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Abstract: Based on the Nonlinear Output Frequency Response Functions (NOFRFs), a 

novel method is developed to detect the position of nonlinear components in MDOF 

nonlinear systems. The validity of this method is demonstrated by numerical studies. 

Although the method assumes that the linear stiffness and damping for MDOF systems 

under study are known a priori, the results of the numerical studies indicate that, even if 

only approximate values of the linear stiffness and damping parameters are used, the 

method can still correctly detect the position of the nonlinear component. Since the 

position of a nonlinear component often corresponds to the location of a defect in a 

MDOF system, this new method is of practical great significance for fault diagnosis in 

mechanical and structural systems. 

1 Introduction 

In engineering practice, for many mechanical and structural systems, more than one set of 

coordinates are needed to describe the system behaviors. This implies an MDOF model is 

needed to describe the system. In addition, there are considerable mechanical and 

structural MDOF systems that behave nonlinearly just because one or a few components 

have nonlinear properties. One of the well known examples is beam structures [1] with 

breathing cracks, the global nonlinear behaviors of which are caused only by a few 

cracked elements. These nonlinear MDOF systems are locally nonlinear MDOF systems 

where the nonlinear component is often the component where a fault or abnormal 

condition occurs. Therefore it is of great significance to effectively detect the position of 

the nonlinear component in a MDOF system.  

The Volterra series approach [2] is a powerful method tool for the analysis of nonlinear 

systems, and extends the familiar concept of the convolution integral for linear systems to 
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a series of multi-dimensional convolution integrals. The Fourier transforms of the 

Volterra kernels are known as the kernel transforms, Higher-order Frequency Response 

Functions (HFRFs) [3], or more usually Generalised Frequency Response Functions 

(GFRFs). These provide a convenient concept for analyzing nonlinear systems in the 

frequency domain. If a differential equation or discrete-time model is available for a 

nonlinear system, the GFRFs can be determined using the algorithm in [4]~[6]. The 

GFRFs can be regarded as the extension of the classical frequency response function 

(FRF) for linear systems to the nonlinear case. The concept of Nonlinear Output 

Frequency Response Functions (NOFRFs) [7] is an alternative extension of the FRF to 

the nonlinear case. NOFRFs are one dimensional functions of frequency, which allow the 

analysis of nonlinear systems to be implemented in a manner similar to the analysis of 

linear systems, and which provides great insight into the mechanisms which dominate 

many important nonlinear behaviors.

In this paper, a novel quick method is derived based on the NOFRF concept to detect the 

position of the nonlinear component in a MDOF nonlinear system under the assumption 

that the values of the linear stiffness and damping for the MDOF nonlinear system are 

known a priori. Numerical studies verify the effectiveness of the method and indicate that, 

even if only the approximate values of the linear stiffness and damping parameters are 

used, the method can still correctly detect the position of the nonlinear component. The 

new method is of practical great significance for fault diagnosis in mechanical and 

structural systems. 

The paper is organized as follows. Section 2 gives a brief introduction to the new concept 

of NOFRFs. Some important properties of the NOFRFs for locally nonlinear MDOF 

systems, which were first revealed in the authors� recent studies [8], are introduced in 

Section 3. The novel method for the nonlinear component position detection is presented 

in Section 4.  In Section 5, two numerical case studies are used to verify the effectiveness 

of the proposed method. Finally conclusions are given in Section 6.

2. Output Frequency Response Functions of Nonlinear Systems 

2.1 Output Frequency Response Functions under General Input 

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. 

The Volterra series extends the well-known convolution integral description for linear 

systems to a series of multi-dimensional convolution integrals, which can be used to 

represent a wide class of nonlinear systems [3]. 
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Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (2), )( ωjY  is the spectrum of the 

system output, )( ωjYn  represents the nth order output frequency response of the system, 
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is the nth order Generalised Frequency Response Function (GFRF) [3], and 
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1 )(),...,( ωωω

ωωω =++ nL1 . Equation (2) is a natural extension of the well-known linear relationship 

)()()( ωωω jUjHjY = , where )( ωjH  is the frequency response function, to the 

nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 

input. For nonlinear systems described by equation (1), however, the relationship between 

the input and output frequencies is more complicated. Given the frequency range of an 

input, the output frequencies of system (1) can be determined using the explicit expression 

derived by Lang and Billings in [3].  

Based on the above results for the output frequency response of nonlinear systems, a new 

concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 

recently introduced by Lang and Billings [7]. The NOFRF is defined as 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 

determined using the algorithm in [3]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , equation (2) can be written as  
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which is similar to the description of the output frequency response for linear systems. 

The NOFRFs reflect a combined contribution of the system and the input to the system 

output frequency response behaviour. It can be seen from equation (4) that )( ωjGn  

depends not only on  (n=1,�,N) but also on the input nH )( ωjU . For any structure, the 

dynamical properties are determined by the GFRFs  (n= 1,�,N). However, from 

equation (3) it can be seen that the GFRF is multidimensional [9][10], which can make 

the GFRFs difficult to measure, display and interpret in practice. Feijoo, Worden and 

Stanway [11][12] demonstrated that the Volterra series can be described by a series of 

associated linear equations (ALEs) whose corresponding associated frequency response 

functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to 

equation (4), the NOFRF 

nH

)( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over 

ωωω =++ nL1  with the weights depending on the test input. Therefore )( ωjGn  can be 

used as an alternative representation of the dynamical properties described by . The 

most important property of the NOFRF 

nH

)( ωjGn  is that it is one dimensional, and thus 

allows the analysis of nonlinear systems to be implemented in a convenient manner 

similar to the analysis of linear systems. Moreover, there is an effective algorithm [7] 

available which allows the estimation of the NOFRFs to be implemented directly using 

system input output data. 

2.2 Output Frequency Response Functions under Harmonic Inputs 

Harmonic inputs are pure sinusoidal signals which have been widely used for the 

dynamic testing of many engineering structures. Therefore, it is necessary to extend the 

NOFRF concept to the harmonic input case.  
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When system (1) is subject to a harmonic input 

)cos()( βω += tAtu F                                                     (7) 

Lang and Billings [3] showed that equation (2) can be expressed as 
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Define the frequency components of nth order output of the system as . Then 

according to equation (8), the frequency components in the system output can be 

expressed as 
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Equation (13) explains why superharmonic components are generated when a nonlinear 

system is subjected to a harmonic excitation. In the following, only those components 

with positive frequencies will be considered. 

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as 
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Obviously,  is only valid over )( ωjG H

n nΩ  defined by equation (12). Consequently, the 

output spectrum )( ωjY  of nonlinear systems under a harmonic input can be expressed as 
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where ),...,( 1 nn jjH ωω  is assumed to be a symmetric function. Therefore, in this case, 

 over the nth order output frequency range )( ωjG H

n nΩ ={ }nkkn F ,,1,0,)2( L=+− ω  is 

equal to the GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω ===L  Fnk ωωω −===+ L1 , 

. nk ,,0 L=

3. NOFRFs of Locally Nonlinear MDOF Systems 

The locally nonlinear MDOF systems to be investigated are as shown in Figure 1. 

 
Figure 1, a multi-degree freedom oscillator 

If all springs and damper are of linear properties, then the governing motion equation of 

the MDOF oscillator in Figure 1 can be written as 
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is the system mass matrix, and  
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are the system damping and stiffness matrix respectively.  is the 

displacement vector, and  
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 is the external force vector acting on the oscillator.  

Equation (19) is the basis of the modal analysis method, which is a well-established 

approach for determining dynamic characteristics of engineering structures. In the linear 

case, the displacements  ()(txi ni ,,1L= ) can be expressed as 
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where  ( ) are the impulse response functions that are determined by 

equation  (19), and the Fourier transform of is the well-known FRF. 
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Assume the Lth spring has nonlinear stiffness and damping, and the restoring forces 
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where P is the degree of the polynomial. Without loss of generality, further assume 

. Then the motion of the oscillator in Figure 3 is determined by equations 

(22)~(26) as follows. 

nL ,1≠

For the masses that are not connected to the Lth spring, the governing motion equations are  
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For the mass that is connected to the right of the Lth spring, the governing motion 

equation is 
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Then, equation (22)~(26) can be rewritten in a matrix form as 
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The system described by equations (27)~(29) is a typical locally nonlinear MDOF system. 

The Lth nonlinear component can lead the whole system to behave nonlinearly. In this 

case, the Volterra series can be used to describe the relationships between the 
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and )(),1( ωjZL−Γ  is a term introduced by the nonlinear force NonF  for the Zth order 

NOFRF. 
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When the input  is a sinusoidal type force of frequency )(tu Fω , according to the 

definition of NOFRFs under a harmonic input in Section 2.2, it is known from equation 
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Moreover, according to equations (16) and (17), the 2
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 order superharmonic component 
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)2()2()2()2()2(

)2()2()2(

1

1,

0

22)22,1(

1,

0

22)22,(

FiF

ii

J

FJFJiF

ii

J

FJFJiFi

jXjjAjGj

jAjGjX

ωωλωωωλ

ωωω

+
+

=
+++

+

=
++

==

=

∑

∑
 

)1,,1( −= ni L  (40) 

Consequently 

)2(

)2(
)2(

1

1,

Fi

Fi
F

ii

jX

jX
j

ω
ω

ωλ
+

+ =                           (41) )1,,1( −= ni L
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Similarly, it can be deduced that  

)(

)(
)(

1

1,

Fi

Fi
F

ii

jDX

jDX
jD

ω
ω

ωλ
+

+ =            ( , ) (42) 2≥D 1,,1 −= ni L

Equation (42) provides a simple way to estimate the  for a locally nonlinear 

MDOF system subjected to a harmonic excitation. Based on equations (37), (38) and (42), 

a novel method for detection of the position of the nonlinear component in MDOF 

nonlinear systems can be developed. 

)(1,

F

ii jDωλ +

4. A Novel Method for the Nonlinear Component Position 
Detection 

Assume the system masses, linear stiffness, and damping are known a priori. Then from 

equations (37) and (38), the theoretical (),()( 1,1, ωλωλ jj ii

Z

ii ++ = 2≥Z , ) can 

be determined at any frequency of interest. It is known from (37) that , 

( 1) are different if the nonlinear element is at a different position in a MDOF 

system, and there are in total n different sets of , (

1,,1 −= ni L

)(1, ωλ jii +

,,1 −= ni L

)(1, ωλ jii + 1,,1 −= ni L ) which 

correspond to the nonlinear element is located in front of mass 1, in front of mass 2,�, 

and in front of mass n, respectively. Therefore, , ()(1, ωλ jii + 1,,1 −= ni L ) can more 

comprehensively be denoted as  , (),(1, Pjii ωλ + 1,,1 −= ni L , ) with 

 ( 1) representing the case where the nonlinear element is in front 

of mass P.  

nP ,,1L=
),(1, Pjii ωλ + ,,1 −= ni L

When using a sinusoidal force to excite the system (29), from the FFT spectra of all 

masses, the values of  ( , 1)(1,

F

ii jDωλ + 2≥D ,,1 −= ni L ) can be estimated using equation 

(42). Denote the estimated  as , ()(1,

F

ii jDωλ + )(� 1,

F

ii jDωλ + 1,,1 −= ni L ). The estimated  

, ( , )(� 1,

F

ii jDωλ + 2≥D 1,,1 −= ni L ), reflect the real situation regarding the MDOF 

system under investigation, and if there exists a nonlinear element in front of mass P* in 

the system, then , ( , )(� 1,

F

ii jDωλ + 2≥D 1,,1 −= ni L ) be very close to   

( 1 ) where 

),(1, PjD F

ii ωλ +

,,1 −= ni L { }nP ,,1* L∈ . Consequently, comparing  

( ) with ,(

)(� 1,

F

ii jDωλ +

1,,1 −= ni L ),(1, PjD F

ii ωλ + 1,,1 −= ni L ) for nP ,,1L=  respectively, the 

position of the nonlinear component in the system can be detected. This procedure can be 

finished using only one super-harmonic component. To compare the theoretical and 

estimated , the following criterion is defined. )(1,

F

ii jDωλ +

∑
−

=

++ −=
1

1

1,1, )(�),(),(
n

i

F

ii

F

ii

F jDPjDPDCR ωλωλω            (43) ),,1( nP L=

Obviously, *P  is  which makes { nP ,,1L∈ } ),( PDCR Fω reach a minimum. It is worth 

noting here that, if there are nonlinear elements in the system, then , 0)(� 1, =+
F

ii jDωλ
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( , ). Therefore it is readily apparent when there is no need to use the 

above detection procedure. The novel nonlinear component position detection method 

can be illustrated as Figure 2. This method requires only once testing on the system 

excited by a sinusoidal force, and this testing is very easy to carry out in practices. In the 

following section, the validation of this method will be demonstrated using numerical 

studies. 

2≥D 1,,1 −= ni L

 

Figure 2, An illustration of the nonlinear component position detection method 

4 Numerical Studies 

In order to verify the nonlinear component position detection method, a damped 6-DOF 

oscillator was used, in which the fourth spring was nonlinear. The damping was assumed to 

be a proportional damping, e.g., KC µ= in the system. 

Case Study 1: 

In this case study, it was assumed that exact values of the system parameters were known, 

such that 

161 === mm L ,   ,106.3 4

3211 ×==== kkkr ,8.0 1654 kkkk ===  

01.0=µ , , , 2

12 8.0 rr ×= 3

13 4.0 rr ×= 11 rw µ= , 02 =w  

A sinusoidal force )202sin()( ttf ×= π  was imposed at the right end of this system. The 

responses of the system were obtained using a fourth-order Runge�Kutta method. The 

second super-harmonic components were used to evaluated , which were 

extracted from the FFT spectra of the time domain responses of the system for all masses. 

The results of the second super-harmonic components are given in Table 1 together with 

the estimated values of  (i=1,2,3,4,5).  

)2(� 1,

F

ii j ωλ +

)2(� 1,

F

ii j ωλ +

 

 

M, 
C, 
K 

)1,(1,

F

ii jDωλ +

),(1, PjD F

ii ωλ +

System 
Responses 

)(� 1,

F

ii jDωλ +

∑
−

=
+

+

−

1

1
1,

1,

)(�

),(n

i F

ii

F

ii

jD

PjD

ωλ

ωλ

∑
−

=
+

+

−

1

1
1,

1,

)(�

)1,(n

i F

ii

F

ii

jD

jD

ωλ

ωλ
CR(DȦF, 1) 

Find 
Minimum

CR(DȦF, P) 

Nonlinear Component 
Position 
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Table 1, the 2
nd

 super-harmonic components and the estimated   )2(1,

F

ii j ωλ +

 2
nd

 super-harmonic component ( ) 410−× )2(� 1,

F

ii j ωλ +  

i=1 -0.6461521410580136+5.478186022278189i 0.50849962047351 - 0.17411767162634i 

i=2 -4.439137103744961+9.253210064075415i 
0.57675761032261 - 0.35796570185620i 

i=3 -12.7447501696 + 8.1334455596i 
-1.02837135854548 +0.11872905096935i 

i=4 13.1312349859 - 6.3930081648i 

1.03832500526562 + 1.46555044147694i 
i=5 1.322154576933986-8.023203088134261i 

i=6 -4.838497222254842-6.252014962346355i

0.70023715649501 + 0.75339712747376i 

Table 2, the theoretical values of ,),2(1, Pj F

ii ωλ + )6,,1( L=P   

 
)1,2(1,

F

ii j ωλ +  )2,2(1,

F

ii j ωλ +  

i=1 1.179323817912+0.999247846224i  -0.784763926987-0.692276236415i 

i=2 1.174310736705+0.801658316220i 1.174310736705+0.801658316220i 

i=3 1.504482187569+1.610251061280i 1.504482187569+1.610251061280i 

i=4 1.038342271019+1.465530810331i 1.038342271019+1.465530810331i 

i=5 0.700234895312+0.753391880553i 0.700234895312+0.753391880553i 

Continue Table 2, the theoretical values of ,   ),2(1, Pj F

ii ωλ + )

)

6,,1( L=P

 
)3,2(1,

F

ii j ωλ +  4,2(1,

F

ii j ωλ +  

i=1 0.508500698735-0.174117908274i 0.508500698735-0.174117908274i 

i=2 -0.999717533262-0.099513724955i 0.576764434890-0.357955825138i 

i=3 1.504482187569+1.610251061280i -1.028375362198+0.118730888923i 

i=4 1.038342271019+1.465530810331i 1.038342271019+1.465530810331i 

i=5 0.700234895312+0.753391880553i 0.700234895312+0.753391880553i 

Continue Table 2, the theoretical values of ,   ),2(1, Pj F

ii ωλ + )

)

6,,1( L=P

 
)5,2(1,

F

ii j ωλ +  6,2(1,

F

ii j ωλ +  

i=1 0.508500698735-0.174117908274i 0.508500698735-0.174117908274i 

i=2 0.576764434890-0.357955825138i 0.576764434890-0.357955825138i 

i=3 0.305897755849-0.375105672760i 0.305897755849-0.375105672760i 

i=4 -1.362224869506-0.253645879723i 0.476687965486-0.404025585491i 

i=5 0.700234895312+0.753391880553i -0.579291926018-0.370880904095i 
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Table 3, the values of ),2( PCR Fω , )6,,1( L=P   

 
),2( PCR Fω  Detection  Result 

P=1 5.52794713791494  

P=2 5.47761999857445  

P=3 4.47951566678550  

P=4 0.04971799187401 Ŷ 

P=5 4.37472658869104  

P=6 5.31224542996768  

The theoretical results of , )),2(1, Pj F

ii ωλ + 6,,1( L=P calculated by equations (37) and 

(38) are given in Table 2.  The results of  ),2( PCR Fω , )6,,1( L=P  are given in Table 3. 

Obviously, when P=4, ),2( PCR Fω  reaches a minimum, therefore P*=4 and the 

nonlinear component is located in front of the fourth mass of the MDOF nonlinear system. 

Case Study 2: 

In this case study, was is assumed that the true values of the system parameters are the 

same as those used in Case Study 1, but the following approximate linear parameters were 

used in the computations for the method  

161 === mm L ,     

  

,106.31.1 4

21 ××== kk ,106.39.0 4

643 ××=== kkk

,106.37.0 4

5 ××=k 01.0=µ  

Using the above parameters, , )),2(1, Pj F

ii ωλ + 6,,1( L=P  can be calculated by equations 

(37) and (38), and the results are given in Table 4.  Obviously, the values of  

estimated from the output responses are the same as the results in Table 1.  

)2(� 1,

F

ii j ωλ +

Table 4, the theoretical values of ,),(1, Pj F

ii ωλ + )6,,1( L=P   

 
)1,2(1,

F

ii j ωλ +  )2,2(1,

F

ii j ωλ +  

i=1 1.253371165233+0.887250572073i -0.736586166221-0.594551469301i 

i=2 1.168186285650+1.020346052706i 1.168186285650+1.020346052706i 

i=3 1.482901747843+0.999723009955i 1.482901747843+0.999723009955i 

i=4 0.896969824658+1.670678560349i 0.896969824658+1.670678560349i 

i=5 0.756153783967+0.689458932806i 0.756153783967+0.689458932806i 
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Continue Table 4, the theoretical values of ,   ),2(1, Pj F

ii ωλ + )6,,1( L=P

 
)3,2(1,

F

ii j ωλ +  )4,2(1,

F

ii j ωλ +  

i=1 0.507028271342-0.158354358544i 0.507028271342-0.158354358544i 

i=2 -1.108636242757-0.168123177703i 0.530884555351-0.362475419202i 

i=3 1.482901747843+0.999723009955i -1.015573064129+0.117020444923i 

i=4 0.896969824658+1.670678560349i 0.896969824658+1.670678560349i 

i=5 0.756153783967+0.689458932806i 0.756153783967+0.689458932806i 

Continue Table 4, the theoretical values of ,   ),2(1, Pj F

ii ωλ + )6,,1( L=P

 
)5,2(1,

F

ii j ωλ +  )6,2(1,

F

ii j ωλ +  

i=1 0.507028271342-0.158354358544i 0.507028271342-0.158354358544i 

i=2 0.530884555351-0.362475419202i 0.530884555351-0.362475419202i 

i=3 0.468994520647-0.354362387036i 0.468994520647-0.354362387036i 

i=4 -1.198292207322-0.240787086639i 0.365256683350-0.417606474581i 

i=5 0.756153783967+0.689458932806i -0.576466441813-0.422069673989i 

Table 5, the values of ),2( PCR Fω , )6,,1( L=P   

 
),2( PCR Fω  Detection  Result 

P=1 5.79188658448588  

P=2 5.80937804515177  

P=3 4.70726329626786  

P=4 0.40889372537850 Ŷ 

P=5 4.53038174196069  

P=6 5.36749945856376  

The results of  ),2( PCR Fω , )6,,1( L=P  are given in Table 4. Obviously, when P=4, 

),2( PCR Fω  reaches a minimum, therefore again the nonlinear component is determined 

to be in front of the fourth mass of the MDOF nonlinear system. This case study implies 

that, even if the exact information of the system is not available, the nonlinear component 

position method can still achieve a good result.  

5 Conclusions and Remarks 

Based on the properties of NOFRFs, a novel method is developed to detect the position of 

the nonlinear component in MDOF nonlinear system where the linear stiffness and 
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damping parameters are assumed to be known a priori. Two numerical studies have been 

used to demonstrate the effectiveness of this method. The results show that, even if only 

approximate values of the linear stiffness and damping parameters are available, the 

method can still achieve a correct detection of the position of the nonlinear component. 

The distinct advantage of this method is that it only needs a set of test data under a 

sinusoidal input force. Since the position of the nonlinear component in a MDOF system 

often corresponds to the location of a fault, the nonlinear component position detection 

method is of practical significance for the fault diagnosis in mechanical and structural 

systems.  

Acknowledgements 

The authors gratefully acknowledge the support of the Engineering and Physical Science 

Research Council, UK, for this work. 

References 

1. T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibration of a beam with breathing crack, 

Journal of Sound and Vibration, 239 (2001) 57-67 

2. K. Worden, G. Manson, G.R. Tomlinson, A harmonic probing algorithm for the 

multi-input Volterra series. Journal of Sound and Vibration 201(1997) 67-84 

3. Z. Q. Lang, S. A. Billings, Output frequency characteristics of nonlinear system, 

International Journal of Control 64 (1996) 1049-1067. 

4. S.A. Billings, K.M. Tsang, Spectral analysis for nonlinear system, part I: parametric 

non-linear spectral analysis. Mechanical Systems and Signal Processing, 3 (1989) 

319-339 

5. S.A. Billings, J.C. Peyton Jones, Mapping nonlinear integro-differential equations 

into the frequency domain, International Journal of Control 52 (1990) 863-879. 

6. J.C. Peyton Jones, S.A. Billings, A recursive algorithm for the computing the 

frequency response of a class of nonlinear difference equation models. International 

Journal of Control 50 (1989) 1925-1940. 

7. Z. Q. Lang, S. A. Billings, Energy transfer properties of nonlinear systems in the 

frequency domain, International Journal of Control 78 (2005) 354-362. 

8. Z.K. Peng, Z.Q. Lang, and S. A. Billings, Analysis of Multi-Degree-of-Freedom 

Nonlinear Systems Using Nonlinear Output Frequency Response Functions, 

Submitted to Journal of Sound and Vibration. (2006) 

 16



9. H. Zhang, S. A. Billings, Analysing non-linear systems in the frequency domain, I: 

the transfer function, Mechanical Systems and Signal Processing 7 (1993) 531-550. 

10. H. Zhang, S. A. Billings, Analysing nonlinear systems in the frequency domain, II: 

the phase response, Mechanical Systems and Signal Processing 8 (1994) 45-62. 

11. J. A. Vazquez Feijoo, K. Worden, R. Stanway, Associated Linear Equations for 

Volterra operators, Mechanical Systems and Signal Processing 19 (2005) 57-69. 

12. J. A. Vazquez Feijoo, K. Worden. R. Stanway, System identification using associated 

linear equations, Mechanical Systems and Signal Processing 18 (2004) 431-455. 

 17


	A Novel Method for Detecting the Position of Nonlinear Compo
	Z K Peng, Z Q Lang, and S A Billings

	Research Report No. 928
	A Novel Method for Detecting the Position of Nonlinear Compo
	1 Introduction
	2. Output Frequency Response Functions of Nonlinear Systems
	2.1 Output Frequency Response Functions under General Input
	2.2 Output Frequency Response Functions under Harmonic Input

	3. NOFRFs of Locally Nonlinear MDOF Systems
	4. A Novel Method for the Nonlinear Component Position Detec
	4 Numerical Studies
	5 Conclusions and Remarks
	Acknowledgements
	References


