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Abstract: A new concept, called the spatiemporal tansfer function (STTF), is introduced

to characterise a class of linear timeariant (LTI) spatietemporal dynamical systems. The
spatiotemporal transfer function is a natural extension of the ordinary trafiusfetion for
classical linear timénvariant control systems. As in the case of the classical transfer function,
the spatietemporal transfer function can be used to characterise, in theriggdemain, the
inherent dynamics of linear timiavariant spatigemporal systems. The introduction bkt
spatictemporal transfer function should also facilitate the analysis of the dynamical wtabilit
of discretetime spatietemporal systems.

Keywords: Linear timeinvariant systems; spattemporal systems; transfer function; integral

transformations; frguency response; partial differential (difference) equations.

1. Introduction

It is known that linear timénvariant (LTI) dynamical systems can be described by ordinary
differential or difference equations, which can easily be transformedctmpact fom of either
continuoustime or discretd¢ime transfer functions, by means of the Fourier, Laplace or Z transforms,
under some assumptions on the system initial conditions. Transfer functionk, aahide used to
uniquely characterize LTI systems, are seful tool for the analysis, design and control of such
systems.

Spatietemporal dynamical systems are complex systems where the system states evolve spatially
as well as temporally. Unlike classical temporal systems where the current output is a foiction
previous inputs and outputs only in time, the output of a spatiporal system depends not only on
past values in time but also past values at different spatial locations (Coca and,Bliog; Billings
and Coca, 2002). Spatiemporal phenomenaiskwidely in biology, chemistry, ecology, geography,
medicine, physics, and sociology (Kaneko, 1986; Jahne, Bi93;et al., 1997; Bascompte and Sole,


mailto:s.billings@sheffield.ac.uk�
mailto:w.hualiang@sheffield.ac.uk�

1998; Czaran, 1998; Billings et al., 2006; Guo et al., 2006). A commonly luseckttical description

of spatiotemporal systems is often given in terms of partial differential or difference equations{PDE’
(Ames, 1992; Strikwerda, 1989); Other representations, for example coupled nap (BMIL)

models (Kaneko, 1986; Coca and Billings, 2001; Billimgsl Coca, 2002; Billings et al., 2002) are

also be applied to approximate such systems. It has been noticed that a wide classtehgpatad
dynamical systems and phenomena in the real world can be characterised or approximately described
by linear PIE’s (Roesser1975;Polianin, 1992). In the literature, linear partial differentgi@ions,

as a class of continuotisne distributed parameter models, have been extensively studied and several
approaches have been developed to analytically or nunigschte these kind of equations.

Integral transformations, including the Fourier and Laplace transfgslay an important role for
the analysis of multivariable systems, which are either linear or nonlingatndck and Bansal, 1969;
Parente,1970; Chua and Ng, 1979; Rugh, 1981; Zhang and Billings,1993,l9xk transformations
are one of a set of the basic tools which can be used to analyticallyliselvepartial differential
equations (Duffy, 2004; Evans et al., 2000; Rabenstein and Trautmann, 2002).

Inspired by the concept of theansfer function for classical LTI dynamical systems, this study
aims to introduce a parallel concept, depicted by a multivariable functiat, can be used to
characterize, in the frequency domain, the underlying digszaof dynamical LTIspatiectemporal
systems described by linear PDE’s. The newly introddigadtion will be called thespatictemporal
transfer functionSTTF), which is derived by using multivariable Laplace or Fouramsforms. The
concept of the STH is, as far as we are aware, a totally new way of studying gspatifmral systems
in the frequency domain. As will be seen, STTF plays an important role fi@arctdrdzing LTIspatio
temporal systems. In addition, the introduction of STTF can faciliteteanalysis of the dynamical

stability of givenLTI spatiectemporal systems.

2. The spatiotemporal transfer function

For simplicity, the case of-R linear partial differential equations is considered as an example to
illustrate the concept of the STTBut note that similar derivations can directly be extended to cases of
arbitrary n-dimensional problems where>2. A wide class of spatiemporal systems can be
described by linear partial differential equations of the form below

a¢xx + b¢xy + C¢yy + d¢x + e¢y + g¢(X7 Y) = U(X, Y) (1)

wherea b ¢ d,eandg are constantsx andy are two independent variableg(x, y)is a realvalued

function that is usually known, ang, y) is a known input (control) function; the functiogs, 4, ,

$ » 9 and ¢, are partial derivatives defined by following normal convention, for example,

¢, =0¢!oxand g, =0%p/0xdy .



Letd(s,s;) be the Laplace transform of the functigifg,y), and R, be the relativeregion of

convergence (ROCT.he Laplace transform pair associated with the fungifayy) , overR; , is

o(s,5)=[ [ g(x y)e ¥ =dxdy 2)
p(xy) = (2;,)2 j;f:j::f:cb(sl,sz)eX*ySngdsz (3)

where | =+/-1, the realvalued numbersr, ando, can be chosen within the region of convergence
(ROC) of the functiond(s,s,). Under the assumption thiétn, .. #(x y)=0, the partibderivative
function ¢, can be obtained by differentiating both sides of the synthesis equatienb@pw

a¢ 1 0910  Op+0
=0 = ! s ® XS+YS, .
¢X ox  (27)? '[Ul—wv[oz—wsl (s, 5;)e™ "*dsds, @

Hence, from thelefinition (2), the Laplace transform of the functiirs

D (S81:82) = LA (X Y)] =5D(s,,8,) ®)
Similarly, with the assumption thdm, . #(xy)=0, lim, . 4 (xy)=0, lim, . 4 (xy)=0,
lim, .. ¢,(xy) =lim . ¢.(xy)=0, the Laplace transform of the partial derivative functigns
¢XX' ¢xyand ¢yyare: cD(y)(S_uSz) = 52®(§_,52), cD(xx)(%.'sz) = S_lzq)(S'SZ) ’ CD(xy)(%.’%) = %SZ(D(S.’SZ) ’

and® ,.,(s,s,) = sid(s,s,) , respectively.
LetU (s, s,) be the Laplace transforms of the functiofg y), and R, be the relativeROC.

Taking the Laplace transform for both sides of (1), yields,

P51, 8,)P(81,8,) =U (51:8:) (6)
where the relative ROC contaiRs( 1R, , and

P(s,.s,) =as +bss, +cS +dg +es +g (7)

Thus, the spatibtempaal transfer function (STTF), relative to the PDE (1), can be defined as

Oss) 1 @)

G(s,s) =
&%= ss) " A

Consequently, for arbitrary input functiof, y) , the output response function of (1) is

U(s,s) ©
P(s,,,)

The polynomialRs,s,) given by (7) is the associated characteristic polynomial of the system

®(s1,5) =G(s, M (s1,8,) =

described by (1), andRs,s,) =0is the relevant characteristic equation. Following traditional routines



for the determination of characteristic polynomials for LTI ODE's, ap& way to derive the
characteristic polynomiaf(s,s,) here, is to set(x y)=e¥ %’ and¢(x y)=d(s,s,)e? >, and
then substitute these expressions into the partial differential equation (1), the Laplag@ntransf
d(s,s,) and the characteristic polynomig{s,s,) can then be solved by performing some algebra.
For a given system, the spate@mporal transfer function (8) is unique, and the response function
(9) is thus also deterministic once the input has been given. By sgtting, ands, = jo,, the
Laplace transform pair (2) and (3) will become to the Fourier transformgiahie relevant functions,
and the resultant output frequency response function can then be used to analydeerdm i

frequency property of given spatiemporal systems.

3. Finite difference schemes and the discretame spatiotemporal transfer function

Finite difference (FD) schemes are a simple approach to solve differential equations by means of
differencing methods (Ames, 1992; Strikwerda, 198%)king the partial differential equation (3) as
an example, finite difference schemes initially define a grid of points irxtgeglane. Leth andk be
positive numbers, the grid will then be the poi@ts, y,,) = (nh,mk) for amitrary integersn andm.
Denote the value of the functiglx, y) at the grid point(x,, y,,,) by#[n, m] , thenthe partial derivatives

can be approximated using the central difference method (Ames, 1992) below

Il =g, (nhmky = AT+ AN=L (10)
=g, g ~ A0+~ an
ol = g mig = A0 M =2A0 M > AR (12)
4ol 1= g = A= =2A0 mlnm— 13
g0, ] = g (Nh,mK) ~ gin+1m-1-g[n-1,m-1]-g[n+1m+1]+4[n-1,m+]] (14)

4hk

By applying the 2D Z-transform (Dudgeon and Mersereau, 1984) to equations from (10) to (14), and

then substituting the relevant results to (1), yields

M(z,2,)0(z,2,)=U(z,2) (15)
where
Pz, 2,) =22, ~ 22, -~ 22,+22) + QL+ G2 + GZ + GZ, +G (16)

is the associated characteristic polynomial, and the relative coefficients are given below

Lc=i+i c e a d c e 2a 2c
k' 2Rt @

=, G, G, G = ——,
i “T T ST ke STV e

From (15), the discrettime spatietemporal transfer function of the system (1) is given by



o@,2) 1 an
U(z,z) P(z,z)

Similar to the spatibemporal transfer function (8), the transfer function (17) provides asexgation

H(z.2,)=

for given LTI parameter distributed systems. By selzin:gejf"l andz, =el”2, (17) can be used to

analyze given LTI spatitemporal systems in the frequency domain. Note that for a given system, the
discretetime STTF (17) may not be unique, because the derivation of this functielative to tle

finite difference scheme employed. Different difference schemes will lead to diffesarsfetr
functions. However, once the difference schemes have been determinedulta@treansfer function

will be unique.

One advantage of the introduction of tfiecretetime STTF is that this function can facilitate the
analysis of the dynamical stability of tlspatictemporal systems. With regard to the disctate
transfer function (17), the concept of two stabilities is usualyirdjuished: the numericatability
that is relative to different difference schemes, and the dynamical stability that imideteby the
underlying dynamics of the systems. Generally, numerical stability is independent of éheninh
dynamics of the systems. Detailed discussions on numerical stability analysis, relativerentdiff
difference schemes, can be found in Ames (1992)Sirikwerda (1989)This study touches upon
dynamical stability analysis and BIBO (bounded input and bounded outpui)itystavill be
considered.

Whilst it is difficult to analyze the stability of given spat@mporal systems directly using the
STTF (8) because of the lack of existing tools, the dynamical stability analysis for the STTi§ (17)
more tractable and several stability theorems argadle, see for example Huang (1972), Shanks et
al. (1972), Justice and Shanks (1973), Anderson and Jury (1974), Strintzis (1977), and Dudgeon an
Mersereau (1984) (most of the earliest work on stability anatgsisbe found in this book). Some
recent reslts on stability analysis have been reported in Bistritz (1999, 2004), CuttiBada (1999),
DameraVenkataet al. (2000), and Mastorakis (2000).

4. Numerical examples
This section provides two examples to illustrate the application of the -spaporal transfer

function for LTI spatiotemporal systems.

4.1 The wave equation

The wave equation is given below

a2¢xx _¢tt =0, for—co<x<o andt>0 (18)

wherex is a positive number. In (7), by settiag «?,c=-1, andb=d =e= g =0, the characteristic

equation of the system (18) can be calculated to be

As.s)=a’s-s;=0 (19)



Lets = jao,,S, = jo,, then from (19)

w, =taw, (20)
Equation (20) clearly shows that the temporal frequency (in the time direictitr® wave system (18)
is o times the associated spatial frequency (in theaditiection). The relationship (20), revealed by
the STTF approach, is coincident with the result obtained via analgjigabaches. For example,
given the initial conditionip(X,0)=¢(X) , ¢ (X0 =w(x) for —o<x<w , the weltknown

d’Alembert’s formula, relative to the Cauchy problem, states that

$x) =2lo(x-at) +o(xr )]+ [y (o)de (21)
o Y x-ar

This formula clearly indicates that the relationship between the temporal freqaeddpe spatial

frequency is given by (21), and this is independent of the choice of the aatdition functions
@(x) andy (X) .
Now, consider the dynamical stability of thiscretetime spatietemporal transfer function of the

wave equation (18). From (16), the characteristic polynomial for the waveagisagiven by

2
_ 1 ~
Pz, 2)=" 72+ -2~ 5 (+7'-2) (22)
The sability condition of P(z, z,) is equivalent to that of the polynomials below

Q(2.2)=(+5" -2 - Az +75"-2) (23)
and

Q(z,2)=7Q1- 22)2 —z,(1- 21)2 (24)
where 1 = a’k?/h?. From relevant theorems for stability analysis (Huang, 1972; Anderson and Jury

1974), to demonstrate stability of the twariable polynomiaQ)(z, z,) , we need to check that

Q(z,0) =0 for |z K1, (25)

and
Q(z,2,) %0 for |z 1|z, K1, (26)

It is clear that (25) holds if and only & =0 . Now consider the condition (26).
Letz =el%,z, = pe!” , withO< <1, 0<0, <27, and0< 6, <2z . Clearly|z £ 1|z K1, and if
Q(ZflJ ZZ) = Othen QO(Zl1 22) = Zl_lZZ_lP(Zl! ZZ) = 0 . FroerO(Zlv Z2) = 0 ’

[(B+B7)cos,) -2 + j(B~B7)sin@,)] - Al2cos@;)-2] =0 (27)
Thus,by respectivelyequating the real arichaginary termsn (27), it can be obtained that

(B+ pY)cosB,) —2=24[cos@,) -1] (29)



(B-p7)sin@,) =0 (29)
Noting thaOD< g <land0< A <1 (required by the numerical stability of the relevanité difference
scheme)jt can be concludedy combining (3) and (29 that eithep, =0 org=1. If 6,=0, then
from (28) 6,=0 and =1, If f=1, thencos@,) =1- 1+ Acos@,) .
In conclusion, the characteristic polynomR(z,z,) , relative to the wave equation (18), is
marginally stable; the critical points arezj)0, z, =0, and ii) those defined by, =e/% , z, =e!’,
satisfyingcos@,) =1- A+ Acos@,) .

4.2 Poisson’s equation

Consider Poisson’s equation given below

Pox+ Dy + 0, = UX Y, 2), fOr—oo< xy,2<00, (30)

where the input signal is of the form

u(x, ¥, 2) = Ke 3% %32 gin(w!x) sin(w} y) sin(@}2) (31)
andK,a ,a,,a, andw;, w,, o, are known parameters. The spdagmporal transfer function of
Poisson’s equation (34) is

-1

- 32
Ttk + (32)

G(jon, jo,, jo;) =
and the output frequency response function of the system driven by the input siymal (31

O(jan, jo,, jwz) =G(jwy, jo,, joz)U(jo, jo,, ;)

’ ! ’

_ Kaww,omg (33)
Ro(@y, @,, @3) B () Py (@,) Py (@3)

wherepr, (w,, @, 0,) = —(0? + 03 + w3) and R (o) = (a2 + o, - o?) + j2a,0, for k=1,2,3. The magnitude

and phase (angle) spectra of the output frequency response function are respectively defined as below:

R ~ Kwiwhwy
IPHY H® HO(oy jor jos)] = 1o o les o o ¥
1 Im((D(ja)l, ja)za Jw3))
Ang(PHY)= Angle(®) =t ¥
ng( )=Angle(®) =tan (RE(q)(jwl’ j,, Ja)g))J o

Note that Ry (e, @,, ;)| has a peak ab, = w, =0, =0; | B (o, )| has peaks aj, =+taw,, with k=1,2,3.
The peaks othe magnitude spectrum of the output frequency response func8prsi{Buld thus
appear aiw, =0 and/omw, =+, . The phase spectrum & (»,) moves smoothly fromr to-r,
passing the origin, whem, varies from negative to positive values.

Now, consider the case where the parameters are chosenkte3bea, =0.1, a, =0.2, a;=0.3,

o, =1, w, =2, andw;=3. To graphically illustrate the property of the output frequency response



function in the 2D space, the following scenario was consideregvas chosen to be a set of fixed
values butw, andw, were permitted to vary freely. Numerical results show thamwo,is small, the

magnitude spectrum at the origin is large. Whagnecomedarge, however, the magnitude spectrum
will be dominated byw, =+®, and the peak ab, =0becomes invisible. The graph of the output
frequency response function3)3 corresponding ta,=0.5, is shown in Fig. 1, where the magnitude

and the phase spectrum, along with the relevant contour plots, are presentedl Kigarly shows

that for the fixed value,=0.5, the magnitude of the output frequency response funct@nhés
seven peaks af =, =0, =*1, andw, =£2. This fact is also reflected from the phase spectrum,
which varies smoothly fromr to—-~z, passing the origin, wheap, varies from negative values

(o, < -y ) to positive valuesd, > w, ) for k=1,2.

Ang (PHY)

(a)
3
-3 P S S T S SO ST S 100
50
o
A0
-100
Donon o -150
S5a321012345
W
(c)

Fig. 1. The magnitude and phase spectra of the output frequency response fix{dtiopy j@,, j@;) given by (),
with @5=0.5. (a) the magnitude spectrum,; (b) the phase spectrum; (c) the contour plot(dj ttee contour graph of (b).



5. Conclusions

Based on the traditional integral transformations, the spatporal transfer function (STTF) has
beenintroduced and applied to analyse, in the frequency domain, the inherent dyohmiclass of
spatictemporal systems. The STTF, along with the relative frequency responsierfunan be used
to reveal the frequency properties of any given LTI spatigporal system, because every such
system possesses a unique STTF. By introducing the discrete time STTF, the analysisnwfatlyna
stability of the relevant systems become possible using existing theorems.

In this study, stability analysis of continuds$TF's has not been investigated. How to analyse the
stability of a given LTI spatibemporal system, directly using the associated continuous multivariable

STTF, is a topic for future study.
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