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Abstract New results for model order reductjdar weakly nonlinear systesnn the
frequency domain, are derived based on a parametric modelling approach.

1. Introduction

Model order reduction has long been a topic in lirsgatem theory. It islesirable in
many control and analysis probleni$he basic idea diinear model reduction is to
reduce the dynamic order of linear systems subject to certain perfororaage, so
thatthe resuiing reduced models have a similar belour to the original modelnder
certain operating condition¥he performanceriteriaused are generally purely the
time domain.

Nonlinear systems have much more diverse features than linear systemsarfiple
harmonic distortion, hysteresismiit cycles, bifurcatiors and chas, justto name a
few. There is no universal theory for all types of nonlinearities. One ctad®fi of
nonlinear systems isveakly (nildly) and severelynonlinear systems. The most
significant feature separatinthese tassesis that the former systesncan be
represented by Volterra series mag@hicharethe topic ofthecurrent study.

Nonlinear system modeig with Volterra seriesvas first proposed ithe 1930s and
was enhanced by Wierisrcontribution to nonlingasystem analysis. Froime late
1950s, there has been a continuous effort in the application of Vodteresto
nonlinear systesitheory. Summaries of major contributions in the application of
Volterra series modelling for theepresentation, analysend design of nonlinear
systemsan be found in Schetzen(1980), Rugh(1981) and Sandberg(1984).

A big advantage of the Volterra based representations is that they can be readily
transformed into the frequency domain using Generalised Frequency Response
Furctions (GFRF’'s). The inherent features of the underlying nonlinear systms
thenbe studied using the GFRF’s(Bedrosian and Rice, 1Bid4sgang, et. al., 1974;
Lang and Billings, 2000), and this provides an analogous theory to linear frequency
responseanalyss, which is so important for linear systems.Many nonlinear
phenomenéave been analysed amtterpreted in terms othe GFRFs, including

gain compression, intermodulatieffects harmonics and desensitisation.



The GFRFs are of practical use gnlwhen the representation and analysis of the
underlying system can be done using a finite number and order of frequency functions.
This is called Volterra/frequency truncation. Billings and Lang(1997) studied the
order and terms of the Volterra seriesaxgion in such a truncation the frequency
domain.

In this paper, for the first time, the problem of model order reductiomwéakly
nonlinear systemin the Volterrafiequency domain is addresséthlike the linear
model order reductioproblemin which the term'order’ refers to the order of the
dynamics, here in the nonlinear Volterra/frequency model order reductionrdibe
of a frequency domain Volterra expansrefers to the order of the GFRF

2. Volterra series in the time andhe frequency domain

Volterra seriesmodelling (Volterra 1930 has been widely studied for the
representation, analysis and design of nonlinear sgst€he Volterra series is a
nonlinear functional series that can be expanded as a polynomial funsgadealand

is a direct generalisation of the linear convolution integral, thergforeiding an
intuitive representation in a simple and easy to apply way. For a SISO nonlinear
system, withu(t) andy(t) the input and output respectiyethe Volterra series can be

expressed as
y®) =Y Ya(®) (1.a)
n=1

where y, (t) is the h-th order output’ of the system

=] hree)[[ut-s)dr,  n>0 (L)

h,(z,.--,7,) is called thenth-order Kernel’ or ‘nthorder impulse response function’.
If n=1, this reduces to the familiar linear convolution integral.

The discrete time domain counterpart of theticmous time domain SISO Volterra
expression (1) is

¥ =3y, (k) a2
where
yn(k)=i.-.ihn(rl,...,zn)f[u(k—ri) n>0keZ 2.b)

In practical problems only a finite Volterra series can be used, onghmpson that

the contribution of the higher order kernels falls off rapidly. This is catled

truncated Volterra series. Systems that caadexjuatelyepresented by muncated

Volterra series with just a few terms are called weakly or mildly nonlinear system
For discretdime systems the truncated, discrétee Volterra series is given as

yn(k)=iZ---Zk:hn(rl,--~,rn)f[u(k—ri) n>0keZ ©)

n=1r7,=0

A disaete time Volterra series is also called a NX (Nonlinear model with eXogenous
inputs) model.



The multidimensional Fourier transform df, () yields the hth-order frequency
response function’ or the Generalised Frequency Response Fundti®fi )G

ooy o) = [ o[ ey )exp il -+ o,z )dey - dr, (4)

The generalisedfrequencyresponse functianrepresent an inherent anavariant
property of the underlying systerand have proved to kenimportantanalysis and
designtool for characterising nonlinear phenomena. tagtice, the GFRE can be
estimated using neparametric or parametric methods. The parametric method
involves mapping a nonlinear differential equation(Billings and Peyton Jones, 1990
or mapping a nonlinear difference equation(Peyton Jones and Billi8§9, into the
frequency domain using the probing methdtle steadystate response @ mildly
nonlinear system subject wnusoidalinputs can be computed usitige GFRFs

(Hs())as
y®=Zm®
’ : (5)

Zwt
2 2 ) -, jo, )HU(Ja))e do, - dw,

Like time-domain Volterra series truncathnthe generallsedfrequencyresponse
functiors are of practical use when the characteristics of the underlying nonlinear

system can be efficientigxplainedby the first few orders ofH *(-). But in many

nonlinear systems it is very common that higher order GERFe necessary in order

to obtain a satisfactory truncation error, especially ardhhedesonance frequencies.
This sometimes makes the applicatiorttid GFRF s quite complicated, tediouwsd
compuationally demandingin this study a new method is presented to address the
problem of order reduction ahe Volterra/frequency domain representatidrne
method will be described using the example of a Duffisgllatorto demonstrate the
approach in tb simplest manner.

3. Volterra series reduction inthe frequency domain

The example which will be analysed in detail in this section is the Duffing osgillator
which is described by

¥ +0.2y + y+ 0.5y° = Acos(wt) (6)

where the working amplitude ¢iie driving inputwasA=0.12. The Duffing equation
(6) has a resonarrequency at around =1rad/sec. The approach adopted for this
specific example can be repeated for other model foRosusing onone specific
example illustrates the idea in a much more transparapntthan if the method was
introduced for a general class of models.

The first stegn analysing a nonlinear system behaviour in the frequency domain can
be taken by plotting th®espons Spectrum Map(RSMpeveloped byBillings and
Boaghe(2001) This is done by showing the FFT of the respowitd a varying
system parameter(for example, driving input amplitude or frecy)e Here the RSM

of system (§ against varying frequency is shown in Figure 1.
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Figure 1. Response Speatm Map of Duffing Oscillator (6)

Figure 1 shows that for the input frequency range-2.38 rad/seanly fundamental
and odd order harmonic componeatge presenin the response, suggestingtla
Volterra representatiormerthis whole frequency range exsst

Because the Duffing equation (6) contains a cubic nonlinear yérithe number of
Volterra seriegermsin (1) or the number of the GFR¥Fin (5 maybecome infinite.
Also the evenorders of GFRF's areero andmake no contribution to the system
response. Therefore the steadgte response using equati@) With nonlinearities
up to the & ordertruncationis

5
y(t) = D Yo () = Yo (t) + Y5 (8) + ys () (7)
n=1
wherethe respons#or thevarious orders are
A Y
yi(t) = 2(5) Re{H,(jw)e"'} (8.a)
A 3 - - . 3Ja)t A 3 - . . ja)’(
ys(t) = 2(5) Re{H;(jo, jo, jo)e””} + 6(5) Re{H;(jo, jo,-jw)e™} (8.b)

Yo(t) = 2(?)5 Re{H, (jo, jo, jo, jo, jo)e} +10(§)5 Re{H. (jo, jo, jo, jor )¢}
+ 20(2)5 Re{HS(ja), jo, ja),—ja),—ja))ej”’t} (8.c)

However, the orderof the GFRF's needed for a required truncation ervary for

different frequency range3o illustrate this(6) was simulated afl = 60/z and the

responsey(t) was compared for different levels of approximation using (7) anoh (8)
i(odd)

termsof the truncation erroe, defined by = (y- Zyj)/max(y) as apercentage
j=1

The truncation errors for different input frequency values are presented enIlabl



@ € & &
=02 0.8929 0.0286 0.0021
o =06 1.8168 0.0920 0.0148
=09 22.2387 13.8128 10.7461
=10 27.4282 12.5687 6.1998
=13 1.3590 0.0249 0.0373

Table 1. Truncation Error e [%] for Duffing Equation (5) at Different

Frequencies

The Volterra representation ttie Duffing equation (5) is convergent, as shown in
Table 1. It is shown that ithe lower frequency range (for exampley [0 0.6]
rad/sec), and thieigher frequency range (for example,>1.3 rad/sec)the truncation
errors fall off rapidly, with the & order GFRFs beingsufficient to describe the
correspondingesponses. While fo® = 09, which is araind the resonaritequency
the truncation error is relatively high, aadnuch higher order of GFR& will be
required to obtaim satisfactory truncation error. &ge observationsagree well with
theRSM in Figure 1, wherthe response ka significant5" orderharmonicpresence
aroundthe resonanfrequency while at other frequency rangttese effectarequite
weakwith negligible5™ order harmonic contributions.

The Duffing system (6was then excited at different frequencies and the excitation
response pairgvere collected accordinglyNX models can be builbasedon these
excitationresponse datsets at each frequendyor example,
for =0.6 the corresponding NX model is
y(k) = 4.1945u(k- 4) -2.6988u(k- 3) + 095122i(k- 4)u(k- 4)u(k- 4) ©)
-018801u(k- 3u(k- 4u(k- 4)

and for ®=09
y(k) =17.551u(k- 4) -14.672 u(k- 2) + 57.086u(k- 4)u(k- 4u(k- 4)
-56.217u(k- u(k- u(k- 4)
By repeating the above NX modelling procedure throughout the whole frequency

range a series ohodek can be obtainedlheseNX models carthenbe mapped into
thefrequency domaiand theGFRFs up to third orércan be derived.

(10)

By collecting the H, data at each frequency point from earresponding\NX
model in the above stepn H, (w) over the whole frequency range can be constructed,
as shown in Figure 2. Thél, from the original Duffing equation (6) is also plotted
in Figure2. From Figure2 it can be seen that the new, constructed fronthe NX

modelling share similar frequency featuseas the original Duffing equation at low
and high freqancy ranges. This reflects the fact as explained before tlla¢ iow

and high frequency ranges the Duffing equation already provides excellent
Volterra/frequency truncation.
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Figure 2. H, from original Duffing equation (6) —-Solid and H, from NX
modelling—Dot Dashed
The H,(-) data at each frequency paifitom eachcorrespondindNX modelcan also

be collected.Once theH,(-) and H,() data setsare obtained, the approach of re

constructinga nonlinear continuous time modptoposed byLi and Billingg2001)

can be applied. An important advantagé.ichnd Billings s algorithm is that the nen
linear model can be constructed sequentially by building in the linear model terms,
followed by the quadratic terms and so lincurrent example, only linear and cubic
nonlinear model terms are required.

First, a continuous time linear differential model can beoastructed from theH,

datain Figure 2in the NX modellingby using the method of Li and Billin¢&001)
The model is given as

y + 020405% + 267315 + 0351392Y + 24127 %Y + 015566
+ 0734642 -099845u + 000033778% -17046 9% + 00010263  (11)
-074912%Y + 00022 Y =0

Next, continuous time third order nonlinear teroa® bere-construct fromH,(-) in

theNX modellingusing the method of Li and Billin¢®001). The final reconstructed
third order nonlinear differential model is given as

y + 020405Y + 26731d LA 035139— + 24127 “3 + 015566d y

+ 073464%Y -099845u + 000033778% -17046 4% + 0.0010263"—3y

-0 74912d Y + 00022 <) & 2 +0.0018994/° -0.0823%> % +0. 589423? (12)
+1.7497yg)> -O.42462y‘;ty jzy+4 7878y%) 0.084502%)

+14.352(%) 2‘” 016924%) L -0.027329°Z )3 =



TheH,(w) from the reconstructednonlineardifferential equationmodel () was
compared withthe H, (@) from the NX modelling in Figure 3,and shows a perfect
match.This is also true for third order GFRF’s comparison.

5
4.5 - —
al 1
3.5 -
2 3 1
E-Z.S - .
2 -
1.5 -
1 4
0'56.2 o.‘4 ole 018 1 112 114 1.6
Freq(rad/sec)
Figure 3. H,from NX modelling —Solid, and H, from reconstructed linear
model (12)

This reconstructed nonlinear diffential equation (12) will have the same time
domain response as tlogiginal Duffing equation §). Although generallythe re
constructed nonlineatifferential equation modeWwill have a more complicated time
domain expression, it enjoys a much simpler expression in terrige aissociated
Volterra series expression, which means that the complexthedfequency domain
analysis can be expected to reduce significantly. In this example, the truncatien error
for =09 using the first and third order GFRFfrom (2) are e =0.50400

and e,=0.195P4 respectively, a big reduction compared with the results in Table 1,

which means that a third order Volterra representation, which can be obtairmed fr
(12), isadequate in terms diietruncation error. This is true for the whole frequency
rangeunder (12. This means therefore that the entire frequency domain analysis
the original Duffing equation6) can be performed based on #ieglere-constructed
nonlinear differential equation (12Yhe proposed parametric approach illustrated
using the specificDuffing oscillator can be effectively repeated on other nonlinear
cases where theomplexity of frequency domain analysis needs to be reduced.

4. Conclusions

For a linear system, the frequency response function, which is the Foamigiotm
of the first order convolution, will be naturally sufficient to represent the {optgut
relation for the whole frequency rangesespective ofthe amplitude of the put
signal. But for a nonlinear system, the behaviour of the systerdep#ncheavily on
the amplitude ofthe input. A norinear system can exhibiseverely nonlinear
phenomena, such agysteresis, limit cycke subharmonics and chaaghile theinput
excitation varies.It is a well known fact that the traditionaloWerra series cannot
representthe severeclass of nonlinear systens, therefore the frequency domain
transfer functionsare notavailablefor these caseBut even forweakly nonlinear
systens where a convergent Volterra series exianalysismay becomempractical



becausehe order of the Volterra series mightbeevery high in order to obtaithe
required truncation accuracy.

It has been shown in this study that a new paranmatdelling approach can provide
the frequency features in a reduced Volterra model. Generally theimgsult
continuous time modglwhichhave areduced Volterra expansion the frequency
domainwill have anextendedtiime domain expression so that thleysical reation
with the underlying systens lost. Howevethis should help taignificantly simplify
the analysis of the underlying nonlinear system in the frequency domain.

In practical nonlinear continuous time system identification problewnhgn only
input-ouput observationare available, theravill be a balance betweaphysicaly
meaningful identification, where the resaff model coefficients can be related back
to the underlying system buwvhich may not be fully frequency domain efficient, and
ameanindul frequency domain identification, where the rasgltmodelcan be used
as a basis fofrequency domain analysis with limited orders of GFRButwhich
may not have aimple physical interpretation. This will be investigatedariuture
study.
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