respectively defined as below: 

|),,(||||PHY| 321 ωωω jjjΦ=Φ=
|)()()(),,(| 3322113210

321

ωωωωωω
ωωω

PPPP

K ′′′
=                              (34a) 









Φ
Φ

=Φ= −

)),,(Re(
)),,(Im(

tan)Angle(Ang(PHY)
321

3211

ωωω
ωωω
jjj

jjj
                                                     (34b) 

Note that |),,(| 3210 ωωωP  has a peak at 0321 === ωωω ; |)(| kkP ω has peaks at kk ωω ′±= , with k=1,2,3. 

The peaks of the magnitude spectrum of the output frequency response function (33) should thus 

appear at 0=kω  and/or kk ωω ′±= . The phase spectrum of )(1
kkP ω−  moves smoothly from π  to π− , 

passing the origin, whenkω  varies from negative to positive values. 

Now, consider the case where the parameters are chosen to be K=30, 1a =0.1, 2a =0.2, 3a =0.3, 

1ω′ =1, 2ω′ =2, and 3ω′ =3. To graphically illustrate the property of the output frequency response 
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(a) 

 
(b) 

 
(c) 

 
(d) 

function in the 3-D space, the following scenario was considered: 3ω was chosen to be a set of fixed 

values but 1ω  and 2ω were permitted to vary freely. Numerical results show that when 3ω is small, the 

magnitude spectrum at the origin is large. When3ω becomes large, however, the magnitude spectrum 

will be dominated by kk ωω ′±= and the peak at 0=kω becomes invisible. The graph of the output 

frequency response function (33), corresponding to 3ω =0.5, is shown in Fig. 1, where the magnitude 

and the phase spectrum, along with the relevant contour plots, are presented. Figure 1 clearly shows 

that for the fixed value3ω =0.5, the magnitude of the output frequency response function (33) has 

seven peaks at 021 ==ωω , 11 ±=ω , and 22 ±=ω . This fact is also reflected from the phase spectrum, 

which varies smoothly from π  to π− , passing the origin, whenkω  varies from negative values 

( kk ωω ′−< ) to positive values ( kk ωω ′> ) for k=1,2. 

 

Fig. 1.   The magnitude and phase spectra of the output frequency response function ),,( 321 ωωω jjjΦ given by (33), 

with 3ω =0.5. (a) the magnitude spectrum; (b) the phase spectrum; (c) the contour plot of  (a); (d) the contour graph of (b). 
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5.   Conclusions 

Based on the traditional integral transformations, the spatio-temporal transfer function (STTF) has 

been introduced and applied to analyse, in the frequency domain, the inherent dynamics of a class of 

spatio-temporal systems. The STTF, along with the relative frequency response function, can be used 

to reveal the frequency properties of any given LTI spatio-temporal system, because every such  

system possesses a unique STTF. By introducing the discrete time STTF, the analysis of dynamical 

stability of the relevant systems become possible using existing theorems. 

In this study, stability analysis of continuous STTF’s has not been investigated. How to analyse the 

stability of a given LTI spatio-temporal system, directly using the associated continuous multivariable 

STTF, is a topic for future study. 
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