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Abstract: Based on the Nonlinear Output Frequency Response Functions (NOFRFs), a
novel method is developed to detect the position of nonlinear components in MDOF
nonlinear systems. The validity of this method is demonstrated by numerical studies.
Although the method assumes that the linear stiffness and damping for MDOF systems
under study are known a priori, the results of the numerical studies indicate that, even if
only approximate values of the linear stiffness and damping parameters are used, the
method can still correctly detect the position of the nonlinear component. Since the
position of a nonlinear component often corresponds to the location of a defect in a
MDOF system, this new method is of practical great significance for fault diagnosis in

mechanical and structural systems.

1 Introduction

In engineering practice, for many mechanical and structural systems, more than one set of
coordinates are needed to describe the system behaviors. This implies an MDOF model is
needed to describe the system. In addition, there are considerable mechanical and
structural MDOF systems that behave nonlinearly just because one or a few components
have nonlinear properties. One of the well known examples is beam structures [1] with
breathing cracks, the global nonlinear behaviors of which are caused only by a few
cracked elements. These nonlinear MDOF systems are locally nonlinear MDOF systems
where the nonlinear component is often the component where a fault or abnormal
condition occurs. Therefore it is of great significance to effectively detect the position of

the nonlinear component in a MDOF system.

The Volterra series approach [2] is a powerful method tool for the analysis of nonlinear

systems, and extends the familiar concept of the convolution integral for linear systems to



a series of multi-dimensional convolution integrals. The Fourier transforms of the
Volterra kernels are known as the kernel transforms, Higher-order Frequency Response
Functions (HFRFs) [3], or more usually Generalised Frequency Response Functions
(GFRFs). These provide a convenient concept for analyzing nonlinear systems in the
frequency domain. If a differential equation or discrete-time model is available for a
nonlinear system, the GFRFs can be determined using the algorithm in [4]~[6]. The
GFRFs can be regarded as the extension of the classical frequency response function
(FRF) for linear systems to the nonlinear case. The concept of Nonlinear Output
Frequency Response Functions (NOFRFs) [7] is an alternative extension of the FRF to
the nonlinear case. NOFRFs are one dimensional functions of frequency, which allow the
analysis of nonlinear systems to be implemented in a manner similar to the analysis of
linear systems, and which provides great insight into the mechanisms which dominate

many important nonlinear behaviors.

In this paper, a novel quick method is derived based on the NOFRF concept to detect the
position of the nonlinear component in a MDOF nonlinear system under the assumption
that the values of the linear stiffness and damping for the MDOF nonlinear system are
known a priori. Numerical studies verify the effectiveness of the method and indicate that,
even if only the approximate values of the linear stiffness and damping parameters are
used, the method can still correctly detect the position of the nonlinear component. The
new method is of practical great significance for fault diagnosis in mechanical and

structural systems.

The paper is organized as follows. Section 2 gives a brief introduction to the new concept
of NOFRFs. Some important properties of the NOFRFs for locally nonlinear MDOF
systems, which were first revealed in the authors’ recent studies [8], are introduced in
Section 3. The novel method for the nonlinear component position detection is presented
in Section 4. In Section 5, two numerical case studies are used to verify the effectiveness

of the proposed method. Finally conclusions are given in Section 6.

2. Output Frequency Response Functions of Nonlinear Systems

2.1 Output Frequency Response Functions under General Input

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems.
The Volterra series extends the well-known convolution integral description for linear
systems to a series of multi-dimensional convolution integrals, which can be used to

represent a wide class of nonlinear systems [3].



Consider the class of nonlinear systems which are stable at zero equilibrium and which

can be described in the neighbourhood of the equilibrium by the Volterra series
N o . n
YO =2 [ bt ) Ju - 7)dx, (1)
n=1 i=l

where »(¢) and u(¢) are the output and input of the system, %, (z,,...,7,) is the nth order
Volterra kernel, and N denotes the maximum order of the system nonlinearity. Lang and
Billings [3] derived an expression for the output frequency response of this class of
nonlinear systems to a general input. The result is
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This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (2), Y(jw) is the spectrum of the

system output, ¥ (j@) represents the nth order output frequency response of the system,
H, (1o j©,) = [ ] B (@i, )e O 0 d e, 3)
is the nth order Generalised Frequency Response Function (GFRF) [3], and
j H,(joy.... jo)[[U(jo,)do,,
i=1

denotes the integration of H, (jo,,..., jo, )H U(jw,) over the n-dimensional hyper-plane
i=l

@, ++--+w, = . Equation (2) is a natural extension of the well-known linear relationship

Y(jw)=H(jo)U(jow) , where H(jw) is the frequency response function, to the

nonlinear case.

For linear systems, the possible output frequencies are the same as the frequencies in the
input. For nonlinear systems described by equation (1), however, the relationship between
the input and output frequencies is more complicated. Given the frequency range of an
input, the output frequencies of system (1) can be determined using the explicit expression

derived by Lang and Billings in [3].

Based on the above results for the output frequency response of nonlinear systems, a new
concept known as the Nonlinear Output Frequency Response Function (NOFRF) was
recently introduced by Lang and Billings [7]. The NOFRF is defined as
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under the condition that
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Notice that G,(jw) is valid over the frequency range of U, (jw), which can be
determined using the algorithm in [3].

By introducing the NOFRFs G, (jw), n=1,---N, equation (2) can be written as

1@@=Z&@m=2@ummum (6)

n=1
which is similar to the description of the output frequency response for linear systems.
The NOFRFs reflect a combined contribution of the system and the input to the system
output frequency response behaviour. It can be seen from equation (4) that G,(j®)
depends not only on H, (n=1,...,N) but also on the input U(jw). For any structure, the
dynamical properties are determined by the GFRFs H, (n= 1,...,N). However, from
equation (3) it can be seen that the GFRF is multidimensional [9][10], which can make
the GFRFs difficult to measure, display and interpret in practice. Feijoo, Worden and
Stanway [11][12] demonstrated that the Volterra series can be described by a series of
associated linear equations (ALEs) whose corresponding associated frequency response
functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to
equation (4), the NOFRF G, (jw) is a weighted sum of H, (j®,,...,jo®,) over
®, +---+ o, = o with the weights depending on the test input. Therefore G, (j®) can be
used as an alternative representation of the dynamical properties described by H, . The
most important property of the NOFRF G, (jw) is that it is one dimensional, and thus
allows the analysis of nonlinear systems to be implemented in a convenient manner
similar to the analysis of linear systems. Moreover, there is an effective algorithm [7]
available which allows the estimation of the NOFRFs to be implemented directly using

system input output data.

2.2 Output Frequency Response Functions under Harmonic Inputs

Harmonic inputs are pure sinusoidal signals which have been widely used for the
dynamic testing of many engineering structures. Therefore, it is necessary to extend the

NOFRF concept to the harmonic input case.



When system (1) is subject to a harmonic input
u(t) = Acos(w.t + f) (7)

Lang and Billings [3] showed that equation (2) can be expressed as

Y(jo)= ¥, (jo) - Z( zln

D H,(jo o jo Ao ) A(o,) | ()

O+ -+, =0
where

| A|e” 0P if o, elkop k=%1}i=1-n

0 otherwise

A(jo, )= { )

Define the frequency components of nth order output of the system as €, . Then
according to equation (8), the frequency components in the system output can be
expressed as

a={]JQ, (10)

and Q  is determined by the set of frequencies
{a)=a)kl+--~+wk”|a)ki=J_ra)F,i=1,~--,n} (11)
From equation (11), it is known that if all @, ,---,, are taken as — @, , then ® =-nao,.
If k of these are taken as w,, then ® = (—n+2k)®, . The maximal k is n. Therefore the
possible frequency components of Y,(j®) are
Q,={(-n+2k)w, ,k=01,n} (12)
Moreover, it is easy to deduce that
Q:LNJQn ={kw, ,k=-N,--,—-1,0,1,---, N} (13)
n=1
Equation (13) explains why superharmonic components are generated when a nonlinear
system is subjected to a harmonic excitation. In the following, only those components

with positive frequencies will be considered.

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as

1 . . ) )
Y H,(jo, e jo, VAo, ) A(jo,)

Wy + Oy =0

1
21’!

G (jw)= n=1,.,N (14)
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under the condition that
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Obviously, G/ (jw) is only valid over Q, defined by equation (12). Consequently, the
output spectrum Y (jw) of nonlinear systems under a harmonic input can be expressed as

N N
Y(jw)=2 Y,(jo) =2 G/ (jo) 4,(jo) (16)
n=1 n=1
When k of the n frequencies of @, ,---,@, are taken as @, and the remainders are as
— ;. , substituting equation (9) into equation (15) yields,
A, (o 2K0p) = AT /08 (7
Thus G/ (jw) becomes
k n—k
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where H,(j@,,..., jo,) is assumed to be a symmetric function. Therefore, in this case,

G (jw) over the nth order output frequency range Qn={(—n+2k)a)p,k :O,l,---,n} is
equal to the GFRF H, (j,,..., jo,) evaluated atw, == 0, = 0., @, =" =0, =—0,
k=0,--,n.

3. NOFRFs of Locally Nonlinear MDOF Systems

The locally nonlinear MDOF systems to be investigated are as shown in Figure 1.

ki mi ky my my-1 ko my

M- A1

C1 (6] Cn
X1 l ") Xn-1 > Xn

Figure 1, a multi-degree freedom oscillator

If all springs and damper are of linear properties, then the governing motion equation of

the MDOF oscillator in Figure 1 can be written as
Mi+Cx+Kx=U(t) (19)
where M is the system mass matrix,

where



m, 0 0
oM 0 m, 0
0 O m
is the system mass matrix, and
¢ +c, -—c 0 0 k,+k, —k, 0 0
—c, Cte, —¢ : -k, hky+k, -k :
c=| 0 ’ 0 |K= 0 ’ . 0
: . —-c¢,, ¢, +c, —c, : -k, k,, +k, -k
|0 0 -c, ¢, | 0 0 -k, k, |
are the system damping and stiffness matrix respectively. x=(x,,---,x,) is the

displacement vector, and
J -1 n—J

—N
()= (0, OfU)O -0)
1s the external force vector acting on the oscillator.
Equation (19) is the basis of the modal analysis method, which is a well-established
approach for determining dynamic characteristics of engineering structures. In the linear

case, the displacements x,(¢) (i=1,---,
x,(0) =] h, (=) f(2)dz

where 4, (1) (i=1,---,n) are the impulse response functions that are determined by
equation (19), and the Fourier transform of #, (¢) is the well-known FRF.

n ) can be expressed as

(20)

Assume the Lth spring has nonlinear stiffness and damping, and the restoring forces
S,(A) and S,,(A) are the polynomial functions of the deformation A and A
respectively, e.g.,

P . P ..
Sis(M)=DrA, S,(A) =) wA (21)
i=1 i=1

where P is the degree of the polynomial. Without loss of generality, further assume
L#1,n. Then the motion of the oscillator in Figure 3 is determined by equations
(22)~(26) as follows.

For the masses that are not connected to the Lth spring, the governing motion equations are

mx, +(c, +¢,)x —c,x, +(k, +k )x1 —kyx, =0 (22)

mX; +(C; + ¢ )X, =Xy — oy Xy + (K + k)X, — — kX, =0
(i#L-1,L)(23)
mx, +c,x,—c, X, +kx —kx =0 (24)

Denote k, =7, and ¢, =w,, then for the mass that is connected to the left of the Lth
spring, the governing motion equation is



my X, + (ke +h)x —k o x, , —kpx, (e, e )X,

) ) E ;= . o (25)
TC X TCX +zri(xL—l —x;) +2Wi(xL—1 -x,) =0
i=2 i=2

For the mass that is connected to the right of the Lth spring, the governing motion
equation is
myXp+(ky +kp)x, —kpx, —kp x4 (e +e )X,

: : L P e o (26)
—C X T X T Z”[ (X, —x,) — Z w (X, —x,) =0
i=2 i=2
Denote
NonF = w, (i, =%,)" + 2 r(x, = x,) 27
i=2 i=2

NF=(0 -+ 0 NonF —NonF 0 --- 0) (28)

Then, equation (22)~(26) can be rewritten in a matrix form as
Mx +Cx+ Kx =—NF + F(t) (29)

The system described by equations (27)~(29) is a typical locally nonlinear MDOF system.
The Lth nonlinear component can lead the whole system to behave nonlinearly. In this
case, the Volterra series can be used to describe the relationships between the

displacements x,(¢) (i =1,---,n) and the input force f(¢) as below
SAOED Y I BN CINES) | FACEE AT (30)
j=1 i=1

where A, (7,...,7;) is the jth order Volterra kernel associated to the ith mass. In the

frequency domain, the relationship (30) can be expressed as
N N
X, (jo)= ZX(i,l)(ja)) = ZG(i,l)(ja))Ul(ja)) (i=1,---,n)(31)
=1 =1
where G, ,(jw) is the Ith order NOFRF associated to the ith mass.

As the authors’ recent studies [8] revealed, for any two consecutive masses, the NOFRFs
satisfy

Ay = D g Gy = (I<i<n-1)(32)
G(i+l,2) (Jo) G(i+1,N) (Jo)
and
A (jw) = G(f’”(f'w) _ Y (]7)) =" (jo) (1<i<L-2,2<Z<N)(33)
G(i+1,1) (Jo) G(i+1,Z) (Jo)
and

G([,l) (Jo) " G(i,Z)(ja))
G(i+1,l) (o) G(i+l,Z) (Jo)
where, by setting 5 (@) =0, 2" (jw) (1<i<n-1,1<Z < N ) are described as

A (jw)= =" (jow) (L-1<i<n-1,2<Z<N)(34)



ﬂ’i,Hl (]a)) — jciHa) + ki+1 1 + /\[,ZI-Jr1 (_]C())
‘ l_ mia)z +(1_ﬂviziu (ja))xjcia)+ki)+jci+la)+ki+1J JCin@+k,,

(1<i<n-1,1<Z<N)(35)

and
0 forZ=1,ori#L—-1L
- T 10)
Al,ZHl(ja)): _L(‘.]) forZ>2andi=L-1 (36)
Gn(jo)
r 10
L(]‘) forZ>2andi=L
Gz (JO)

and I, ,, (jow) is a term introduced by the nonlinear force NonF" for the Zth order
NOFRF.

Furthermore, A;"'(j®) (2<Z < N) can also be described as [8]
/11‘Z,i+1 (jo) = Qi,L—l (]a’) - Qi,L (]a’)
QHI,L—I (jo)— Qi+1,L (Jo)

(i=1---,n-1) (37)

where
Q(l,l)(jw) Q(l,n)(jw)
: : =(- Mo + jCo+K)" (38)
Q(n,l) (Jo) - Q(n,n) (Jo)
When the input u(¢) is a sinusoidal type force of frequency w, , according to the

definition of NOFRFs under a harmonic input in Section 2.2, it is known from equation

(32), that
G(i,z) (J20.) _ G(i,4) (J2m.) o G(i,ZJ) (Jo) ez g (j2w,)
G(i+1,2) (J2w;) G(i+l,4) (J2w) G(i+l,2J)(ja))
G(i,S) (j3wg) _ G(i,S) (j3wr) L G(i,2J+1) (j3wz) T (j3@,)
G(i+1,3) (J3wy) G(i+1,5) (J3wy) G(i+1,2./+1) (J3wz)

(J=12,) (i=L-,n-1) (39)

Moreover, according to equations (16) and (17), the 2™ order superharmonic component
of x,(t) (i =1,---,n) can be written as

X.(J2w:)= z G(i,2+2J) (J2w.)A4,,,,(j20,)
J=0

=2 (jza)p )Z G(i+1,2+2j) (jza)F )A2+21 (jsz )= A (jsz )XH—I (jza)F)

J=0
(i=1,--,n-1) (40)
Consequently
X, (J20;)

ﬂi,i-%—l (]20) ) —
T XaG2e;)

(i=1---,n-1) (41)
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Similarly, it can be deduced that

- X.(jD
ﬂ’z,z+1 (]DG)F) — z(] a)F)
X.a(jDoy)

Equation (42) provides a simple way to estimate the 2""*'(jDew,) for a locally nonlinear

(D>2,i=1,n—1)(42)

MDOF system subjected to a harmonic excitation. Based on equations (37), (38) and (42),
a novel method for detection of the position of the nonlinear component in MDOF

nonlinear systems can be developed.

4. A Novel Method for the Nonlinear Component Position
Detection

Assume the system masses, linear stiffness, and damping are known a priori. Then from
equations (37) and (38), the theoretical 2" (jw)=A,"(jw),(Z>2,i=1,---,n—1) can
be determined at any frequency of interest. It is known from (37) that 2""'(jw),
(i=1,---,n—1) are different if the nonlinear element is at a different position in a MDOF
system, and there are in total n different sets of A"*'(jw), (i=1,---,n—1) which
correspond to the nonlinear element is located in front of mass 1, in front of mass 2,...,
and in front of mass n, respectively. Therefore, I"*'(jw), (i=1,---,n—1) can more
comprehensively be denoted as A""'(jo,P), (i=1---,n-1, P=1,---,n ) with
A" (jo,P) (i=1,---,n—1) representing the case where the nonlinear element is in front
of mass P.

When using a sinusoidal force to excite the system (29), from the FFT spectra of all
masses, the values of ""*'(jDw,) (D>2,i=1,---,n—1) can be estimated using equation
(42). Denote the estimated A"*'(jDw, ) as "' (jDw,), (i=1,---,n—1). The estimated
A (jDw,), (D=2, i=1,---,n—1), reflect the real situation regarding the MDOF
system under investigation, and if there exists a nonlinear element in front of mass P* in
the system, then A*'(jDw,), (D=2, i=1,---,n—1) be very close to A“"'(jDw,,P)
(i=l--,n=1) where P"e{l,---,n} . Consequently, comparing A“*'(jDew,)
(i=Ll--,n-1) with ' (jDw,,P) ,(i=1,-,n—1) for P=1,---,n respectively, the
position of the nonlinear component in the system can be detected. This procedure can be
finished using only one super-harmonic component. To compare the theoretical and

estimated A" (jDw, ), the following criterion is defined.
n—1

CR(DG)F,P) = Z ﬂ’i’Hl (.]DC()F,P) _j:i,“—l (]Da)F) (P = 1,' "7”) (43)
i=1

Obviously, P is P e {1,---,n} which makes CR(Dw,,P)reach a minimum. It is worth

noting here that, if there are nonlinear elements in the system, then A (jDw,)=0,

11



(D>2,i=1,---,n—1). Therefore it is readily apparent when there is no need to use the
above detection procedure. The novel nonlinear component position detection method
can be illustrated as Figure 2. This method requires only once testing on the system
excited by a sinusoidal force, and this testing is very easy to carry out in practices. In the

following section, the validation of this method will be demonstrated using numerical

studies.
N A (jDao, ) i A (jDag ) R
| Nii+l g ik .
C. | D=4 (jDw,) | M'F!nd
K | :: A | inimum
Qi+l o« iit+ .
A" (jDw, P) =l A l(jDCUF,P) CR(Dwp, P)
|- A (jDw,)
System :Vr\ D) Nonlinear Component
Responses| Do) | Position

Figure 2, An illustration of the nonlinear component position detection method

4 Numerical Studies

In order to verify the nonlinear component position detection method, a damped 6-DOF
oscillator was used, in which the fourth spring was nonlinear. The damping was assumed to

be a proportional damping, e.g., C = xK in the system.
Case Study 1:

In this case study, it was assumed that exact values of the system parameters were known,
such that
m o=-=mg=1, r=k =k, =k, =3.6x10*, k, =k, =k, =0.8k,
1£=001,7r,=08xr, r,=04xr>, w =, w,=0

A sinusoidal force f(¢)=sin(2z x20t) was imposed at the right end of this system. The
responses of the system were obtained using a fourth-order Runge—Kutta method. The
second super-harmonic components were used to evaluated A (j2w, ), which were
extracted from the FFT spectra of the time domain responses of the system for all masses.
The results of the second super-harmonic components are given in Table 1 together with
the estimated values of 4*'(j2w,) (i=1,2,3,4.5).

12



Table 1, the 2" super-harmonic components and the estimated A" (j2w,)

2" super-harmonic component (x107*)

A(j20;)

=1 -0.6461521410580136+5.4781860222781891 0.50849962047351 - 0.17411767162634i1
=2 -4.439137103744961+9.2532100640754151
. 0.57675761032261 - 0.35796570185620i1
=3 -12.7447501696 + 8.1334455596i1
L -1.02837135854548 +0.118729050969351
=4 13.1312349859 - 6.3930081648i
1.03832500526562 + 1.465550441476941
=5 1.322154576933986-8.0232030881342611
0.70023715649501 + 0.753397127473761
i=6 -4.838497222254842-6.2520149623463551
Table 2, the theoretical values of 2" (j2w,,P),(P=1,---,6)

A (jRo, 1) (o, ,2)
i=1 1.179323817912+0.9992478462241 -0.784763926987-0.6922762364151
=2 1.174310736705+0.801658316220i1 1.174310736705+0.801658316220i1
i=3 1.504482187569+1.6102510612801 1.504482187569+1.6102510612801
= 1.038342271019+1.4655308103311 1.038342271019+1.4655308103311
i=5 0.700234895312+0.7533918805531 0.700234895312+0.7533918805531

Continue Table 2, the theoretical values of "' (j2w,.,P),(P=1,---,6)

ﬂi,Hl (jza)F ’3) ﬂi,Hl (jza)F ’4)
i=1 0.508500698735-0.1741179082741 0.508500698735-0.1741179082741
i=2 -0.999717533262-0.0995137249551 0.576764434890-0.3579558251381
=3 1.504482187569+1.610251061280i1 -1.028375362198+0.1187308889231
=4 1.038342271019+1.4655308103311 1.038342271019+1.465530810331i
i=5 0.700234895312+0.7533918805531 0.700234895312+0.7533918805531

Continue Table 2, the theoretical values of A" (j2w,.,P),(P=1,---,6)

ﬂi,i-%—l (]ZCUF ’5) ﬂi,i-%—l (]ZCUF ,6)
i=1 0.508500698735-0.1741179082741 0.508500698735-0.1741179082741
i=2 0.576764434890-0.3579558251381 0.576764434890-0.3579558251381
i=3 0.305897755849-0.3751056727601 0.305897755849-0.3751056727601
i=4 -1.362224869506-0.2536458797231 0.476687965486-0.4040255854911
=5 0.700234895312+0.7533918805531 -0.579291926018-0.3708809040951
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Table 3, the values of CR(2w,.,P),(P=1,---,6)

CR2w,,P) Detection Result
P=1 5.52794713791494
pP=> 5.47761999857445
P=3 4.47951566678550
P=4 0.04971799187401 u
P=5 4.37472658869104
P=6 5.31224542996768

The theoretical results of A" (j2w,,P),(P=1,---,6) calculated by equations (37) and
(38) are given in Table 2. The results of CR(2w,,P),(P=1,---,6) are given in Table 3.
Obviously, when P=4, CR(2w,,P) reaches a minimum, therefore P*=4 and the

nonlinear component is located in front of the fourth mass of the MDOF nonlinear system.
Case Study 2:

In this case study, was is assumed that the true values of the system parameters are the
same as those used in Case Study 1, but the following approximate linear parameters were

used in the computations for the method

m o=-=mg=1, k =k, =1.1x3.6x10*, k, =k, =k, =0.9x3.6x10*,
ks =0.7x3.6x10*, 1 =0.01
Using the above parameters, """ (j2w,.,P),(P =1,---,6) can be calculated by equations
(37) and (38), and the results are given in Table 4. Obviously, the values of y (J2m,)

estimated from the output responses are the same as the results in Table 1.

Table 4, the theoretical values of A" (jo.,P),(P=1,---,6)

A (jRo, 1) (o, ,2)
i=1 1.253371165233+0.8872505720731 -0.736586166221-0.594551469301i
=2 1.168186285650+1.0203460527061 1.168186285650+1.0203460527061
i=3 1.482901747843+0.9997230099551 1.482901747843+0.9997230099551
i= 0.896969824658+1.6706785603491 0.896969824658+1.6706785603491
i=5 0.756153783967+0.6894589328061 0.756153783967+0.6894589328061
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Continue Table 4, the theoretical values of "' (j2w,,P),(P=1,---,6)

220, 3)

(20, 4)

0.507028271342-0.1583543585441

i=1 0.507028271342-0.1583543585441
=2 -1.108636242757-0.1681231777031 0.530884555351-0.3624754192021
i=3 1.482901747843+0.9997230099551 -1.015573064129+0.117020444923i
i=4 0.896969824658+1.6706785603491 0.896969824658+1.6706785603491
i=5 0.756153783967+0.6894589328061 0.756153783967+0.6894589328061
Continue Table 4, the theoretical values of A" (j2w,.,P),(P=1,---,6)
A (2w, ,5) A (2w, ,6)
i=1 0.507028271342-0.1583543585441 0.507028271342-0.1583543585441
i=2 0.530884555351-0.362475419202i1 0.530884555351-0.362475419202i
i=3 0.468994520647-0.354362387036i1 0.468994520647-0.354362387036i1
i=4 -1.198292207322-0.2407870866391 0.365256683350-0.4176064745811
i=5 0.756153783967+0.6894589328061 -0.576466441813-0.4220696739891
Table 5, the values of CR(2w,.,P),(P =1,---,6)
CR2w,.,P) Detection Result

P=1 5.79188658448588

P=> 5.80937804515177

P=3 4.70726329626786

P=4 0.40889372537850 |

P=5 4.53038174196069

P=6 5.36749945856376

The results of CRQ2w,,P),(P=1,---,6) are given in Table 4. Obviously, when P=4,
CR(2w,.,P) reaches a minimum, therefore again the nonlinear component is determined
to be in front of the fourth mass of the MDOF nonlinear system. This case study implies
that, even if the exact information of the system is not available, the nonlinear component

position method can still achieve a good result.

5 Conclusions and Remarks

Based on the properties of NOFRFs, a novel method is developed to detect the position of

the nonlinear component in MDOF nonlinear system where the linear stiffness and
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damping parameters are assumed to be known a priori. Two numerical studies have been
used to demonstrate the effectiveness of this method. The results show that, even if only
approximate values of the linear stiffness and damping parameters are available, the
method can still achieve a correct detection of the position of the nonlinear component.
The distinct advantage of this method is that it only needs a set of test data under a
sinusoidal input force. Since the position of the nonlinear component in a MDOF system
often corresponds to the location of a fault, the nonlinear component position detection
method is of practical significance for the fault diagnosis in mechanical and structural

systems.
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