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Abstract: In engineering practice, most mechanical and structural systems are modeled
as Multi-Degree-of-Freedom (MDOF) systems. When some components within the
systems have nonlinear characteristics, the whole system will behave nonlinearly. The
concept of Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by
the authors recently and provides a simple way to investigate nonlinear systems in the
frequency domain. The present study is concerned with investigating the inherent
relationships between the NOFRFs for any two masses of nonlinear MDOF systems with
multiple nonlinear components. The results reveal very important properties of the
nonlinear systems. One significant application of the results is to detect and locate faults

in engineering structures which make the structures behave nonlinearly.

1 Introduction

In engineering practice, for many mechanical and structural systems, more than one set of
coordinates are needed to describe the system behaviour. This implies a MDOF model is
needed to represent the system. In addition, these systems may also behave nonlinearly
due to nonlinear characteristics of some components within the systems. For example, a
beam with breathing cracks behaves nonlinearly because of the cracked elements inside
the beam [1]. For nonlinear systems, the classical Frequency Response Function (FRF)
cannot achieve a comprehensive description for the system dynamical characteristics,
which, however, can be fulfilled using the Generalised Frequency Response Functions
(GFRFs) [2]. The GFRFs, which are extension of the FRFs to the nonlinear case, are
defined as the Fourier transforms of the kernels of the Volterra series [3]. GFRFs are
powerful tools for the analysis of nonlinear systems and have been widely studied in the

past two decades.



If a differential equation or discrete-time model is available for a nonlinear system, the
GFRFs can be determined using the algorithm in [4]~[6]. However, the GFRFs are much
more complicated than the FRF. GFRFs are multidimensional functions [7][8], which can
be difficult to measure, display and interpret in practice. Recently, the novel concept
known as Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by
the authors [9]. The concept can be considered to be an alternative extension of the FRF
to the nonlinear case. NOFRFs are one dimensional functions of frequency, which allow
the analysis of nonlinear systems in the frequency domain to be implemented in a manner
similar to the frequency domain analysis of linear systems and which provide great

insight into the mechanisms which dominate important nonlinear behaviours.

The present study is concerned with the analysis of the inherent relationships between the
NOFRFs for any two masses of MDOF systems with multiple nonlinear components. The
results reveal, for the first time, very important properties of the nonlinear systems, and
can be applied to detect and locate faults in engineering structures which make the

structures behave nonlinearly.

2. MDOF Systems with Multiple Nonlinear Components
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Figure 1, a multi-degree freedom oscillator

A typical multi-degree-of-freedom oscillator is shown as Figure 1, the input force is
added on the Jth mass.

If all springs and damping have linear characteristics, then this oscillator is a MDOF

linear system, and the governing motion equation can be written as

MX+Cx+ Kx = F(t) (1)
where
m 0 0
Mo O™
v o

is the system mass matrix, and



[c,+c, -, 0 0 'k +k, -k, 0 0
-C, GC,+C, -—C, : -k, Kk +k, =k :
c=| o ' ' K= 0 g . 0
: -c,, C,,+C, -—c, : -k, k. +k, -k,
0 0 -C, C, | 0 0 -k, K, |
are the system damping and stiffness matrix respectively. X=(X,:,X,) is the
displacement vector, and
J-1 n-J

— —,
F(t)=(0,~--,0, f(t),O,,O)
is the external force vector acting on the oscillator.
Equation (2) is the basis of the modal analysis method, which is a well-established
approach for determining dynamic characteristics of engineering structures [10]. In the

linear case, the displacements X (t) (i =1,---,n) can be expressed as
x (=] _h,t-of(@)de @

where h;,(t) (i=1,---,n) are the impulse response functions that are determined by

equation (1), and the Fourier transform of h; (t) is the well-known FRF.

i)
Assume there are L nonlinear components, which have nonlinear stiffness and damping,
in the MDOF system, and they are the L(i)th (i =1,-- -,[) components respectively, and
the corresponding restoring forces FS ;,(A) and FDL(i)(A) are the polynomial functions

of the deformation A and A, i.e.,
P P
FSii) = 2T » FDLpy(A) =D WA
=1 =1
where P is the degree of the polynomial. Without loss of generality, assume L(i)—1and

Li)#1,J,n (1<i<L) and Ki gy =T and C i =Wy, . Then the motion of the
MDOF oscillator in Figure 1 can be determined by equations (3)~(8) below.

For the masses that are not connected to the L(i)th (i = 1,-~-,[) spring, the governing

motion equations are
M X, +(C, +C,)% —C % + (K +K,)X —K, X, =0

mX +(C +C., )% — %, —C %, +(k +k, )X —kx_ —k,%, =0

(i=L()-1,L(0),3;1<I<L)4)

m, XJ + (CJ + CJ+1)XJ —C, XJ—I - CJ+1XJ+1 + (kJ + kJ+1)XJ - kJ X5~ kJ+1XJ+1 = f ® ©)

+k, X, —k.x,, =0 (6)

For the mass that is connected to the left of the L(i)th spring, the governing motion

equation is

€)

m, X, +C,X, —C,X

n“n-1



mL(i)—lXL(i)—l + (kL(i)—l + kL(i))XL(i)—l - kL(i)—l Xi(iy-2 — kL(i)XL(i) + (CL(i)—l + CL(i))XL(i)—l

P P
. . I . . |
~CLipMuir2 ~ Ci X + 25 Twin Kuar = Xei) + 25 Wi e = %) =0
1=2 =2

(1<i<L)(7)
For the mass that is connected to the right of the L(i)th spring, the governing motion
equation is
mL(i)XL(i) + (kL(i) + kL(i)+1)XL(i) - kL(i)XL(i)—l - kL(i)+lXL(i)+l + (CL(i) + CL(i)+1)XL(i)

P P

| . . I

- CL(i)XL(i)—l - CL(i)+l XL(i)+1 - z r(L(i),I) (XL(i)—l - XL(i)) - ZW(L(i),I) (XL(i)—l - XL(i)) =0
=2 =2

(1<i<L)(8)
Denote
P P
NonFL(i) = ;r(L(i),l)(XL(i)—l - XL(i))I + IZZ:W(L(i),l)(XL(iH - XL(i))I (9)
NF = (nf (1)---nf (n)) (10)
where
0 if 1#L3)-1,L3>), 1<i<L
nf(l)=1-NonF,, if I=L(i)-1 1<i<L (1<l <n)(11)
NonF_;, if I=L(), 1<i<L

Equations (3)~(8) can be rewritten in a matrix form as

MX+ Cx+ Kx= NF + F(t) (12)
Equations (9)~(12) are the motion governing equations of nonlinear MDOF systems with
multiple nonlinear components. The L nonlinear components can lead the whole system
to behave nonlinearly. In this case, the Volterra series [2] can be used to describe the
relationships between the displacements X (t) (i =1,---,n) and the input force f(t) as
below

X (t) = Zj“;j“; he o (7ot ] ] f(E—7))d7, (13)
j=1 i=1

under quite general conditions [2]. In equation (13), h,;(7,...,7;), (i=1--,n,
j =1,---,N), represents the jth order Volterra kernel for the relationship between f(t) and
the displacement of m.

When a system is linear, its dynamical properties are easily analyzed using the FRFs
defined as the Fourier transform of h; (t) (i=1,---,n) in equation (2), however, as
equation (13) shows, the dynamical properties of a nonlinear system are determined by a
series of Volterra kernels, such as h(i,j)(Tl,...,Tj), (i=L---,n, j=1,---,N) for the MDOF
nonlinear systems considered in the present study. The objective of this paper is to study

the nonlinear MDOF systems using the concept of Nonlinear Output Frequency Response



Functions (NOFRFs), which is an alternative extension of the FRF to the nonlinear case

and is derived based on the Volterra series approach of nonlinear systems.

3. Nonlinear Output Frequency Response Functions

3.1 Nonlinear Output Frequency Response Functions under General Inputs

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems.
The Volterra series extends the well-known convolution integral description for linear
systems to a series of multi-dimensional convolution integrals, which can be used to

represent a wide class of nonlinear systems [2].

Consider the class of nonlinear systems which are stable at zero equilibrium and which

can be described in the neighbourhood of the equilibrium by the Volterra series
N " n
yO =3[ [ n@r)[ Jut-7)dz, (14)
n=l1 i=1

where Y(t) and u(t) are the output and input of the system, h,(z,,...,7,) is the nth order
Volterra kernel, and N denotes the maximum order of the system nonlinearity. Lang and
Billings [2] derived an expression for the output frequency response of this class of
nonlinear systems to a general input. The result is

Y(jw)= iYn(ja)) for Vo

n=1

1/dn (15)

H,(jo,,... jo,)| |U(jo)do,,
(zﬁ)n_lwﬁf 2(j0g... ] )H (jo)do

..... +o,=0

Yn(ja)):

This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (15), Y(jw) is the spectrum of the

system output, Y, (j@) represents the nth order output frequency response of the system,

Ho(jom o) = [ (. )e @ omide, dr, (16)

O+, Oy =0
denotes the integration of H (ja®,,..., j®, )HU (jw,) over the n-dimensional hyper-plane
i=l
o, +--+o,=w . Equation (15) is a natural extension of the well-known linear
relationship Y(jo)=H(jo)U (jw), where H(jw) is the frequency response function, to
the nonlinear case.



For linear systems, the possible output frequencies are the same as the frequencies in the
input. For nonlinear systems described by equation (14), however, the relationship
between the input and output frequencies is more complicated. Given the frequency range
of an input, the output frequencies of system (14) can be determined using the explicit
expression derived by Lang and Billings in [2].

Based on the above results for the output frequency response of nonlinear systems, a new
concept known as the Nonlinear Output Frequency Response Function (NOFRF) was
recently introduced by Lang and Billings [9]. The NOFREF is defined as

[ HiGo,.jo)[[U(io)s,
G (JCO) _ Ot o0 _ i=l (17)
[ TlYu(iexs,,

O+ tq=0 1=1

under the condition that
U,(jo= [ TJU(je)o,, =0 (18)
O+t Oy =0 =1
Notice that G (jw) is valid over the frequency range of U, (jw), which can be

determined using the algorithm in [2].

By introducing the NOFRFs G (jw), n=1,---N, equation (15) can be written as
N N
Y(jo)=Y Y,(jo) =2 G,(jo)U,(jw) (19)
n=1 n=1

which is similar to the description of the output frequency response for linear systems.
The NOFRFs reflect a combined contribution of the system and the input to the system
output frequency response behaviour. It can be seen from equation (17) that G,(j®)
depends not only on H, (n=1,...,N) but also on the input U (j®) . For a nonlinear system,
the dynamical properties are determined by the GFRFs H  (n= 1,...,N). However, from
equation (16) it can be seen that the GFRF is multidimensional [7][8], which can make
the GFRFs difficult to measure, display and interpret in practice. According to equation
(17), the NOFRF G, (jw) is a weighted sum of H, (j®,,..., j@,) over @, +--+ o, = ®
with the weights depending on the test input. Therefore G, (j®) can be used as an

alternative representation of the dynamical properties described by H_ . The most

o -
important property of the NOFRF G, (j®) is that it is one dimensional, and thus allows
the analysis of nonlinear systems to be implemented in a convenient manner similar to
the analysis of linear systems. Moreover, there is an effective algorithm [9] available
which allows the estimation of the NOFRFs to be implemented directly using system

input output data.



3.2 Nonlinear Output Frequency Response Functions under Harmonic Input

When system (14) is subject to a harmonic input
u(t) = Acos(a:t + ) (20)

Lang and Billings [2] showed that equation (14) can be expressed as

Y(Jw)=iYn(iw)=iLn D H o o)A (o) Aljo) | 21
- =2

O+ O =0
where

|AjeFe®sif @ elkop k=%1}i=1-n

) (22)
0 otherwise

A(ja)h)={

Define the frequency components of the nth order output of the system as Q,, then
according to equation (21), the frequency components in the system output can be

expressed as

a=|]Q, (23)

N
n=

—

where Q) is determined by the set of frequencies

0=0 ++o |0, =toi=1-n| (24)
From equation (24), it is known that if all @, ,---,@, are taken as — @, then @ = -nw; .
If k of these are taken as @, then ® = (—n+2K)®. . The maximal K is n. Therefore the

possible frequency components of Y, (jw) are

Q. ={(-n+2k)o.,k=0,,---,n} (25)
Moreover, it is easy to deduce that
N
Q=|JQ, ={ko. , k=-N,---,~1,0,,---,N} (26)

n=1
Equation (26) explains why superharmonic components are generated when a nonlinear
system is subjected to a harmonic excitation. In the following, only those components

with positive frequencies will be considered.

The NOFRFs defined in equation (17) can be extended to the case of harmonic inputs as

1 : : : ,
o 2Hale s jo Aoy Alje)

Oy + - F O =0

1
2n

Gl (jw)= n=1,...N (27

ZA(ja)kl)"'A(ja)kn)

O+ F Oq=0

under the condition that

A(jw>=2in S Ao, ) Ajo ) %0 28)

O+ F Oy =0



Obviously, G (jw) is only valid over Q defined by equation (25). Consequently, the

output spectrum Y(jw) of nonlinear systems under a harmonic input can be expressed as
N N

Y(j)=Y Y, (jo) =D Gl (jw) A(jo) (29)
n=l1 n=1

When K of the n frequencies of @, ,---,@, are taken as @; and the remainders are as
— o , substituting equation (22) into equation (28) yields,
AN+ 2K ) = AP €729 (30)
Thus G (jw) becomes
k n-k
H.(Jog, -, jor,— jog -~ jor) | Al" el-m2s
1
2"
K n—k

=H,(Jog, -, jop,— jor, -~ jor) (31)

where H (j®,,..., Jo,) is assumed to be a symmetric function. Therefore, in this case,

G (j(-n+2K)wp ) =2
| A|n ej(7n+2k)ﬂ

G/ (jw) over the nth order output frequency range QnZ{(—n+2k)a)F,k = O,l,---,n} is
equal to the GFRFH, (j®,,..., j®,) evaluated at@w, =-- =@, =wp, @, = =0, =—0,
k=0,---,n.

4. Analysis of MDOF Systems with Multiple Nonlinear
Components Using NOFRFS

4.1 GFRFs of MDOF Systems with Multiple Nonlinear Components

From equations (3)~(8), the GFRFs H ; (j@,,..., jo;), (i=1,---,n, j=1,---,N) can be

determined using the harmonic probing method [5][6].

First consider the input f(t) is of a single harmonic
f(t)=e" (32)
Substituting (30) and
(0 =H,(jo)e" (i=1---,n)(33)
into equations (3)~(8) and extracting the coefficients of €/ yields, for the first and nth
masses,
(_ mao” + j(c, +¢,)o+(K + kz))H an(Jo) - (jczaH' k, )H(2,1)(ja)) =0 (34
(Mm@ + je o+ kM o, (1@) = (ic,0+ k H 1y, (J0) =0 (35)
for other masses excluding the Jth mass
(_ ma)z +j(c +c,Do+k +k )H(i,l)(ja))_(jcia)+ k; )H(i—l,l)(ja))



—(jC@+Ki H i (j0) =0 (i#1,J,n) (36)
for the Jth mass

(_ mJa)2 +j(c; +¢;, o+ k; +k;, )H(J,l)(ja)) _(jCJa)+ K, )H(J—l,l)(ja))
_(jCJ+la)+kJ+1)H(J+1,1)(ja)):1 (37)
Equations (34)~(37) can be written in matrix form as
—~4 ~L
(Mo + jCo+K)H,(jo)=(0--0 1 0---0) (38)
where
Hi(j@)=(Hyy(j@) -~ Hg,(jo) (39)
From equation (39), it is known that
H,(jo)=(-Mo” + jCo+K)' (00 1 0--0) (40)
Denote
O(jo)=-Mao’ + jCo+K (41)
and

Q(l,l) (jo) - Q(l,n) (jo)
O (jw) = : : (42)
Q(n,l) (jo) - Q(n,n) (jo)
It is obtained from equations (40)~(42) that

H(i,l)(ja)):Q(i,J)(ja)) (i=1,--,n) (43)
Thus, for any two consecutive masses, the relationship between the first order GFRFs can
be expressed as

H(i,l)(ja’) _ Q(i,.])(ja)) _

H(i+1,1)(ja)) Q(i+l,J)(ja))
The above procedure used to analyze the relationships between the first order GFRFs can
be extended to investigate the relationship between the N th order GFRFs with N>2.

To achieve this, consider the input

2 (w) (i=1---,n=1) (44)

f(t)= iew (45)

Substituting (45) and

Xi(t) = H(i,l)(ja)1)ejwlt oot H(i,1)(j0)ﬁ)ejwNt e .
(@ + -+t (I =1’”"n) (46)

+ N!H(iﬁ)(ja)l,'--, jog)e

(o +-+oy)t

into equations (3)~(8) and extracting the coefficients of e

—m (o +"'+a)ﬁ)2 + j(cl +C, )@, +"'+a)ﬁ)+(kl +k2))H(1N)(ja)1:"‘: Ja)ﬁ)

yields

: : . (47)
—(]Cz(a)l +~~-+a)ﬁ)+kz)H(zﬁ)(ja)l,m, Jog)=0

10



(Mm@ ++ 09 + jey (@ ++ o)+ H o (Jop . jog) us)
~(jca(e, +-+ o) +k H 5 (J@ 0, jog) =0
( m (@, +- +aF) +(C +c, )@+ +wg) +k +k,+1) i N)(ja)l,---,ja)ﬁ)
—(JC-(a)l+-~-+0k)+k-) H, (o jog)
—(iCu @+ + o)+ H g (0, jog) =0
(i#1,L()=1,L(),n,1<I <L) (49)

—m (0 +-+ @) + J(CLiy +CLpy @, +--+ @)
[Jr K iy K@)
~ (i (@, + -+ 0+ Koy H o, (010 jog)

~ (i (@ +++ o) +k o H wim o jog) + A (joy, -, jog) =0

]H(L(i)_l’N)(J‘a)l7”.J Ja)ﬂ)

(1<i<L) (50)

H Ja)laaja)ﬁ)

L(|)(a)1 te g ) + J(CL(|) +CL(i)+1)(a)1 +'“+a)ﬁ) (
1k (L(LN)

L) +k

( L(I)(a)l+ +aF)+kL(|))

L(i)+1
H ioan @ jog)
_(JCL<i>+1(wl tetog)+ kL(i)H)H(L<i>+1,ﬁ>(jw1""° jog) =AM (o, jog) =0
(1<i<L)(51)
In equations (50) and (51), A'ﬁi)_l"‘(”(ja)l,--', jwy) represents the extra terms introduced
by NonF_;, for the N th order GFRFs, for example, for the second order GFRFs,
AN (o, jo,) = (_ WiLiy2) @@y + T2 XH(L(i)—l,l)(ja)l)H(L(i)—l,l)(ja)z)
+H i (10 H L (10~ Hitr 1 (10DH 0 (102) = Higgr 1 (1) H o (@)
(1<i<L)(52)

Denote
Hﬁ(ja)la"'sja)ﬁ):(H(l’N)(ja)la"'aja)ﬁ) H(n’ﬁ)(ja)la"':ja)ﬁ))-r (53)
and
As(jo, - jog)=[As ) Av(m)] (54)
where B
0 if #L>1)-1,L3), 1<i<L

AN(1)=1- A O (o jos) i I =L(3) -1, 1<i<L (1<1<n)(55)
AOMO (oo jo ) if T=L(0), 1<i<L
then equations (47)~(51) can be written in a matrix form as
O(j(@ ++o))Hy(jo, -, jog) = Ai(jo,,-- joy) (56)
so that

11



Hﬁ(ja)la"'aja)ﬁ):@il(j(a)l+“'+a)ﬁ))z‘ﬁ(ja)la"'aja)ﬁ) (57)
Therefore, for each mass, the N th order GFRF can be calculated as
_ . T
. . L Qi,L(I)—l(J(a)l +ty)) —Alil)_l’l_(l)(jw A ]CU*)
H(i,ﬁ)(la’p”':J“’N):Z i N L(TIH’L(') S
=\ Qi (@ +-+ o) A (Jao,, -, jog)
(i=1--,n) (58)

and consequently, for two consecutive masses, the N th order GFRFs have the following
relationships

5 Qi@+ + @) (= A0 (o o)
H(i’ﬁ)(ja)la"'aja)ﬁ) _ = Qi@+ +oy) A%l)il’ul)(ja)la"'aja)ﬁ)
H(i+1,N)(Ja)l’”" Jog) L (Qiﬂ,L(I)l(j(a)l +"'+%))JT[—AL¢|)I’L(I)(ja)l,---,ja)N)J

Qi+1,L(I)(j(a)l +"'+a)ﬁ) ALﬁ(l)il’L(l)(J‘a’n“" JCUN)

=2 (o, 005) (i=L---,n=1) (59)

I=1

Equations (44) and (59) give a comprehensive description for the relationships between

the GFRFs of any two consecutive masses for the nonlinear MDOF system (12).

In addition, denote

ﬂ%l(Ja)laaja)ﬁ)zo (N ,N)(6O)
PG P P (N=1,-,N) (6])

. : 1 if N=1
A(J’N)(Ja)l’”"Ja)ﬁ)z{O ifN:z’...’N (62)

A(L(i)_l’ﬂ)(ja)l""’ Ja)ﬁ) = _Alll\fi)ilﬁl_(i)(jwla"'a Ja)ﬁ) (N = 1""’ N :1 <i SE) (63)
A(L(i)jﬁ)(ja)le'“9 Ja)ﬁ) = A%i)_l’L(i)(ja)la"'a Ja)ﬁ) ( N :19"'9 N 1< i < L) (64)
and L(0)=J. Then, for the first two masses, from equations (34) and (47), it can be

known that
H(m)(jwl,~~-,jwﬁ)_ icy (o +-+ o5)+K,

Zlﬁ’z(wla"'aa)ﬁ): . . - B .
H(Z’N)(Ja)la"'ajwﬁ) [‘”‘1(@1 +"'+a)ﬁ) +k, + jc, (@, +"'+a)ﬁ)

(1= 22 (@, o) Nic (@ ++ o) +k)
(N =1-,N) (65)
Starting with equation (65), and iteratively using equations (36) and (49) from the first

mass, it can be deduce that, for the masses that aren’t connected to nonlinear components
and the Jth spring, the following relationships hold for the GFRFs.

12



ﬂ%”(wl,---,a)ﬁ)
_ H(i,ﬁ)(jwl’""jwﬁ) _ jC.(o +-+og)+k,
Hium U@ Jog) ) J'((l_/q“iﬁl’i (a)l,--~,a)ﬁ))ci +Ci+1)(“’1 ot og)
(1= 2 (@, o) K + Ky —M (@ + -+ )
(1<i<n,i=Jd,L)-LL{1), 1 =0,--,L, N=1---,N) (66)
For the masses that are connected to nonlinear components and the Jth spring, from

equations (37), (50) and (51), it can be known that the following relationships hold for
the GFRFs.

H(i’N)(ja)lﬂ.nﬂ Ja)ﬁ)
H(i+l’N)(ja)l7...7 ja)ﬂ)

—i,i+l ( 1 A(i,ﬁ)(ja)la"'aja)ﬁ)
+

il
ﬂ“%+ (a)la"'awﬁ) =

=/1N (a)l,"',a)ﬁ) 1

ki + jci(wl +”'+wﬁ) H(i“’ﬁ)(ja)l,"', Jwﬁ)

(i=L()-LL{1), 1 =0,---,L, N=1---,N) (67)
where

s jC (o ++w)+k,
lf l(a)l,.“,a)i): J 1( 1 N) 1

N N {j((lﬂ,Nl,(a)l’...’a)N)}:+C|+1Xa)l+...+a)N) :l

+(1—/Iiﬁ"l’i (a)l,---,a)ﬁ))ki +k,, —m(o, +---+a)N)2
(I = L(l)_lal—(l)v I :07"'3E9 N:L'“aN) (68)
Moreover, denote /I”N”’”(a)l,n-,a)ﬁ) =1, (Nzl,---, N), c,,=0and k,,, =0. Then, for
the last two masses, from equations (35) and (48) it is can be deduced that
1 _ H(n’ﬁ)(ja)lﬂn'ﬂja)ﬁ)

lgl,n(wlﬁ...ﬂwﬁ) H(n,l,ﬂ)(ja)lf..?jwﬂ)

,n—1
/lnﬁn (a)la"'awﬁ)

jc,(o +--+o5) +K,

N=1,---,N) (69
[—mn@ol+---+wﬁ)2+(1—z';""(wl,---,wﬁ>)kml+kn} ( H

+ j((l—/lnﬁ“’”(a)l,.--,a)ﬁ))cn+1 +Cn)(a)1 +o 4 o)

Starting with equation (69), and iteratively using equations (36) and (49), it can be
deduce that, for the masses that aren’t connected to nonlinear components and the Jth
spring, the following relationships hold for the GFRFs.

1 3 H(iﬂ)(jwlﬂn'ajwﬁ)

B /?,iﬁ_lﬂi (a)la"'aa)ﬁ) B H(i—l,N)(ja)l’.”’ Ja)ﬁ)

ii-1
ﬂ% (wlv”'vwﬁ)

jc (@ +-+ o) +k

-m (@ ++0y) + (-4 @0k +k}
-2 @ okt o+t )
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(2<i<n,izL0)-1L(0),1=0,--,L, N=1,---,N) (70)
For the masses that are connected to nonlinear components and the Jth spring, from
equations (37), (50) and (51), it can be known that the following relationships hold for
the GFRFs.
H(i,ﬁ)(jwlﬁn'ﬁ Ja)ﬁ)
H(i,l,ﬂ)(ja)lan" Jwﬁ)
:ZI,:_I(a)I,...,a))[H T (a)1+-~+a)) :(i,m((Jja;l)’ Jja;:l))

I (' N (i-1,N) (S N

ii-1
ﬂ% (a)l""’wﬁ) =

N

(i=L)-LL{1), 1 =0,--,L, N=1,---,N) (71)
where
—iic1 jc (o, ++awg)+k

/17 a)’...’a)i — ' '
N ( | N) _m(wl+“.+a)ﬁ)2+(1_l%lyl(a)la"'9a)ﬂ))ki+1+ki
+ j((l—}dﬁﬂ,i (a)l,.n,a)n))q+1 +C )(a)1 +...+a)ﬁ)

(72)
From different perspectives, equations (65)~(68) and equations (69)~(72) give two
alternative descriptions for the relationships between the GFRFs of any two consecutive

masses for the nonlinear MDOF system (12).

4.2 NOFRFs of MDOF Systems with Multiple Nonlinear Components

According to the definition of NOFRF in equation (17), the N th order NOFRF of the ith

mass can be expressed as

N
[ Hig (i@ io)[ [Flio)doy, B
Ja)) _ Ot et OG=0 _ g=1 (1 S N S N’ 1

j [[F(iwydo,,

where F(jw) is the Fourier transform of f (t).

IN
IN

G i <n) (73)

<i,N>(

According to equation (66), for the masses that aren’t connected to nonlinear components
and the Jth spring, equation (73) can be rewritten as

j ﬂ’%-ﬂ(wl9'“9%)H(i+1,ﬁ)(lea'-'a Jwﬁ)HF(qu)daﬁw

@+t O~ =0 g=1

j [TF(iwdo

O+, O =0 g=1
= jco+ky,
Fmo™ + -2 @)Nico+k)+ ook

JG(i+1,N)(ja))

i+1
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(1<i<n,i=L0)=LL{1), 1=0,-,L, N=1---,N)(74)
Therefore, for two consecutive masses that aren’t connected to these nonlinear
components and the Jth spring, the NOFRFs have the following relationship
G(i,ﬁ)(ja)) =/1§+1(a)) _ ic.,
Gum (i@ N [—maf +(1—/?JN’1’i (a))XjCia)+ k )+ jc
(1<i<n,izL0)-LL{1),1=0,--,L, N=1---,N) (75)

o+k.,,

w+k

i+1 i+1

where 23 (0) =0.
Similarly, for the masses that are connected to nonlinear components and the Jth spring,
from equations (67) and (68), it can be deduced that

G(iﬂ)(ja)) i 1 l—‘(i’ﬁ)(jw)

,19“((0): =A- (o) 1+ - -
" Gumio) " ki+ico G, 5 (o)
(i=L)-LL(),1=0,+,L, N=L--,N)(76)
where
—ii+l jc.,o+kK.,
A = — 77
v (@) l— Mo’ + (1 - A (a))chia)Jr k )+ jc, o+k., 77
and
N
.[ A(i,ﬁ)(jwl"”’ij)HF(jwq)dGNw
Oyt O =0 a=1 (78)

j [TF(ieydo,

O+, T OG=0 g=1
Equations (75)~(78) give a comprehensive description for the relationships between the

NOFRFs of two consecutive masses of the nonlinear MDOF system (12).

Using the same procedure, from equations (69)~(72), an alternative description can be

established for the following relationships between the NOFRFs of two consecutive

masses. For the masses that aren’t connected to nonlinear components and the Jth spring

1 G,y (j@) B jco+Kk

AN @) Gy (i) |Fme’ +(1-4 (@))ic,0+k, )+ jco+k |
(2<i<n,i=L0)-1,L0),1=0,--,L, N=1,--,N)(79)

For the masses that are connected to nonlinear components and the Jth spring

1 B G(i,ﬁ)(jw) il 1 F(i,ﬁ)(ja))

i—L,i - ; _/IN (a)) 1+ ; i
/,i’ﬁ (a)) G(i_l’ﬁ)(Ja)) ki + Jclw G(i_lqﬁ)(Ja))

27 (w) =

2 (w) =

(i=L()-1LL{1), 1 =0,--,L, N=1,---,N) (80)
where 27" () =1(N =1,+-,N) and
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—i,ic1 jco+k
2{7 — i i | 1
v O e + (- 2 @)k, + e

(81)

w)+k +a)CiJ

i+1

From different perspectives, both equations (75)~(78) and equations (79)~(81) give a
comprehensive description for the relationships between the NOFRFs of any two

consecutive masses of the nonlinear MDOF system (12).

4.3 The Properties of NOFRFs of the Locally Nonlinear System

Without loss of generality, assume L(1)<:--< L(E) . Then, from equations (75)~(81), the
following important properties of the NOFRFs of MDOF systems with multiple nonlinear

components can be obtained.

i) If J<L(), then for the masses (1<i<J-1 and L([)Si <n), the following

relationships hold.
G..(j G, (] _
M::M (1<i<J-1and L(L)<i<n)(82)
Gy (J@) Gian(Jo)
for the masses (J <i < L(I)—1), the following relationships hold.
G, (] G, (] G, (]
(I,l)(J.a)) ” (,’2)(1.0)) L (|,N)(J.a)) (J<i<L()-1)(83)
Giap(Jo) Gy, o (jo) Gian(Jo)

for the masses (L(1) <i < L(E) ), the following relationships hold.
G(i,l)(j-a)) " G(i,Z)(j.a)) - G(i,N)(j.a))
G<i+1,1>(10)) G(i+1,2)(10)) G(i+1,N)(JC‘))

ii) If LA)<JI<L(L), then for the masses (1<i<L()—1 and L(L)<i<n), the

following relationships hold.

G, . (j G, (] —
M::M (1<i<L()—land L(L)<i<n)(85)
G(i+1,1) (Jo) G(i+1,N) (Jo)
for the masses (L(1) <i < L(E) ), the following relationships hold
G, (] G, (] G,in(l
in(J@) » i (J@) - in (J®)

G(i+1,1)(ja)) G(m,z)(jw) G(i+1,N)(j0))

i) If J> L([) , then for the masses (1<i<L(l)-1 and J<i<n), the following
relationships hold.

(L()-1<i<L(L)) (84)

(L()-1<i<L(L))(86)

G, (] G\ (]
“’”(J,w) == “’N>(’_w) (1<i<L()-1 and J<i<n)(87)
Giny(Jo) Gian(J@)
for the masses ( L(E) <i< J), the following relationships hold.
G(i,l)(J.a)) » G(i,z)(l-a)) o G(i,N)(J.a)) (L(E)Si <J3)(88)
G(i+1,1)(Ja)) G(i+1,2)(Ja)) G(i+1,N)(Ja))
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for the masses (L(1)-1<i < L([) ), the following relationships hold.
G(i,l)(j.a)) ” G(i,2>(j.0)) I G(i,N)(j.C‘))
Giapn(Jo) G,y (jo@) Giun(JO)
iv) For the masses (1<i<min(J,L(1)-1)-1 and max(L([), J)<i<n), the following
relationships of the output frequency responses hold
X (jo)=2" (@)X, (jo)
(1<i <min(J,L(1))-1 and max(L(L),J)<i<n) (90)

(L()-1<i<L(L))(89)

where

jeLo+ky,
mao® +(1- 2" (@) )jco+k )+ jo.,o+k,,]
The first property is straightforward. For the masses on the left of the Jth mass,
substituting A7 (@) =0 (N =1,---,N ) into equation (75), it is obtained that

kK, + jc,w
21,2 =”_=/11,2 — 2 D
(@) v (@) (-me® + jolc, +c,)+k +k,

91

/1LH1 (a)) — [_

)= @) (92)

Subsequently, substituting (92) into equation (76) yields

i k
. Y :..'212’3 ) = JC 0+ K,
2 () VO - A (oo k) Gork]

Iteratively using above procedure until i=(J-1), for the masses (1<i < J—1), property (82)

=" (@) (93)

can be proved.

Similarly, substituting 7" (@) =1 (N =1,---,N) into equation (79), it is known that

_ 1 ~ 1 jc.w+KkK _
ﬂ/n’nla) :—z-..z/lﬁnla) = = n n zﬂ’n,nla) 94
1 ( ) )l?—l,n(a)) N ( ) /«lnﬁ_l,n (a)) [_ m’]a)z + ana)+ knJ ( ) ( )
Subsequently, substituting (94) into equation (79), it can be deduced that
n-1,n-2 1 n-1,n-2 1
’ D) =—— == /17 ’ D)=———=
/11 ( ) i?—Z,n—l (a)) N ( ) /«lnﬁ—Z,n—l (a))

, (95)
jCLotk,,

_an-1,n-2
Fm o +1- 27 @)icork ) joork) ~

Iteratively using above procedure until i = L(E), for the masses (L(E) <i<n), property
(82) can be proved.

Obviously, from equations (62) and (78), it is known that

. 1 if N=1
I s (o)= — 96
(J,N)(J ) {0 if N:2,...,N ( )
Substituting 4™ (@) =---= A"’ (w) and equation (96) into (76), it can be deduced that
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(kJ + JCJ a))G(JH’N) ( J CU)

ﬂl‘J’JH (a)) —eee — ﬂJ’JH (a)) = - . ﬂ’JJJH (a)) (97)
2 N 1+ (k, +JCJa))G(J+1,N)(J0)) 1
Obviously,
/IILJH (a)) # /’L;aJJrl (a)) — e — //i}]\l"]Jrl (a)) (98)
Substituting 477" (w) # 237" (w) =--- = 23, (w) into equation (75), it can be proved that
ﬂ,iJ+IjJ+2 (a)) # /’{;‘HJJ‘*’Z (a)) — . = /1.']\‘4—1,3-#2 (a)) (99)

Iteratively using this procedure until i =L(1)—2, for the masses ( J<i<L(l)-1),
property (83) can be proved.

Then, substituting A-"> 0 (@) 2 020N (@) =-.. = V> (@) into equation (77),

it can be known that
—L(D)-1,L(1) —L(D)-1,L(1) —L()-1,L(1)

A (@) # A2 (w)=---=An (w) (100)
Moreover, generally,
L) Tuwan 09 (101
GLap (J0) Crom(10)
Substituting (100) and (101) into equation (77), it can be deduced that
A OO (@) £ OO () -2 LD () (102)

Iteratively using the procedure until i = L(E) —1, for the masses (L(1)—-1<i< L(E) ),
property (84) can be proved.

Following the same procedure, the second and third properties can be proved. The details

are omitted here.

The fourth property is also straightforward since, according to equation (19), the output

frequency response of the ith mass can be expressed as

Xi+1(ja)):iG(i+1,k)(jw) F (o) (103)
Equation (103) can be rewritten as -
>§+1(J'w)=ZN:/1i|£i“ ()G, (Jo) F (jo) (104)
Using the first three properties, it cak;l1 be known that,
A @) == A (@)= 2 (@)

(1<i<min(J,L(1))—1 and max(L(E),J) <i<n)(105)
Substituting (105) into (104) yields

N i1 - -
X (jo) =2 2" (@)G (jo) F(jo) (106)
k=1
Obviously, X ., (jo) = 2" (@)X (jw) , then the fourth property is proved.

Above fourth properties can be easily extended to a more general case, as the following.
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v) For any two nmasses whose positions are I,Kc [l, min(J, L(1))— 1] , or
I,k c [max(J ,L(L)),n— 1], the following relationships hold.

G, (jw) N G (Jo) (@)
G(k,l)(ja)) G(k,N)(ja))
(i,k <[, min(J, L(1)) 1], or i,k < [max(J, L(L)),n—1]) (107)
and
il,k (a)) — Hﬂ/l+d,l+d+1 (a)) (108)
d=0
Moreover, the following relationships of their output frequency responses hold
X (jo)= 2" (@)% (jo) (109)
vi) If J < L(1), for any two masses whose positions arei,k — [J, L(l)—l], the following
relationships hold.
G(i,l)(J-a)) L G(i,z)(l.a)) o G(i,N)(J.a)) :ii’k(a))
G(k,l)(Ja)) G(k,2)(Ja)) G(k,N)(Ja))

(i.k<[3,L)-1]) (110)
vil)IfJ > L(E), then for any masses whose positions are i,k < [L(E),J], the following

relationships hold.
G, (jo) » G, (j@) N G () — ¥ ()
G(k,l)(ja)) G(k,2)(ja)) G(k,N)(ja))

(i.ke [L@D,I] a1
viii) For any two masses whose positions are i,kg[L(l)—l, L(E)], the following
relationships hold.
G(i,l)(ja’) » G(i,z)(ja)) - G(i,N)(ja))
G(k,l)(ja)) G(k,z)(ja)) G(k,N)(ja))
ix) For any two masses whose positions are ic[l,L(1)-1] and kc[L(1),n] or
e [1, L(L)- 1] and k ¢ [L(E), n], the following relationships hold.
G(i,1)(ja)) » G(i,z)(ja)) I G(i,N)(ja))
G(k,l)(ja’) G(k,2)(ja)) G(k,N)(ja))

The proof of the above five properties only needs some simple calculations. The details

(112)

(113)

are therefore omitted here.

5 Numerical Study

To verify above analysis results, a damped 10-DOF oscillator was adopted, in which the
fourth and sixth spring were nonlinear. The damping was assumed to be proportional
damping, e.g., C = 4K . The values of the system parameters are

m=--=m,=1, k ==k, =k, =3.6x10*, k, =k, =k, =0.8xKk,
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Ky =0.9xk, £=0.01, W, =W,3 =Wg, =Wgs =0
Faa = 0.8xKY, Ty =04xk}, 1o, =0.5%r,,, [y =0.1xr, 5
and the input is a harmonic force, f(t) = Asin(27 x20t).

If only the NOFRFs up to the 4™ order is considered, according to equations (29) and (30),
the frequency components of the outputs of the 10 masses can be written as

X(jor) = G(| y(Joe)F, (Ja)F)+G(| y(jop)F(jor)

X (20 ) = G(| »(j200)F, (Jza)F)+G(| »(120p)F,(j20;)

X (j3op) = G(| »(130p)F;(j30g)

X (j40.) =Gl (j40p F,(jdo;) (i=1,--10) (114)
From equation (115), it can be seen that, using the method in [9], two different inputs with
the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4™
order. Therefore, in the numerical studies, two different inputs were A=0.8 and A=1.0
respectively. The simulation studies were conducted using a fourth-order Runge-Kutta

method to obtain the forced response of the system.
Case 1. Input Force Acting on the Eighth Mass (J = 8)

In this case, the position of the input force is on the right of the two nonlinear
components. The evaluated results of G (jor), G/'(jo.) , G)'(j2w.) and
G;' (j2w, ) for all masses are given in Table 1 and Table 2. According to Property iii) in
the previous section, it can be known that the following relationships should be tenable.

G('i-tl)(ja)F) _ <||-|3)(ja)|:)

ﬁi’iﬂ(ja) )= : IH—l(J ) fOI‘ | :1,2,8,9
1 " G(?+1,1) (Jog) G(il 3) (jo )
. G" (i . .
A (jog) = H“’“(J.w 2 H“’(J. ) ) for i =3,4,5,6,7
G(i+1,1)(Ja)F) G(i+1,3)(Ja)F)
N G, (j2e G/, (j2 .
A 20,y = U20) _ SuoU200) _ a0 ) for 12126789
C:"(i+1 2)(J2a)F) (|+1 4)(]2 £)
. 20 20 .
A (20 ) = ;‘”“ 2 H“‘”(J “e) = 2" (2 ) for i =3,4,5
G(i+1,2) (J20¢) G(i+1,4) ()20¢)
(115)
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Table 1, the evaluated results of G

H(ja)F) and G3H(ja),:)

G (jop) (x10°) G (jor) (x10°)
Mass 1 0.7415267278199+1.816751164684i -1.483934590902 -3.1862594012771
Mass 2 0.9686508822055+3.4829992451511 -2.034574952226-6.147775997808i
Mass 3 0.2866237674289+4.7638972120551 -0.9248301066482-8.4984819285871
Mass 4 -1.462317904435+ 5.295827553965i 2.239865303216-7.6670034432431
Mass 5 -4.094410876431+4.614528872429i 6.580908764112-6.986590863 1641
Mass 6 -7.746867339414+1.688023192826i1 -9.325179952009+ 6.177740218363i
Mass 7 -10.20345149262-3.666962508263i -3.099783998060+6.4667857567351
Mass & -9.510413275294-10.96839663935i 2.056977729641+4.552141996250i
Mass 9 -16.46061750950-2.6059732569061 5.171041280935+2.4785708948581
Mass 10 -19.35855072740+1.845265232929i 6.564490607347+1.2959845116551
Table 2, the evaluated results of G!' (j2w;) and G} (j2w;)
G;' (j2w;) (<107 G;' (j20,) (<10™)

Mass 1 1.202748566964+0.46812926676671 0.01177472689947-0.61454732406251
Mass 2 1.834979003885+1.5488882705761 0.3496457869565-1.0888094699151
Mass 3 1.093072003742+3.364850755945i 1.283912193671-1.0912811557121
Mass 4 -2.686267598254+1.553092622255i1 2.608199029485+1.7940432575831
Mass 5 -6.011457034430+1.2278590953761 2.184292191061+3.969798930410i
Mass 6 5.106241229081-1.766725681899i -1.893210085076-4.132529294142i
Mass 7 1.627889631587-2.6938857010391 -2.387756928966-1.1448780103561
Mass 8 -0.3076562316709-1.585358322807i -1.302621593522+0.3861114911929i1
Mass 9 -0.8845095711763-0.38383442209641 -0.2497346565579+0.7717822225892i
Mass 10 -0.9601836703663+0.2564373781398i 0.2925531660608+0.78326182171791

From the NOFRFs in Table 1 and Table 2, 4'"(jo.), "' (jog), " (j2w, ) and
2 (j2we) (i=1,---,9) can be calculated. The results are given in Table 3 and Table 4.
It can be seen that the results shown in Table 3 and Table 4 have a strict accordance with
the relationships in (115).
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Table 3, the evaluated values of 2/'""'(jo,) and ;' (jo,)

A (joop) 2" (jor)
i=1 0.539116771645 -0.062966074902i 0.539114740172 -0.062960206148i
i=2 0.740676347710-0.158768210839i 0.740678235075 -0.158801705108i
i=3 0.821942385548-0.281082572848i 0.988815929108 -0.4095008722461
i=4 0.799438168470-0.3924366880441 0.741488963114 -0.377838915193i
i=5 0.628478650790-0.4587199158061 -0.835410927162 +0.1957752224591
iI=6 0.619740592208-0.388161663940i 1.338885322270 +0.800231343587i
i=7 0.651280377150-0.3655507800881 0.924193400529 +1.0985661793831
i=8 0.666553636485+0.5608158796621 0.666591724409 +0.5608052598741
i=9 0.829929766156+0.2137253897991 0.829923787276 +0.2137260306421
Table 4, the evaluated values of A" (j2w;)and ;"' (j2ew;)
A (j20) 2 (j20)
i=1 0.508497253663 -0.1741034444401 0.508509862998 -0.1741104053191
i=2 0.576617917017 -0.3580230415301i 0.576584821679-0.3579632015431
i=3 0.237807435696 -1.115121138339i 0.138793754874-0.5138730367921
i=4 0.479618528466 -0.1603918391571 0.624392965910-0.313452235669i1
i=5 -1.125713938165 -0.1490271601971 -0.994124084547+0.0731286887201
i=6 1.319440301221+1.0981676179071 1.319394960471+1.0980946113551
i=7 1.445523160511+1.3073472477021 1.445520238610+1.307371222544i1
=8 0.947244483068+1.381300241262i1 0.947248244745+1.381297530888i
i=9 0.760202911490 +0.602779323827i 0.760201968688+0.6027794745671

Case 2. Input Force Acting on the Fifth Mass (J = 5)

In this case, the input force is located between the two nonlinear components. The
evaluated results of G/ (jwr), G)' (jor), Gf (j2w;) and G,'(j2@; ) for all masses
are given in Table 5 and Table 6. According to Property ii) in the previous section, it can

be shown that the following relationships should be tenable.
! jor) _ G(':3)(ja)F)

A (jwg) = —22 = : =" (jog)  fori=1,2,6,7.89
" Glw(ion) Gl (o) i
N G (jo G (jo N
/1'1"+1(ij)— (I,l)(J F) i (|,3)(J F) _ /1'3"“(]&),:) for | — 3’4,5

- G(?+1,1)(ja)|:) G(?+1,3)(ja)|:) -
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— G, (j2o) G, (i2w:) ... _
A (J20p) = gt =t = A (J2we) for i =1.2,67.8.9
G(i+1,2) (J20¢) G(i+1,4) (J20¢)
i Gia(i20p)  Gily(i2w:) i .
/1I2,I+1(J2w': ) — |-(|I,2) : F l-(|l,4) : F — /1|4,I+1 (Jza)F) fOI‘ i = 3,4,5
G(i+1,2) (J20¢) G(i+1,4) (]20¢)
(116)
Table 5, the evaluated results of G (jw,.) and G (jw,)
Hoo % Hoo 8
G (Joe) (x107) Gy (Joe) (x107)
Nodel -6.004311435381+0.59808101669701 0.1295081340997+1.556090308409i1
Node2 -11.11526321870 -0.1888307567420i1 -0.09555232191420+2.875063343638i1
Node3 -14.29538892099 -3.319252673742i -0.9190827822761+3.6854384691931
Node4 -14.33495756714 -8.940411424246i -8.147538091115+0.9042498552996i1
Node5 -10.02484499526-16.104886826541 -8.409614928777-1.003954297577i
Node6 -11.66774855007 -7.3967381226961 5.405178957847+5.0501936170281
Node7 -8.853271381015 -0.2333059825496i1 4.635482228708+1.0013060893511
Node8 -4.094410864503+ 4.614528943238i 2.612399846945-2.0218445014021
Node9 -0.1863928697550+7.0793756934771 0.8006120355434 -3.706665572718i1
Nodel0 1.849477584057+8.0538672605891 -0.1739577595525-4.4214735931171
Table 6, the evaluated results of G}' (j2w,.) and G (j2w;)
Ho s 8 Ho s 10
G, (J2w¢) (x107) G, (J20¢) (x1077)
Nodel -6.909233458613-1.949535672491i 6.139860082511+20.002496019421
Node2 -10.98761266955-7.5957101485831 -1.246535839654+38.91203058802i1
Node3 -7.846059575930-18.046116664441 -31.80550973916+47.72222810926i
Node4 -3.958911551108+2.5420046033551 -6.895109772109 -9.7451188141361
Node5 11.36534576060-11.30577344782i -51.06352947352-33.38863242228i
Node6 -0.07046569941447+21.52523824551i 51.82672918796-1.461435366305i1
Node7 7.990357154274+9.66497925063 61 22.66182418325-19.97094746422i
Node8 6.366778422385+0. 9277715851552i 1.750248731000-15.398372888571
Node9 2.606698134275-2.8216899661571 -6.991103479880-6.0613946205981
Nodel0 0.2982812100639-3.9482803156431 -9.528102406109 -0.41835447813861
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From the NOFRFs in Table 5 and Table 6, 2'"'(jo.), A" (jop), 45" (j2w,) and
21 (j20p) (i=1,---,9) can be calculated. The results are given in Table 7 and Table 8.
It can be seen that the results shown in Tables 7~8 have a strict accordance with the

relationships in (116).

Table 7, the evaluated values of 4/'""'(jo,) and ;"' (jo,)

A (joop) 2" (jor)
i=1 0.539116475689 -0.0629659212741 0.539144288494-0.0629636989091
i=2 0.740677219089 -0.158768963590i1 0.740525663557-0.158746936134i1
i=3 0.821938417409 -0.281076168130i 0.161023987718-0.4344665237541
i=4 0.799439023625 -0.392471262929i 0.942565996984-0.220050864920i1
i=5 1.237062417913 +0.596058446920i -0.923341628835+0.6769618048241
iI=6 1.338989660357 +0.800195037459i1 1.338905575647 +0.8002488474861
i=7 0.924175246088 +1.098555946898i 0.924193246937 +1.0985612050391
i=8 0.666592586075 +0.5608069032251 0.666591608191+0.5608055385241i
i=9 0.829923646648 +0.2137256543991 0.829923826262+0.213725968290i1
Table 8, the evaluated values of A" (j2w;)and ;"' (j2ew;)
A (j2a0) 2 (j20)
i=1 0.508479126951-0.174080070890i1 0.508467502449 -0.174076832929i1
i=2 0.576625221246 -0.358158874336i 0.576653888587 -0.358202785310i
i=3 -0.669148901810 + 4.1286946840561 -1.724486070038 -4.483888942345i
i=4 -0.286911040971-0.0617444150251 0.182002416343 + 0.0718381019241
i=5 -0.526956204410 -0.5262758671421 -0.966339150393 -0.671485065289i
i=6 1.319350502086 +1.0980414078031 1.319244199748 +1.098107594434i
i=7 1.445521775923 +1.3073904365741 1.445556127111+1.3073940702611
=8 0.947249859811 +1.3812941984661 0.947246001989 +1.381289963097i
i=9 0.760201320744 +0.6027799887971 0.760201704191+0.6027811822931

The two numerical case studies verify the properties of the NOFRFs of MDOF systems
with multiple nonlinear components derived in the present study. These properties can
provide a convenient method to detect the positions of the nonlinear components in a
MDOF system by analyzing the relationships between the NOFRFs.
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6 Conclusions

In this paper, significant relationships between the NOFRFs of MDOF systems with

multiple nonlinear components have been derived and verified by numerical studies. The

results reveal, for the first time, important properties of this general class of MDOF

nonlinear systems and can be used to detect and locate faults in engineering structures

which make the structures behave nonlinearly.
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