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Abstract: A new nonlinear feedback control approach is proposed in the present study to 

suppress periodic exogenous disturbances based on a frequency domain theory of 

nonlinear systems. In Part 1 of this paper, a series of fundamental theoretical results and 

techniques are established. It is shown that a low order nonlinear feedback may be 

sufficient for some control problems. A general procedure is then proposed for controller 

design. The new approach is demonstrated by a case study on the design of an active 

vibration control system in Part 2. Theoretical analysis and simulation results verify the 

effectiveness of the new results. 

 

1.  Introduction 
         

Suppression of periodic disturbances covers a wide range of applications, for example, 

active control and isolation of vibrations in engineering systems. Traditionally, an 

increase in damping can reduce the response at the resonance. However, this is often at 

the expense of degradation of isolation at high frequencies (Graham and Mcruer 1961). 

Many methods have been proposed to deal with this problem, such as optimal control, H-

infinity control, �skyhook� damper and repetitive learning control etc (Hrovat 1997, 

Graham and Mcruer 1961, Karnopp 1995, Lee and Smith 2000). Nonlinear feedback is an 

approach that has been noted by several researchers. Lee and Smith (2000) pointed out 

that, it is not possible to use linear time-invariant controllers to robustly stabilize a 

controlled plant and to achieve asymptotic rejection of a periodic disturbance. However, 

the problem is solvable using a nonlinear controller for a linear plant subjected to a 

triangular wave disturbance. It has also been reported many times that existing 

nonlinearities or deliberately introduced nonlinearities may bring benefits to control 

system design (Graham and Mcruer 1961). Hence, the design of a nonlinear feedback 

controller to suppress periodic disturbances has great potential to achieve a considerably 

improved control performance.  

         



 3

Recently, significant progress has been achieved in the analysis of nonlinear systems in 

the frequency domain (Lang and Billings 1996, Billings and Peyton-Jones 1990, Lang 

and Billings 2005, Lang, Billings, Yue and Li 2006, Lang, Billings, Tomlinson and Yue 

2006). The effective determination and analysis of the Generalised Frequency Response 

Functions (GFRFs) and Output Frequency Response Functions have been achieved for 

nonlinear systems which can be described by the NARX (Nonlinear Auto-Regressive 

model with eXogenous input) model. Based on these results, energy transfer 

characteristics of nonlinear systems have been analysed and discussed in Billings and 

Lang (2002) and Lang and Billings (2005).  

         

The frequency domain theories for nonlinear systems indicate that under certain 

conditions, the output spectrum of a nonlinear system is determined by a combination of 

the contributions of the system nonlinearities of different orders and the input. This 

implies that for a linear controlled plant subjected to a periodic disturbance, if a nonlinear 

feedback control is introduced to produce a nonlinear closed loop system, the output 

frequency response of the closed loop system at the frequency of the disturbance can be 

reduced, when the contributions of different system nonlinear orders at this frequency 

interact with each other. Motivated by this basic idea of exploiting nonlinear effects to 

suppress periodic disturbances, in the present study, a novel frequency domain analysis 

based nonlinear feedback control approach is proposed to suppress sinusoidal exogenous 

disturbances for a general linear controlled plant.  

         

This paper is divided into two parts. Part 1 is concerned with a series of fundamental 

results for the development of this new approach. The general nonlinear feedback 

controller design problem is divided into several basic problems which can be addressed 

separately. Then a series of theoretical results and techniques needed to solve these basic 

problems are established and developed. Finally a general procedure for the design and 

analysis of the nonlinear feedback controller is proposed. Part 2 is concerned with a case 

study, where the implementation of the new approach is demonstrated using an active 

vibration control problem (Daley, Johnson, Pearson and Dixon 2005). Simulation results 

are provided to illustrate the effectiveness and advantages of the new approach. 

 

2.  Problem Formulation 
  

Consider an SISO system described by the following differential equation: 
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where, x, y, u, η 1ℜ∈  represent the system state, output, control input, and an exogenous 

disturbance input respectively;  η  stands for a known, external, bounded and periodical 

vibration, which can be described by a summation of multiple sinusoidal functions; L is a 

positive integer; lD  is an operator defined by lll dtxdxD = . The model of system (1,2) 

can also be written into a state-space form: 
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where, X=[x, D1x, �, DL-1x]
T Lℜ∈ is the system state variable, A, B, E, C, D are matrixes 

with appropriate dimensions.  The problem to be addressed in the present study is: 

         

Given a frequency interval )(ωI and a desired magnitude level of the output frequency 

response Y*
 over this frequency interval, find a nonlinear state feedback control law  

)( x, Dx, x, Du L-11 …−= ϕ                                                     (5) 

such that  
*

)(

)()( YdjYjY
I

≤−∫
ω

ωωω                                                       (6) 

where the feedback control law - )( x, Dx, x, D L-11 …ϕ is generally a nonlinear function of x, 

D1x, �, DL-1x, with the linear state/output feedback as a special case; Y(j ω ) is the 

spectrum of the system output.  Note that a dynamic control law can also be considered 

here. This will be addressed in a future study.  

         

For simplicity, the present study assumes =)(ωI 0ω , that is only the output response at a 

specific frequency is considered. Let [ ] ),( 0
)()( ujYjYY ωωω −= , then 

[ ]
)0,(0 0

)()( ωωω jYjYY −= shows the magnitude of the system output frequency response at 

frequency 0ω under zero control input. Obviously, it is required that 

[ ] ≤− ),( 0
)()( ujYjY ωωω 0

* YY < [ ] )0,( 0
)()( ωωω jYjY −=                                   (7) 

         

To obtain a nonlinear feedback controller, )( x, Dx, x, D L-11 …ϕ  is written into the general 

form as 
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where M is a positive integer representing the maximum degree of nonlinearity in the 

terms D
ix(t) (i=0�L-1); ∑
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L . The nonlinear function in (8) includes a 

general class of possible linear and nonlinear functions of D
ix (i=0�L-1). Since 

D
ix=e(i+1)

T
X, where e(i+1) is a L-dimensional column vector whose (i+1)th element is 1 

with all other terms zero, )( x, Dx, x, D L-11 …ϕ can also be written as a function of X, i.e., 
)(Xϕ . For the parameters Cp0(.) (p=1,�,M), when p =1 the parameters will be referred to 

as the linear parameters corresponding to the linear terms in (8), e.g.,
2

2

0,1

)(
)2(

dt

txd
C . All the 

other parameters in (8) will be referred to as the nonlinear parameters corresponding to 

the nonlinear terms∏
=

p

i

l txD i

1

)( . p is the nonlinear order of the nonlinear parameter )(0 ⋅pC . 

Let 
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The task for the nonlinear controller design is to determine M and the controller 

parameters in (9) to make the closed loop system (1,2,5) asymptotically stable within a 

ball around the zero equilibrium point while satisfying the steady state performance (6). 

In this paper, without loss of generality it will be assumed that the linear parameters 

)(10 ⋅C =0. The focus of this study is to design the nonlinear parameters in (9) and 

investigate the advantage of nonlinear state feedback control for system (1-2). The 

principle of the design is to determine the nonlinear parameters in the controller with the 

linear part of the system set according to other design requirements (e.g., stability). 

Moreover, considering that controller (5) should only involve terms which are needed to 

stabilise the closed loop system and to achieve the steady state performance (6), thus the 

controller parameters in (9) can be further written as  

[ ] ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

<−
=−=

=
=

0),(

10

0
)()(

1,10

2

),,()(

YjYjY

piLl

Mp

llCMC

u

ipp

ωωω
LL

L

L                                        (10) 

Determine the controller parameters in (10) is the main problem to be addressed.  

         

Substituting (8) into (1) and (2) yields a description for the closed loop system as 
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where,  

),()()( 1101110 lbClClC x −= )()()(
~

1101110 ldClClC y −=  

),,,(),,( 1010 pppp llbCllC LL −= ),,,(),,(
~

1010 pppp lldCllC LL −=   

for ,0,2 LlMp i LL ==  and pi L1= . For simplicity, (11) can also be written into a concise 

state space form as follows 
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Equation (11) is a special case of the continuous NARX model with a single input )(tη  

and two outputs x(t) and y(t). The Generalized Frequency Response Functions (GFRFs) 

and Output Frequency Response Functions of model (11) can be obtained by using a 

harmonic probing method introduced in Rugh (1981) and some results developed 

recently by the authors (Lang and Billings 1996, Billings and Peyton-Jones 1990, Lang, 

Billings, Yue and Li 2006).  

 

3.  Some Fundamental Theoretical Results 
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The nonlinear frequency domain approach is based on the Volterra series theory of 

nonlinear systems. It has been shown that, any time invariant, causal, nonlinear system 

with  fading memory can be approximated by a finite Volterra series (i.e., by Volterra 

polynomials) (Boyd and Chua 1985). This implies that there exists a convergent Volterra 

series which can approximate a nonlinear system under certain assumptions. In order to 

apply the nonlinear frequency domain approach to design the parameters of controller (5) 

and achieve the control objective (6), first the stability of system (11) around its zero 

equilibrium should be guaranteed. This is to ensure the nonlinear Volterra series theory 

and hence the corresponding nonlinear frequency analysis approaches are valid and can 

therefore be used for the system analysis and design. To achieve this objective, a range 

needs to be determined for the values of the parameters of controller (5) over which the 

closed loop system (11) is asymptotically stable when )(tη =0. Second, an analytical 

relationship between the controller parameters and the closed loop system output 

spectrum needs to be determined. Lang, Billings, Tomlinson, and Yue (2005) have shown 

that this relationship is a polynomial function of the controller parameters and have 

therefore provided a necessary basis for the implementation of this step. Finally, from the 

analytical relationship, the controller parameters can be determined to achieve the design 

objective (6). Therefore, there are generally four fundamental issues to be addressed for 

the nonlinear feedback control problem. These are: 

        (a) Determination of the analytical relationship between the system output spectrum 

and the nonlinear controller parameters.  

        (b) Determination of an appropriate structure for the nonlinear feedback controller. 

Only significant nonlinear terms are needed in the controller to achieve the control 

objective.  

        (c) Derivation of a range for the values of the control parameters over which the 

stability of the closed loop nonlinear system is guaranteed.  

        (d) Development of an effective numerical method for the practical implementation 

of the feedback controller design.  

 

         

In this two part paper, the focus of Part 1 is to investigate the fundamental issues. In Part 

2, a case study will be presented to show how to implement the general results achieved 

in Part 1.  

         

3.1. The Output Frequency Response of the Closed-Loop System 
         

In this section, the output frequency response of the closed loop nonlinear system (11) is 

derived. The relationship between the system output spectrum and the controller 

parameters are investigated to produce a series of important results which are useful to 

facilitate the controller design.  

 

3.1.1.   The Output Spectrum 
         

Consider x(t) and y(t) of the closed loop nonlinear system (11) as two outputs, i.e., 
y1(t)=x(t), y2(t)=y(t), and assume that the relationship between the output x(t) and y(t) 
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and the input )(tη of system (11) can be approximated by Volterra functional polynomials 

up to Nth order as 
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(16b) is the nth order generalised frequency response function (GFRF) of system (11) 

corresponding to the jth output. 

         

Following the idea of mapping a time domain description of nonlinear systems into the 

frequency domain introduced in Rugh (1981), Peyton Jones and Billings (1989), and 

Swain and Billings (2001), the output spectrum )( ωjY of nonlinear system (11) is derived 

and the results are summarized in Proposition 1. 

 

Proposition 1. Suppose the relationship between input )(tη and output y(t) of the 

nonlinear system (11) can be approximated by a convergent Volterra series, then the 

output frequency response function )( ωjY  of the system output y(t) under the multi-tone 

input disturbance (14) can be determined as 
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Proof: See Appendix. ͛  

         

Proposition 1 shows how the GFRFs can be recursively computed from the system time 

domain model (11) and how the system output spectrum is related to the GFRFs.  

 

3.1.2.   Important Properties of the Output Spectrum 
         

The output frequency response function )( ωjY given by (17) has several useful properties 

which provide an important basis for the analysis and design of the nonlinear closed loop 

system (11).  

         

Property 1 (Lang, Billings, Yue and Li 2006). The output frequency response 

function )( ωjY  of the closed loop nonlinear system (11) can be expressed as a polynomial 

function of the nonlinear controller parameters in (10), i.e.,  
L+++= )()()()( 22110 ωωωω jPajPajPjY                                        (18a) 

where )(0 ωjP is the linear part of the system output frequency response, )( ωjPi , 1≥i , 

represent the effects of higher order output frequency responses, and ),2,1( L=iai  are 

functions of the nonlinear controller parameters in (10).͛ 

         

The detailed form of the coefficients ),2,1( L=iai in (18) will be discussed later. It should 

be noted that, if the parameters ai are confined to a small range around zero, then (18) can 

usually be approximated by a finite number of terms. From Property 1, the following 

property follows. 

         

Property 2. The output frequency response function )( ωjY of the nonlinear closed loop 

system (11) can be written as a polynomial function of any individual nonlinear 

controller parameter in (10). That is, for a nonlinear controller parameter c in (10), there 

exists a series of functions of frequency ω  { )( ωjPi , i=0,1,2,3,�} such that  

L+++= )()()()( 2

2

10 ωωωω jPcjPcjPjY                                         (18b) 

͛ 

         

The properties above show that the nonlinear controller parameters are separable from the 

system frequency functions, and the output spectrum of the nonlinear closed loop system 

can be described as a polynomial function of the nonlinear controller parameters. 

Equation (18) was referred to as the output frequency response function of nonlinear 

Volterra systems by Lang et al (2006). This concept and associated results developed in 

the following section reveal an important relationship between the output spectrum and 

the system parameters. This can considerably facilitate the analysis and design of the 

nonlinear feedback control system (11). In order to study equation (18) in more detail and 

reveal the contribution of the nonlinear controller parameters of different orders to the 

output spectrum more clearly, some useful results regarding the parametric characteristics 

of the output spectrum of the closed loop system (11) are developed in the following 

section, which can describe explicitly the detailed form of the coefficients ),2,1( L=iai  in 

(18).  
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3.1.3.   The Parametric Characteristics of the Output Spectrum 
         

The objective of the study of the parametric characteristics of the output spectrum of 

system (11) is to investigate the polynomial expression (18) in detail, and to reveal how 

the frequency response functions in (17a-e) of the nonlinear system (11) depend on the 

nonlinear controller parameters (i.e., Cp0(.) for p>1 in (10)). For this purpose, a useful 

operator will be defined below. 

         

Consider a series CnfncfcfcH cf ∈+++= )()()2()2()1()1( L , where the coefficients c(i) for 

i=1,�,n are real or complex numbers, f(i) for i=1,�,n are real or complex valued 

functions, C denotes all the complex numbers.  

         

Define a Coefficient Extractor operator →CCE : nC such that for any  
CnfncfcfcH cf ∈+++= )()()2()2()1()1( L  

n
cf CCncccHCE ∈== :)](,),2(),1([)( L , where nC is the n-dimensional complex space. This 

operator has the following properties: 

(1) Vectorized sum⊕ : ],[)()()( 212122112211
CCCCHCEHCEHHCE fcfcfcfc ′=⊕=⊕=+ , where 

)(2 iC′ for i=1�m are non-repetitive elements in C2 with respect to C1, i.e., 
)()(,, 12 jCiCji ≠′∀  

(2) Reduced Kronecker product⊗ : 21)()()(
22112211

CCHCEHCEHHCE fcfcfcfc ⊗=⊗=⋅ , and 

�reduced� here means that there are no repetitive components in 21 CC ⊗ . 

(3) Invariant: (a) )()( HCEHCE =⋅α ; (b) CHCEHHCE ffccfcf ==+ + )()( )( 2121
 

(4) Unitary: if H is not a function of c(i) for i=1�n, 1)( =HCE for operator ⊗  and 

][)( =HCE for operator⊕  

(5) Inverse: CE-1
(C)=Hcf. 

 

         

For simplicity, let )(
(*)
⋅⊗  and )(

(*)
⋅⊕ denote the multiplication and addition by the reduced 

Kronecker product� ⊗ � and vectorized sum� ⊕ �of the series (.) satisfying (*), 

respectively. Moreover, define the pth order parameter 

vector )],,(,),1,,0(),0,,0([ 0000 43421LLLL
p

pppp LLCCCC = , which includes all the nonlinear 

parameters of nonlinearity degree p in (10).  

         

For further derivation, ),,( 1

1
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Utilizing (19), it can be shown from equations (17b,e) that 
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Similarly,  
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The calculation process above demonstrates how the CE operator is applied.  Using the 

invariant property of the CE operator, it follows that   

),,,()),,(( 1010 qpppp llCllCCE += LL ),,,()),,(
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for the nonlinear controller parameters in (10). Hence, following the same procedure it 

can be shown that  
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and 

( )

( )⎟
⎠

⎞
⎜
⎝

⎛
⊗

∑

⊕=

⊗⊗⊗

∑

⊕=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∑

⊕=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∑

++=

=
=
=

+−

=
=

+−

==
=

+−

+−

=
= =

∏

∑ ∏

−+

−+

ii

i

p

ppi

i

p

ip

iiii

i

p

i

p

ip

iiii

irir
i

p

nr
rr

pn

prprrrrr

nr
rr

pn

p

i

l
iriirir

nr
rr

pn

pn

nr
rr

p

i

l
iriirirnnp

jjHCE

jjHCEjjHCEjjHCE

jjjjHCE

jjjjHCEjjHCE

ωω

ωωωωωω

ωωωω

ωωωωωω

,,(

),,((),,(()),,((

))(,,(

))(,,()),,((

1

1

11

1

1

1

221

1

111

1

1

1

1

11

1

1

1

1

1 1

11

1

1

1

1

2211
1

1

1

1

1

L

LLLL

LL

LLL

L

L

L

L

     (21) 

Substituting (21) into (20) gives 
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Equation (22) provides an explicit expression for the parametric characteristics of the 

GFRFs of the closed loop system (11), and reveals how the GFRFs depend on the 

nonlinear controller parameters in (10).  

         

In order to simplify the general result in (22), several further results are summarized in 

the following lemmas 1 and 2, and two important conclusions are described in 

Propositions 2 and 3. 

 

Lemma 1. The terms in CE( ),,( 1

1

nn jjH ωω L ) include all the possible combinations of the 

nonlinear control parameters in (10) of the form 0000 21 qrrrp CCCC ⊗⊗⊗⊗ L , satisfying 

qnrp
q

i
i +=+∑

=1

, nri ≤≤2 -1, 20 −≤≤ nq  and np ≤≤2 . 

Proof: See Appendix. ͛ 

         

According to Lemma 1, when p=n, qnrnrp
q

i
i

q

i
i +=+=+ ∑∑

== 11

, which further yields 

qr
q

i
i =∑

=1

. Since nri ≤≤2 -1, then q equals zero. Thus the nonlinear parameters of the 

highest nonlinearity order in ),,( 1

1

nn jjH ωω L are the elements in Cn0.  Lemma 1 can be used 

to check whether and how a nonlinear parameter is included in ),,( 1

1

nn jjH ωω L . 

         

Lemma 2. (1) In equation (21), ( )),,()),,(( 1

11

1

nppnnnp jjHCEjjHCE ωωωω LL +−= . (2) 

0,100 −+⊆⊗ jiji CCC , ))(())(())(( 1 ⋅⊆⋅⊗⋅ −+ jiji HCEHCEHCE . Where, a ⊆ b is that all the 

elements in a are elements in b. 

Proof: See Appendix. ͛ 

         

Lemma 2 shows that the parametric characteristics of ),,( 1

1

nnp jjH ωω L are the same as those 

of ),,(1

1 nppn jjH ωω L+− . This can be used to simplify the parametric characteristics in (22).  

         

From Lemmas 1 and 2, the following conclusions for the parametric characteristics of the 

GFRFs in (17b,e) follow. 

         
Proposition 2. For the GFRFs of the nonlinear closed loop system (11), 

                                  (1) ))(())(( 12 ⋅=⋅ nn HCEHCE  for n>0  

(2) 
[ ]

( )))(())(( 1

10
2

2
1

0

1 ⋅⊗⊕⊕=⋅ +−=

+

pnp
p

n

nn HCECCHCE  for n>1 

where, [n/2] means to get the integer part of [.]. 

Proof: See Appendix. ͛    
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Proposition 3. For the GFRFs of the nonlinear system (11), (1) i
nC )( 0 appears in Hm(.) 

from the mth order, where m=1+(n-1)i. (2) If the 2
nd

 and 3
rd

 order nonlinear control 

parameters are all zero, i.e., C20=0 and C30=0, then H2(.)=0, and H3(.)=0. However, even 

if Cn0=0 (for n>3), the nth order GFRF Hn(.) is not zero, providing there are nonzero 

terms in C20 or C30.  

Proof: See Appendix. ͛ 

         

Proposition 2 provides a concise and more explicit insight into the parametric 

characteristic of )(1 ⋅nH . Proposition 3 demonstrates that the nonlinear controller parameters 

in C20 and C30 have a more important role in the determination of the GFRFs than any 

other nonlinear controller parameters, and the nonlinear controller parameters of 

nonlinearity order higher than 3 only take a role in the higher order GFRFs. This implies 

that a lower order nonlinear feedback control may be sufficient for many control 

problems.  

 

        

Based on Proposition 2, the parametric characteristics of the output spectrum can be 

obtained as follows 
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                  (23a) 

Note that the inverse of ))(( ωjYCE is obviously a polynomial from the definition of the CE, 

which is equivalent to equation (18).  Equation (23) states clearly that how the system 

output spectrum of the closed loop nonlinear system (11) are determined by the nonlinear 

controller parameters. Now the coefficients of the polynomial function (18a) can be 

described in more detail as 

[ ] ))(())(())(())(( 11

2

1

1321 ⋅⊕⊕⋅⊕⋅== NK HCEHCEHCEjYCEaaaa LL ω           (23b) 

where K is the dimension of the vector ))(())(())(( 11

2

1

1 ⋅⊕⊕⋅⊕⋅ NHCEHCEHCE L . The 

application of these results is demonstrated in the section 3.3 of Part 2 of this paper and 

partly in the following section.  

 

3.2. The Structure Issue of the Nonlinear Feedback Controller 
         

The determination of the structure of the nonlinear state feedback function (8) is an 

important task yet to be tackled. Based on the results developed above, some fundamental 

results for testing the effectiveness of each nonlinear term can be achieved.  

         

Firstly, as stated in the last section, the structure parameter M in (8) or (10) may be 

chosen as small as possible. Secondly, after M is determined, we can test whether a term 

in Cp0 is effective or not. It has been mentioned in Section 2 that an effective controller 
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must satisfy the inequality (7). For the effectiveness of a specific nonlinear control 

parameter c, this requirement can be written as 

0
)( 0 <

∂

∂

c

jY ω
 for some c                                                   (24) 

         

Consider a specific nonlinear controller parameter c in Cp0 and let all the other nonlinear 

controller parameters be zero or assumed to be constants. In this case, only the nonlinear 

coefficient ci appears in (.))( 1

)1(1 ipHCE −+ according to Proposition 3 (1). Therefore, only the 

GFRFs for the orders 1+(p-1)i (for i=1,2,3,�) need to be computed to obtain the system 

output spectrum in (17a). According to (23a,b), we can finally obtain the output spectrum 

in polynomial form as (18b), 
L+++= )()()()( 2

2

10 ωωωω jPcjPcjPjY                                          (25) 

         

Regarding the effectiveness of a specific controller parameter, we have the following 

result. 

 

Proposition 4. Consider equation (25). 

        (1) 0
)(
<

∂

∂

c

jY ω
 for some c 0))()(),((,0some

,
10

1 <><ℜ>∃⇒ ∑
=+≤≤

−≤≤

−

njinji
ni

j
n

i jPcsignjPn ωω  

        (2) ⇒<><ℜ 0))(),(( 10 ωω jPjP there exists ε >0 such that 0
)(
<

∂

∂

c

jY ω
for ε<< c0 or 

0<<− cε  

where, )(⋅ℜ is to get the real part of (.), <x,y> is the inner product of x and y, 

⎩
⎨
⎧
−

≥
=

else1

11
)(

x
xsign .  

Proof: See Appendix. ͛ 

 

If a nonlinear controller parameter satisfies (24) provided that all or part of the other 

nonlinear controller parameters being zero, then the corresponding nonlinear term will be 

said to be conditionally effective; if a nonlinear controller parameter satisfies (24) for any 

cases, then the corresponding nonlinear term will be said to be absolutely effective. 

Obviously, a nonlinear parameter satisfying Proposition 4(1) is conditionally effective 

and one satisfying Proposition 4(2) is absolutely effective. And clearly, only an effective 

nonlinear term can be utilized in the nonlinear feedback control in order to realize the 

control objective. How to find the conditionally or even absolutely effective nonlinear 

terms and make full use of them is yet to be developed.  

 

3.3. Stability of the Closed-loop System 
 

The Volterra series model can be used to describe a rather general class of nonlinear 

systems (Rugh 1981). Boyd and Chua (1985) showed that any nonlinear system which is 

time invariant, causal, and has fading memory can be approximated by a Volterra 

polynomial of sufficient order. This also implies that the stability of a nonlinear system 

should be guaranteed before the nonlinear system can be represented by a convergent 
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Volterra series approximation and then analyzed in the frequency domain. For this 

purpose, a range for the nonlinear controller parameters which can ensure the stability of 

the closed loop nonlinear system (11) should first be determined.  

         

Noting that the exogenous disturbance in (12) is a periodic bounded signal, and the 

objective in vibration control is often to suppress the output vibration below a desired 

level, a concept of asymptotic stability to a ball is introduced in this section. This concept 

implies that the magnitude of the output for a system is asymptotically controlled to a 

satisfactory predefined level. Based on this concept, a general result is then derived 

which can provide some conditions to ensure the stability of the closed loop nonlinear 

system (12).  

         

A Ball )(XBρ  is defined as: { }0,)( >≤= ρρρ XXXB .  A K -function γ (s) is an increasing 

function of s, and a KL -function β (s,t) is an increasing function of s, but a decreasing 

function of t. For detailed definitions of K /KL-functions can refer to Alberto (1999). 

         
Asymptotic Stability to a Ball. Given an initial state nX ℜ∈0 and disturbance input η  of 

a nonlinear system, if there exists a KL -function β  such that the solution ),,( 0 ηXtX  (for 

0≥t ) of the system satisfies ρβη +≤ ),(),,( 00 tXXtX , 0>∀t , then the nonlinear system 

is said to be asymptotically stable to a ball )(XBρ , where ρ can be expressed as an upper 

bound function of η , i.e., there exist a K -function γ such that )(
∞

= ηγρ .  

         
Lemma 3. Consider two positive, scalar and continuous process in time t, x(t) and y(t) 

satisfying y(t) ))(( txα≤  (for 0≥t ), where α is a K-function. If x(t) is asymptotically stable 

to a ball )(xBρ , then y(t) is asymptotically stable to a ball )()2( yB ρα . 

 
Proof. There exists a KL -function β , such that function x(t) (for 0≥t ) satisfies 

ρβ +≤ )),0(()( txtx , 0>∀t . Therefore, y(t) ))2),),0((2(max())),0((())(( ρβαρβαα txtxtx ≤+=≤  

)2())),0((2())2()),),0((2(max( ραβαραβα +≤= txtx . Note that ))),0((2( txβα  is still a KL -

function of x(0) and t, thus the lemma is concluded. ͛ 

         

From Lemma 3, if there exists a K-function ο  such that the output function )(Xh of a 

nonlinear system satisfies )()( XXh ο≤ , then the system output is asymptotically stable 

to a ball if the system is asymptotically stable to a ball.  

         

Assumption 1. There exists a K -function ο  such that the output function )(Xh of the 

nonlinear system (12) satisfies )()( XXh ο≤ . 

         
Lemma 4. Consider a scalar differential inequality γα +−≤ ))(()( tyty& , whereα  is a K -

function and γ is a constant and y(t) satisfies Lipschitz condition. Then there exists KL -

function β  such that )(),)()(()( 11

0 γαγαβ −− +−≤ ttyty . 
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Proof. Consider the differential equation ))(()( tyty α−=& . From Lemma 10.1.2 in Alberto 

(1999) it is known that, there is a KL -function β such that )),(()( 0 ttyty β= . Similarly, 

considering the differential equation γα +−= ))(()( tyty& , then 

)(),)()(())()(()( 11

0

1

0 γαγαβγα −−− +−⋅−= ttytysignty . Thus from the comparison principle 

and the differential inequality γα +−≤ ))(()( tyty& , the lemma follows. ͛ 

 

         

For the stability of nonlinear system (12), a general result is given as follows. 

         

Theorem 1. Suppose Assumption 1 holds, then the following statements are equivalent: 

(a) There exist a smooth ( ∞C ) function 0: ≥ℜ→ℜ LV and ∞K -functions 21 , ββ  and K -

functions α , γ such that 

)()()( 21 XXVX ββ ≤≤  and { } )()()(
)(

∞
+−≤+

∂
∂

ηγαη XEXf
X

XV
                  (26) 

(b) The nonlinear system (12) is asymptotically stable to the ball )(XBρ with 

))(2( 11

21 ∞
−− ⋅⋅⋅= ηγαββρ , and the output of the nonlinear system (12) is 

asymptotically stable to the ball )()2( yB ρο .͛ 

Proof: See Appendix. ͛ 

 

Though it is not easy to derive a specific stability condition for the general controller (5), 

there are always various methods which can be used to obtain a stability condition for 

some specific controllers with a well-chosen Lyapunov function based on Theorem 1. 

This will be illustrated in Part 2 of this paper, where a case study will be conducted to 

demonstrate how to apply the general theorem to obtain the stability condition of a 

specific system.  

 

3.4. A Numerical Method for the Nonlinear Feedback Controller Design 
         

After the structure of the nonlinear feedback controller is determined (for example, the 

conditionally effective nonlinearity terms and the largest nonlinearity order M have been 

obtained), the nonlinear feedback controller parameters have to be determined to achieve 

the control objective (6). The values of the nonlinear controller parameters can be 

evaluated through solving equation (18) to satisfy the performance (6) or (7) under the 

constraint from the stability condition derived in the last section. However, it can be seen 

from (18) that the derivation of the output spectrum of the nonlinear closed loop system 

(11) involves complicated symbolic manipulation and calculation especially when the 

orders involved are higher. In order to circumvent the symbolic computation complexity, 

a simulation-based method is provided in this section. The procedure of this method is 

described as follows:  

(1) The system output frequency response function can be expressed as 

PCjYjYjY
~

|)(|)()( 2 ⋅==− ωωω  according to (23) with a finite polynomial order, 

where  
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(2) Collect the system steady output in the time domain yi(t) under different values of 

the controller parameters Ci=[1 c1i,c2i,…c(K!)i] for i=1,2,3,�Ni;  

(3) Apply the FFT to yi(t) to obtain the frequency response function )( ωjYi , then 

obtain the magnitude 2

0 |)(| ωjYi  at frequency 0ω , and finally form a vector 
T

N jYjYYY
i

]|)(|,,|)([| 2

0

2

01 ωω L=  

(4) Obtain the equation YYPC =⋅
~ψ ,  
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(5) Evaluate the function P
~

 by using Least Squares,  

( ) YYjP T
CC

T
C ⋅⋅⋅=

−
ψψψω

1

0 )(
~

                                            (29) 

(6) Finally, the desired nonlinear controller parameters C*
 for any given Y*

 at a 

specific frequency 0ω can be determined according to 

                                                              PCY
~* ⋅==  

         

The numerical method above is very effective for the implementation of the design of the 

proposed nonlinear feedback controllers, which will be verified by a simulation study in 

Part 2 of this paper.  

 

4.  A General Procedure for the Controller Design 
         

Although there are some existing time domain methods which can address the nonlinear 

control problems based on Lyapunov stability theory such as the backstepping technique 

and feedback linearization (Alberto 1999) etc, few results have been achieved for the 

design of a nonlinear feedback controller to achieve a desired frequency domain 

performance. In this section, a general procedure for the design of the nonlinear feedback 

controller (5) for the nonlinear closed loop system (11) is described based on the 

fundamental results obtained in the last section. This procedure gives the general steps by 

which the nonlinear feedback controller of a plant with a periodical exogenous 

disturbance can be designed to achieve a predefined control objective as described in (6) 

or (7). Corresponding to the four basic problems as discussed in the last section, there are 

mainly five steps in the procedure:  

 

(A) Determination of the structure of the nonlinear feedback function in (8).  

      The task is to determine the largest nonlinear order M and which of the nonlinear 

controller parameters Cp0(.) (p=2,3,�,M) should be considered for the design. Based 

on the analysis of the parametric characteristics in Section 3.1, the nonlinear 

controller parameters included in C20 and C30 take a dominant role in the 

determination of GFRFs and output spectrum. Thus a larger M may not be necessary. 

Hence, M can be chosen as 2 or 3 at the beginning, and increased later if needed. 
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(B) Derivation of the region for the nonlinear controller parameters in Cp0(.) 

(p=2,3,�,M).  

      This is to ensure the stability of the nonlinear closed loop system (11) or (12). 

Based on Theorem 1, a stability condition can be derived for the closed loop system 

in terms of the nonlinear controller parameters, which will define a region for the 

nonlinear controller parameters where the specific values are to be determined for 

those parameters to implement the controller design. 

(C) Derivation of the system output spectrum. 

      This step is to derive a detailed polynomial expression for the output spectrum 

according to (18) and (23). 

(D) Examination of the effectiveness of nonlinear parameters. 

      Arrange the output spectrum into a polynomial form as (25) with respect to each 

nonlinear parameter in C20 and C30, respectively. For example, with respect to the 

parameter c  

L+++= )()()()( 2

2

10 ωωωω jPcjPcjPjY  

According to Proposition 6, the effectiveness of the parameter c can be checked. If 

the parameter c is not effective, it will be discarded.  

(E) Determination of the optimal values for the nonlinear controller parameters.  

      Use the numerical method provided in Section 3.4 to determine the desired value 

for each nonlinear controller parameter within the stability region obtained in Step (B) 

to achieve the control objective (6) or (7).  

 

       

Following the above procedure, a nonlinear feedback controller can be achieved for the 

frequency domain control objective of the nonlinear closed loop system (11). It should be 

noted that the procedure just provides some gross guidance for the controller design. 

More systematic approaches based on this general procedure are under study and will be 

discussed in later publications. 

 

5.  Conclusions 
 

Based on the frequency domain theory of nonlinear systems, a new approach to the 

design of nonlinear feedback controllers to suppress periodic disturbance for SISO linear 

plants is proposed. Some fundamental theoretical results have been established and 

developed for the controller design utilizing the frequency response functions of 

nonlinear systems. It is shown that a lower order nonlinearity feedback may be sufficient 

for many control problems. A general procedure was also proposed, which can be used as 

a useful guidance in practical controller design. The approach can be used to design a 

nonlinear feedback controller to achieve a desired frequency domain performance, and is 

therefore totally different from existing methods for nonlinear feedback control. 

Although the results in this paper are developed for the problem of periodic disturbance 

suppression for SISO linear plants, the idea can be extended to a more general case (i.e., 
nonlinear controlled plants) and to address more complicated control problems. These 

will be the focus of our further research in this subject. 
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Part 2 of this paper will consider the practical application of the theoretical results and 

techniques developed in this paper through a case study. 

 

 

APPENDIX: Proofs 
 

PROOF OF PROPOSITION 1:  
Consider the disturbance input of system (11) as a multi-tone function of time t, i.e., 

∑
=

∠+=
K

i
iii FtFt

1

)cos()( ωη . In this case, nlF
lk ,,1)( L=ω  in the output frequency response 

(15) is equation (16a). Now Regarding x(t) and y(t) of the nonlinear system (11) as two 

outputs, i.e., y1(t)=x(t), y2(t)=y(t), and the exogenous disturbance )(tη  as the input of 

system (11), we derive the GFRFs ),,(
1 nkk

j
n jjH ωω L (for j=1,2 and n=1,2,3�) of the 

nonlinear system (11).  

         

Consider equation (11a). It has only pure output nonlinearities in terms of D
i
x, and a 

linear pure input term. Hence, the nth GFRF of (11a), denoted by ),,( 1

1

nn jjH ωω L , involves 

two terms, respectively. Based on the results and methods in Billings and Peyton-Jones 

(1990), the nth order of GFRF of (11a) can be obtained as follows 
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where, eC =)0(01 , all other 0)(0 =⋅nC ; ),,( 1

1

nnp jjH ωω L and ),,( 1

1

1 nn jjH ωω L  are equation (13c) 

and (13d), respectively. Note that eC =)0(01 and all other 0)(0 =⋅nC , the first order GFRF 

(linear frequency response function) is 
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Using (A2), equation (A1) can be rewritten into (17e).  

         

Similarly, equation (11b) has one pure output nonlinearities in terms of D
i
x(t) and one 

linear pure output term y(t). Hence, the nth order of GFRF of the output y(t) has relation 

with the nth GFRF of the first �output� x(t), which can be obtained as 
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This is equation (17b). Therefore, substituting the GFRF (17b) into (15) for j=2, the 

nonlinear output frequency response function )(2 ωjY  of system (11) under the 

disturbance input (14) can be obtained 
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This completes the proof. ͛ 
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PROOF OF LEMMA 1:  
For convenience in discussion, substituting (19) into (17e), we have 
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It should be noted from (A3) that, ),,( 1

1

nn jjH ωω L includes all the possible combinations of 

(r1,r2,…,rp) satisfying nr
p

i
i =∑

=1

 and 11 +−≤≤ pnri , and so does CE( ),,( 1

1

nn jjH ωω L ). 

Moreover, CE( )(1

1 xr
jH ω )=1 since there are no nonlinear control parameters in it, and any 

repetitive combinations in (21) have no contribution. Hence, CE( ),,( 1

1

nnp jjH ωω L ) should 

include all the possible non-repetitive combinations of (r1,r2,…,rq) satisfying 

qpnr
q

i
i +−=∑

=1

, 11 +−≤≤ pnri and pq ≤≤1 . Note that each combination corresponds to a 

combination of the involved nonlinear control parameters. Including the nonlinear control 

parameter Cp0, CE( ),,( 1

1

nn jjH ωω L ) therefore includes all the possible non-repetitive 

combination of the nonlinear control parameters 0000 21 qrrrp CCCC ⊗⊗⊗⊗ L satisfying 
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=1

, nri ≤≤2 , 20 −≤≤ nq  and np ≤≤2 . ͛ 

         

PROOF OF LEMMA 2:  
According to Lemma 1, ( )),,(

1

1 nppn jjHCE ωω L+−  includes all the terms 
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From the proof of Lemma 1, the term before )),,(( 1

1 nppn jjHCE ωω L+−  can be written as 
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That is, all the terms in (A4) satisfy qpnqpnr
q

i
i ′+−=−′++−=∑

′

=

11
1

, 12 +−≤≤ pnri  and 

pq ≤′≤0 . Hence, the terms in (A4) are included in ( )),,(1

1 nppn jjHCE ωω L+− . The second point 

of this lemma directly follows from the discussion above and Lemma 1. This completes 

the proof. ͛ 
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PROOF OF PROPOSITION 2:  
(1). Applying CE operator to equation (13b),  
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Similarly, we can have the same result for )),,(( 1

1

nn jjHCE ωω L . This completes the proof for 

(1). 

 

(2). From (1), we have for n>1, 
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Considering the symmetry of this equation, only half of the sum is enough to include all 

the possible combinations except the new term Cn0. Hence, we have 
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PROOF OF PROPOSITION 3:  
(1) According to Lemma 1, the term i

nC )( 0 should be included in the GFRF Hm(.), where 

m is computed as m+q=m+i-1=ni. Hence we have m= ni � i+1=1+(n-1)i. 
         

(2) These results can be directly obtained from Proposition 2, i.e.,  
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For n>3, if Cn0=0, then 
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It can be known from (1) that the nonzero terms in i
nC )( 0  for n=2,3 and i>1 must be 

included in all higher order GFRFs than 2 or 3 respectively. Hence, ))(( 1 ⋅nHCE is not zero. 

͛ 

 

PROOF OF PROPOSITION 4:  
From (25), we have 
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From this equation, we have for |Y| ≠ 0.  
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It can be seen that, if 0
)(
<

∂

∂

c

jY ω
 for some c, there must be some terms on the right side 

of the inequality is negative. This follows the first point of the proposition. For the 

second point of the proposition, it is obvious from the above equation. This completes the 

proof. ͛ 

 

PROOF OF THEOREM 1:  
It follows from (26) that  

)()())((
∞

+−≤ ηγα XtXV&                                               (A6) 

Noting )()( 2 XXV β≤ , we have ))((1

2 XVX −≥ β . Substituting this inequality into (A6), we 

have 
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From lemma 4, it follows that, there exist a KL -function β , such that 
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where, )())(( 11

200 ∞
−− ⋅⋅−= ηγαβtXVV . From (A7), V(X(t)) is asymptotically stable to the 

ball )(
)(11

2

VB
∞

−− ⋅⋅ ηγαβ  . Noting )()(1 XVX ≤β , we have ))((1 XVX β≤ . From lemma 3, X(t) is 

asymptotically stable to the ball )(XBρ . Furthermore, since assumption 1 holds, from 

lemma 3, y(t) is asymptotically stable to the ball )()2( yB ρο .  This completes the proof of 

sufficiency.  The proof of the necessity of the theorem can follow a similar method as 

demonstrated in the appendix of Hu, Teel and Lin (2005).  The proof completes. ͛ 
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