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Abstract: The analysis of multi-degree-of-freedom (MDOF) nonlinear systems is studied 

using the concept of Nonlinear Output Frequency Response Functions (NOFRFs). The 

results reveal very important properties of MDOF systems, which are of significant 

importance for the analysis of nonlinear structures. One important application of the 

results obtained in this study is the detection and location of faults in engineering 

structures which make the structures behave nonlinearly.  

1 Introduction 

Linear system methods, which have been widely studied by practitioners in many 

different fields, provide a basis for the development of the majority of control system 

synthesis, mechanical system analysis and design, and signal processing algorithms. 

However, there are many qualitative behaviours in engineering, such as the generation of 

harmonics and inter-modulations, which cannot be produced by linear models [1]. In 

these cases, nonlinear models are needed to describe the system, and nonlinear system 

analysis methods have to be applied to investigate the system dynamics.  

The Volterra series approach [2] is a powerful tool for the analysis of nonlinear systems, 

which extends the familiar concept of the convolution integral for linear systems to a 

series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra 

kernels, called Generalised Frequency Response Functions (GFRFs) [3], are an extension 

of the linear Frequency Response Function (FRF) to the nonlinear case. If a differential 

equation or discrete-time model is available for a nonlinear system, the GFRFs can be 

determined using the algorithm in [4]~[6]. However, the GFRFs are multidimensional 

functions [7][8], and are much more complicated than the linear FRF and can be difficult 

to measure, display and interpret in practice. Recently, the novel concept known as 

 2



Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by the authors 

[9]. Thus concept can be considered to be an alternative extension of the FRF to the 

nonlinear case. The NOFRFs are one dimensional functions of frequency. This allows the 

analysis of nonlinear systems in the frequency domain to be implemented in a manner 

similar to the analysis of linear systems and provides great insight into mechanisms 

which dominate important nonlinear behaviours.

In practice, many mechanical and structural systems can be described by MDOF models. 

In addition, these systems may also behave nonlinearly due to nonlinear characteristics of 

some components within the systems. For example, a beam with breathing cracks 

behaves nonlinearly because of the cracked elements inside the beam [10]. These 

nonlinear MDOF systems can be regarded as locally nonlinear MDOF systems. This 

paper is concerned with the study the properties of locally nonlinear MDOF systems 

using the concept of NOFRFs. The results reveal, for the first time, very important 

properties of these systems and are of significant importance for the analysis of nonlinear 

structural systems. One important application of the results obtained in the study is the 

detection and location of faults in engineering structures which make the structures 

behave nonlinearly. 

2. Nonlinear Output Frequency Response Functions 

2.1 Nonlinear Output Frequency Response Functions under General Inputs 

The definition of the NOFRFs is based on the Volterra series theory of nonlinear systems. 

The Volterra series extends the well-known convolution integral description for linear 

systems to a series of multi-dimensional convolution integrals, which can be used to 

represent a wide class of nonlinear systems [3].  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 
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where  y(t) and u(t) are the output and input of the system, ),...,( n1nh ττ  is the nth order 

Volterra kernel, and N denotes the maximum order of  the system nonlinearity. Lang and 

Billings [3] derived an expression for the output frequency response of this class of 

nonlinear systems to a general input. The result is  
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (2), )( ωjY  is the spectrum of the 

system output, )( ωjYn  represents the nth order output frequency response of the system, 
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is the nth order Generalised Frequency Response Function (GFRF) [3], and 
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denotes the integration of  over the n-dimensional hyper-plane ∏
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1 )(),...,( ωωω

ωωω =++ nL1 . Equation (2) is a natural extension of the well-known linear relationship 

)()()( ωωω jUjHjY = , where )( ωjH  is the frequency response function, to the 

nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 

input. For nonlinear systems described by equation (1), however, the relationship between 

the input and output frequencies is more complicated. Given the frequency range of an 

input, the output frequencies of system (1) can be determined using the explicit expression 

derived by Lang and Billings in [3].  

Based on the above results for the output frequency response of nonlinear systems, a new 

concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 

recently introduced by Lang and Billings [9]. The NOFRF is defined as 
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under the condition that 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 

determined using the algorithm in [3]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , equation (2) can be written as  
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which is similar to the description of the output frequency response for linear systems. 

For a linear system, the relationship between )( ωjY  and )( ωjU   can be illustrated as 

shown in Figure 1. Similarly, the nonlinear system input and output relationship of 

Equation  (6) can be illustrated as shown in Figure 2.  

 

Figure 1. The output frequency response of a linear system 

 

Figure 2. The output frequency response of a nonlinear system 

The NOFRFs reflect a combined contribution of the system and the input to the system 

output frequency response behaviour. It can be seen from equation (4) that )( ωjGn  

depends not only on  (n=1,�,N) but also on the input nH )( ωjU . For a nonlinear system, 

the dynamical properties are determined by the GFRFs  (n= 1,�,N). However, from 

equation (3) it can be seen that the GFRFs are multidimensional [7][8], which can make 

the GFRFs difficult to measure, display and interpret in practice. Feijoo, Worden and 

Stanway [11][12] demonstrated that the Volterra series can be described by a series of 

associated linear equations (ALEs) whose corresponding associated frequency response 

functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to 

equation (4), the NOFRF 

nH

)( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over 

ωωω =++ nL1  with the weights depending on the test input. Therefore )( ωjGn  can be 

used as an alternative representation of the dynamical properties described by . The 

most important property of the NOFRF 

nH

)( ωjGn  is that it is one dimensional, and thus 

allows the analysis of nonlinear systems to be implemented in a convenient manner 

similar to the analysis of linear systems. Moreover, there is an effective algorithm [9] 

available which allows the estimation of the NOFRFs to be implemented directly using 

system input output data. 
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2.2 Nonlinear Output Frequency Response Functions under Harmonic Input 

Harmonic inputs are pure sinusoidal signals which have been widely used for the 

dynamic testing of many engineering structures. Therefore, it is necessary to extend the 

NOFRF concept to the harmonic input case.  

When system (1) is subject to a harmonic input 

)cos()( βω += tAtu F                                                     (7) 

Lang and Billings [3] showed that equation (2) can be expressed as 
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Define the frequency components of the nth order output of the system as , then 

according to equation (8), the frequency components in the system output can be 

expressed as 
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where  is determined by the set of frequencies nΩ
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From equation (11), it is known that if all 
nkk ωω ,,

1
L  are taken as Fω− , then Fnωω −= . 

If k of these are taken as Fω , then Fkn ωω )2( +−= . The maximal k is n. Therefore the 

possible frequency components of  )( ωjYn  are     
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Equation (13) explains why superharmonic components are generated when a nonlinear 

system is subjected to a harmonic excitation. In the following, only those components 

with positive frequencies will be considered. 

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as 
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Obviously,  is only valid over )( ωjG H

n nΩ  defined by equation (12). Consequently, the 

output spectrum )( ωjY  of nonlinear systems under a harmonic input can be expressed as 
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where ),...,( 1 nn jjH ωω  is assumed to be a symmetric function. Therefore, in this case, 

 over the nth order output frequency range )( ωjG H

n nΩ ={ }nkkn F ,,1,0,)2( L=+− ω  is 

equal to the GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω ===L  Fnk ωωω −===+ L1 , 

. nk ,,0 L=

3. Analysis of Locally Nonlinear MDOF Systems Using NOFRFs 

3.1 Locally Nonlinear MDOF Systems 

Without loss of generality and for convenience of analysis, consider an undamped multi-

degree-of-freedom oscillator as shown in Figure 3. 

kL mL kn mnk1  m1 kL-1 mL-1 kL+1 mn-1mL+1 f(t) 

xn

 
Figure 3, a multi-degree freedom oscillator 
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 xn-1xL xL+1
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)( Nonlinear Component 
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If all the springs have linear stiffness, then the governing motion equation of the MDOF 

oscillator in Figure 3 can be written as 

)(tFKxxM =+&&                                                    (19) 

where  
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are the system mass matrix and stiffness matrix respectively. is the 

displacement vector, and 

'

1 ),,( nxxx L=
( )')(,0,,0)( tftF L=  is the external force vector acting on the 

oscillator.  

Equation (19) is often used for a simplified modal analysis. Modal analysis is a well-

established approach for determining dynamic characteristics of engineering structures 

[13]. In the linear case, the displacements  ()(txi ni ,,1L= ) can be expressed as 

∫
+∞

∞−
−= τττ dfthtx ii )()()( )(                                              (20) 

where  ( ) are the impulse response functions that are determined by 

equation  (19), and the Fourier transform of  is the well-known FRF. 

)()( th i ni ,,1L=
)()( th i

Consider the case where one of the springs, say the Lth spring, has a nonlinear stiffness, 

and, as shown in Figure 3, assume the restoring force )(∆LS  of the spring is a 

polynomial function of the deformation ǻ, i.e.,  

∑
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where P is the degree of the polynomial. Without loss of generality, assume  and 

 and . Then for the masses which are not connected to the Lth spring, the 

governing motion equations are  

1≠L

nL ≠ 1ckL =

0)( 2212111 =−++ xkxkkxm &&                                                        (22) 

0)( 1111 =−−++ ++−+ iiiiiiiii xkxkxkkxm &&   ( 1−≠ Li  and )   (23) Li ≠
)(1 tfxkxkxm nnnnnn =−+ −&&                                                          (24) 

For the mass that is connected to the left end of the Lth spring, the governing motion 

equation is  
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2
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P
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For the mass that connects to the right end of the Lth spring, the governing motion 

equation is 
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Then, equations (22)~(27) can be written in a matrix form as 

 )(tFNFKxxM +−=+&&                                           (28) 

The system described by equations (27)(28) is a typical locally nonlinear MDOF system. 

The Lth nonlinear spring component can lead the whole system to behave nonlinearly. In 

this case, the Volterra series can be used to describe the relationships between the 

displacements  ( ) and the input force  as below )(txi ni ,,1L= )(tf
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under quite general conditions [3]. In equation (29), ),...,( 1),( jjih ττ , ( , 

), represents the jth order Volterra kernel for the relationship between f(t) and 

the displacement of m

ni ,,1L=
Nj ,,1L=

i. The Fourier transform of ),...,( 1),( jjih ττ  is the corresponding 

GFRF ),...,( 1),( jji jjH ωω  ( , ni ,,1L= Nj ,,1L= ).  

3.2 GFRFs of Locally Nonlinear MDOF System 

From equations (22)~(26), the GFRFs ),...,( 1),( jji jjH ωω , ( ni ,,1L= , ) can 

be determined using the harmonic probing method [5][6].  
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First consider the input  is of a single harmonic )(tf
tjetf ω=)(                                                              (30) 

Substituting (30) and  
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From equation (32), it is known that  
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and 
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From (34)~(36), it follows that 
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Thus, for any two consecutive masses, the relationship between the first order GFRFs can 

be expressed as 
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Moreover, from the first row of equation (32), it can be shown that 
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Similarly, for the other first order GFRFs, the relationship between the GFRFs of any two 

consecutive masses can be expressed as 
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Equation (42) gives a comprehensive description of the relationships between the n first 

order GFRFs of the locally nonlinear n-DOF systems. 

The above procedure used to analyze the relationships of the first order GFRFs can be 

extended to investigate the relationship between the N th order GFRFs with 2≥N . To 

achieve this, consider the input 
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ωωωωωω

ωωωωωω

LLL

LLL
    (48) 

0),,(),,(),,(

),,()(),,()(

1

,1

1),1(11),1(

1),(11),(

2

1

=Λ−−−

++++−
−

++−

+

N

LL

NNNLLNNLL

NNLLLNNLNL

jjjjHkjjHk

jjHkkjjHm

ωωωωωω

ωωωωωω

LLL

LLL
    (49) 

In equations (48) and (49),  represents the extra terms introduced by 

for the Nth order GFRFs, for example, for the second order GFRFs,   

),,( 1

,1

N

LL

N jj ωω L−Λ

∑
=

− −
P

i

i

LLi xxc
2

1 )(

(
))()()()(

)()()()(),(

1)1,(2)1,1(2)1,(1)1,1(

2)1,(1)1,(2)1,1(1)1,1(221

,1

2

ωωωω

ωωωωωω

jHjHjHjH

jHjHjHjHcjj

LLLL

LLLL

LL

−−

−−
−

−−

+=Λ
     (50) 

Denote 

( )′= ),,(),,(),,( 1),(1),1(1 NNnNNNN
jjHjjHjjH ωωωωωω LLLL        (51) 

and 

} }
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Λ−Λ=Λ

−
−−

− Ln

N

LL

NN

LL

N

L

NN
jjjjjj 00),,(),,(00),,( 1

,1

1

,1

2

1 LLLLL ωωωωωω  

(52) 

Then equations (45)~(49) can be written in a matrix form as  

),,(),,())(( 111 NNNNN
jjjjHj ωωωωωω LLL Λ=++Θ                  (53) 

so that  

),,())((),,( 11

1

1 NNNNN
jjjjjH ωωωωωω LLL Λ++Θ= −                (54) 

Therefore, for each mass, the N th order GFRF can be calculated as  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ−
Λ

++++= −

−

−
),,(

),,(
)(()),((

),,(

1

,1

1

,1

1,11,

1),(

N

LL

N

N

LL

N

NLiNLi

NNi

jj

jj
jQjQ

jjH

ωω
ωω

ωωωω

ωω

L

L
LL

L

 

),,1( ni L=   (55) 
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and consequently, for two consecutive masses, the N th order GFRFs have the following 

relationships   

                 
))(())((

))(())((

),,(

),,(

1,111,1

1,11,

1),1(

1),(

NLiNLi

NLiNLi

NNi

NNi

jQjQ

jQjQ

jjH

jjH

ωωωω
ωωωω

ωω

ωω

++−++

++−++
=

+−+

−

+
LL

LL

L

L
 

)())(( 1

1,

1

1,

N

ii

NN

ii jQ ωωλωω ++=++= ++ LL           (56) )1,,1( −= ni L

From equation (45), it is known that  

[ ]21

2

11

2

1),2(

1),1(

)(),,(

),,(

kkm

k

jjH

jjH

NNN

NN

++++−
=

ωωωω

ωω

LL

L
   

),,( 1

2,1

NN
ωωλ L=                                               (57) 

Moreover, from equation (47), it can be deduced that 

( )[ ]11

,12

1

1

1),1(

1),(

)(1)(),,(

),,(

+
−

+

+
+++−+++−

=
iiN

ii

NNi

i

NNi

NNi

kkm

k

jjH

jjH

ωωλωωωω

ωω

LLL

L
   

)( 1

1,

N

ii

N
ωωλ ++= + L             ( 11 −<< Li  and ) (58) niL <<

For the two masses that are connected to the nonlinear spring, denote 

( )[ ] )(
)(1)(

1

,1

11

1,22

11
N

LL

N
LLN

LL

NNL

L

kkm

k ωωλ
ωωλωω

++=
+++−+++−

−

−
−−

−

L
LL

  (59) 

( )[ ] )(
)(1)(

1

1,

11

,12

1

1

N

LL

N
LLN

LL

NNL

L

kkm

k ωωλ
ωωλωω

++=
+++−+++−

+

+
−
+ L

LL
  (60) 

Then, from equations (48),(49), it can be known that 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ
−++=

−
−−

),,(

),,(1
1)(

),,(

),,(

1),(

1

,1

1

,1

1),(

1),1(

NNL

N

LL

N

L
N

LL

N

NNL

NNL

jjH

jj

kjjH

jjH

ωω
ωω

ωωλ
ωω

ωω

L

L
L

L

L
 

)( 1

,1

N

LL

N
ωωλ ++= − L                                                        (61) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ
+++=

+

−

+

+

+
),,(

),,(1
1)(

),,(

),,(

1),1(

1

,1

1

1

1,

1),1(

1),(

NNL

N

LL

N

L
N

LL

N

NNL

NNL

jjH

jj

kjjH

jjH

ωω
ωω

ωωλ
ωω

ωω

L

L
L

L

L
 

)( 1

1,

N

LL

N
ωωλ ++= + L                                                        (62) 

Equations (56)~(62) give a comprehensive description of the relationships between the n  

N th order GFRFs of the locally nonlinear n-DOF system. 

It can be seen that  and )( 1

1,

1 ωλ +ii )( 1

1,

N

ii

N
ωωλ +++ L  have the same form. Thus, by 

denoting  

0)(,1

1 =Λ − ωjLL  and 0)( 1

1,0 =++
NN

ωωλ L             )1( NN ≤≤  (63) 

the relationship between GFRFs up to Nth order of two consecutive masses of the locally 

nonlinear n-DOF system can be summarized as 
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 ( )[ ]11

,12

1

1
1

1,

)(1)(
)(

+
−

++

+++−+++−
=++

iiN

ii

NNi

i

N

ii

N kkm

k

ωωλωω
ωωλ

LL
L    

                                 ( LLiniNN ,1,1  ,1 −≠<≤≤≤ )  (64) 

and 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ
−++=++

−
−−

),,(

),,(1
1)()(

1),(

1

,1

1

,1

1

,1

NNL

N

LL

N

L
N

LL

NN

LL

N jjH

jj

k ωω
ωω

ωωλωωλ
L

L
LL  

)1( NN ≤≤  (65) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ
+++=++

+

−

+

++

),,(

),,(1
1)()(

1),1(

1

,1

1

1

1,

1

1,

NNL

N

LL

N

L
N

LL

NN

LL

N jjH

jj

k ωω
ωω

ωωλωωλ
L

L
LL  

)1( NN ≤≤  (66) 

3.3 NOFRFs of Locally Nonlinear MDOF Systems 

According to the definition of NOFRFs in equation (4), the N th order NOFRF of the ith 

mass can be expressed as 

∫ ∏

∫ ∏

=++ =

=++ =
=

ωωω
ω

ωωω
ω

σω

σωωω

ω

N

N

N

N

q

q

N

N

q

qNNi

Ni

djF

djFjjH

jG

,..., 1

,..., 1

1),(

),(

1

1

)(

)(),...,(

)(  

)1  ,1( niNN ≤≤≤≤  (67) 

where )( ωjF  is the Fourier transform of . )(tf

According to equation (56), for any 2≥N , equation (67) can be rewritten as 

∫ ∏

∫ ∏

=++ =

=++ =
+

+ ++

=

ωωω
ω

ωωω
ω

σω

σωωωωω

ω

N

N

N

N

q

q

N

N

q

qNNiN

ii

Ni

djF

djFjjHjQ

jG

,..., 1

,..., 1

1),1(1

1,

),(

1

1

)(

)(),...,())((

)(

L

 

                          )()()()(
),1(

1,

),1(

1, ωωλωω jGjGjQ
Ni

ii

NNi

ii

+
+

+
+ ==  

                                     )1  ,2( niNN ≤≤≤≤  (68) 

For N  = 1, it is known from equation (42) that 

)()()( )1,1(

1,

1)1,( ωωλω jGjG i

ii

i +
+=                        (69) )1 ( ni <≤

Moreover, denote 0)(1,0 =ωλ
N

,  for the first mass, it can be deduced that 

 ( ) )(
))(1()(

)(
2,1

21

1,02

1

2

),2(

),1( ωλ
ωλωω

ω
N

NN

N

kkm

k

jG

jG
=

+−+−
=          ( )NN ≤≤1  (70) 

Thus, for all  and masses, the following relationship can be established, th)1( −L thL
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( ) )(
))(1()(

)(
1,

1

,12

1

),1(

),( ωλ
ωλωω

ω
+

+
−
+

+

=
+−+−

= ii

N
ii

ii

Ni

i

Ni

Ni

kkm

k

jG

jG
 

( )LLiniNN ,1,1  ,1 −≠<≤≤≤  (71) 

For the (L-1)th and Lth masses 

)(
)(

)(1
1)(

)(

)(
,1

),(

),1(,1

),(

),1( ωλ
ω

ω
ωλ

ω

ω
LL

N

NL

NL

L

LL

N

NL

NL

jG

j

kjG

jG
−−−− =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Γ
−=      ( )NN ≤≤1  (72) 

)(
)(

)(1
1)(

)(

)(
1,

),1(

),1(

1

1,

),1(

),( ωλ
ω

ω
ωλ

ω

ω
+

+

−

+

+

+

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Γ
+= LL

N

NL

NL

L

LL

N

NL

NL

jG

j

kjG

jG
     ( )NN ≤≤1  (73) 

where 

( )[ ] )(
)(1

,1

1

1,22

1

ωλ
ωλω

LL

N
LL

LL

NL

L

kkm

k −

−
−−

−

=
+−+−

           ( )NN ≤≤1  (74) 

( )[ ] )(
)(1

1,

1

,12

1 ωλ
ωλω

+

+
−
+ =

+−+−
LL

N
LL

LL

NL

L

kkm

k
              ( )NN ≤≤1  (75) 

and 

∫ ∏

∫ ∏

=++ =

=++ =

−

−

Λ

=Γ

ωωω
ω

ωωω
ω

σω

σωωω

ω

N

N

N

N

q

q

N

N

q

qN

LL

N

NL

djF

djFjj

j

,..., 1

,..., 1

1

,1

),1(

1

1

)(

)(),,(

)(

L

        ( )NN ≤≤1  (76) 

Equations (71)~(76) give a comprehensive description of the relationships between the n  

N th order NOFRFs of two consecutive masses of the locally nonlinear n-DOF system. 

3.4 The Properties of NOFRFs of Locally Nonlinear MDOF Systems 

Important properties of the NOFRFs of locally nonlinear n-DOF systems can be obtained 

from the equation (69)~(76), as follows 

i) For the masses on the left of the nonlinear spring, excluding the (L-1)th mass 

 
)(

)(

)(

)(

),1(

),(

)1,1(

)1,(

ω
ω

ω
ω

jG

jG

jG

jG

Ni

Ni

i

i

++

==L                          ( )  (77) 11 −<≤ Li

that is 

)()()( 1,1,1,

1 ωλωλωλ +++ === iiii

N

ii L                       ( )  (78) 11 −<≤ Li

where , and 0)(1,0 =ωλ

( )1

,12

11,

))(1(
)(

+
−
++

+−+−
=

ii

ii

i

iii

kkm

k

ωλω
ωλ 1−<≤ Li                (1 ) (79) 

ii) For the masses on the right of the nonlinear spring, including the (L-1)th mass 

)(

)(

)(

)(

)(

)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG

jG

jG

jG

jG

jG

Ni

Ni

i

i

i

i

+++

==≠ L            ( )  (80) niL <≤−1
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 that is 

)()()()( 1,1,1,

2

1,

1 ωλωλωλωλ ++++ ===≠ iiii

N

iiii L         ( ) (81) niL <≤−1

iii) For the masses on the left of the nonlinear spring, the following relationships of the 

output frequency responses hold 

)()()( 1

1, ωωλω jxjx i

ii

i +
+=                          ( ) (82) 11 −<≤ Li

The first property is straightforward. From equation (70), it can be known that  

( ) )()()( 2,1

21

2

1

22,12,1

1 ωλ
ω

ωλωλ =
++−

===
kkm

k
NL                           (83) 

Consequently, substituting (83) into equation (71) yields 

 ( ) )(
))(1(

)()( 3,2

32

2,12

2

33,23,2

1 ωλ
ωλω

ωλωλ =
+−+−

===
kkm

k
NL                   (84) 

Following the same procedure until i=L-2, the first property can be proved. 

Using equation (68), it is known that, for the masses on the right of the nonlinear spring, 

including the (L-1)th mass, the relationship 

)(
)(

)(

)(

)(
1,

),1(

),(

)2,1(

)2,( ω
ω
ω

ω
ω

jQ
jG

jG

jG

jG
ii

Ni

Ni

i

i +

++

===L              ( )  (85) niL <≤−1

is tenable. 

For the (L-1)th mass,  

( ) )(
))(1()(

)(
,1

1

1

1,2

1

2

1)1,(

)1,1( ωλ
ωλωω

ω
LL

LL

LL

L

L

L

L

kkm

k

jG

jG −

−
−−

−

− =
+−+−

=        (86) 

and 

( ) )(
)(

)(1
1

))(1()(

)(
,1

2

)2,(

)2,1(

1

1,2

2

2

1)2,(

)2,1( ωλ
ω
ω

ωλωω
ω

LL

L

L

LLL

LL

L

L

L

L

jG

j

kkkm

k

jG

jG −−

−
−−

−

− =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Γ
−

+−+−
=  

     (87) 

According to the first property, .  So, from equations (86) and (87) )()( 1,2

2

1,2

1 ωλωλ −−−− = LLLL

)(
)(

)(1
1)( ,1

1

)2,(

)2,1(,1

2 ωλ
ω
ω

ωλ LL

L

L

L

LL

jG

j

k

−−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Γ
−=                              (88) 

Obviously,  since )()( ,1

2

,1

1 ωλωλ LLLL −− ≠ 0)()2,1( ≠Γ − ωjL . 

Substituting  and  into equations (73) and (75) for the Lth mass, it 

can be deduced that 

)(,1

1 ωλ LL− )(,1

2 ωλ LL−

( )

( ) )(
)(

)(1
1

))(1(

))(1(
)(

1,

2

)2,1(

)2,1(

11

,1

2

2

1

1

,1

1

2

11,

1

ωλ
ω
ω

ωλω

ωλω
ωλ

+

+

−

++
−
+

+
−
++

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Γ
+

+−+−
≠

+−+−
=

LL

L

L

LLL

LL

L

L

LL

LL

L

LLL

jG

j

kkkm

k

kkm

k

      (89) 
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Iteratively using the above procedure and terminating at the (n-1)th mass, the relationship 

 ( ) can be proved. So far, the whole second property is 

proved. 

)()( 1,

2

1,

1 ωλωλ ++ ≠ iiii niL <≤−1

The third property is also straightforward since, according to equation (6), the output 

frequency response of the ith mass can be expressed as 

∑
=

++ =
N

k

kkii jFjGjx
1

),1(1 )( )()( ωωω                                       (90) 

Using the first property, equation (90) can be written as 

∑
=

+
+ =

N

k

kki

ii

i jFjGjjx
1

),(

1,

1 )( )()()( ωωωλω                                  (91) 

Obviously, , then the third property is proved. )()()( 1,

1 ωωλω jxjjx i

ii

i

+
+ =

Above three properties can be easily extended to a more general case, as follows. 

iv) For any two masses on the left of the nonlinear spring, the following relationship holds.  

)(
)(

)(

)(

)(
,

),(

),(

)1,(

)1,( ωλ
ω
ω

ω
ω

kii

Nki

Ni

ki

i

jG

jG

jG

jG +

++

===L  ( 11 −<≤ Li  and )  (92) Lki <+

and 

∏
−

=

++++ =
1

0

1,, )()(
k

d

didikii ωλωλ                                             (93) 

v) For any two masses on the left of the nonlinear spring, the output frequency responses 

satisfy the following relationship 

)()()( , ωωλω jxjx ki

kii

i +
+=        ( 11 −<≤ Li  and ) (94) Lki <+

vi) For any two masses on the right of the nonlinear spring, including the (L-1)th mass, the 

following relationships can be deduced from property ii). 

)(
)(

)(

)(

)(

)(

)(
,

),(

),(

)2,(

)2,(

)1,(

)1,( ωλ
ω
ω

ω
ω

ω
ω

kii

Nki

Ni

ki

i

ki

i

jG

jG

jG

jG

jG

jG +

+++

===≠ L  

( niL <≤−1  and )  (95) nki ≤+
and 

∏
−

=

++++ =
1

0

1,, )()(
k

d

didikii ωλωλ                                          (96) 

vii) For any two masses on different sides of the nonlinear spring, the following 

relationship holds. 

)(

)(

)(

)(

)(

)(

),(

),(

)2,(

)2,(

)1,(

)1,(

ω
ω

ω
ω

ω
ω

jG

jG

jG

jG

jG

jG

Nk

Ni

k

i

k

i ==≠ L  

( 11 −≤≤ Li  and ) (97) nkL ≤≤
The above four properties are straightforward, so the details of the proofs are omitted. 
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4 Numerical Study 

In order to verify the analysis results in the last section, a 6-DOF oscillator was adopted, in 

which the fourth spring was nonlinear. As widely used in modal analysis [13], a damping 

characteristic was considered in this numerical study where the damping was assumed to be 

a proportional damping, e.g., KC µ= . The values of the system parameters used are 

161 === mm L , , , ,105531.3 4

611 ×==== kkc L 2

12 8.0 cc ×= 3

11 4.0 cc ×= µ =0.01 

and the input is a harmonic force, )202sin()( tAtf ×= π . 

If only the NOFRFs up to the 4
th
 order is considered, according to equations (16) and (17), 

the frequency components of the outputs of the 6 masses can be written as 

)()()()()( 3)3,(1)1,( FF

H

iFF

H

iFi jFjGjFjGjx ωωωωω +=
)2()2()2()2()2( 4)4,(2)2,( FF

H

iFF

H

iFi jFjGjFjGjx ωωωωω +=  

                         )3()3()3( 3)3,( FF

H

iFi jFjGjx ωωω =
)4()4()4( 4)4,( FF

H

iFi jFjGjx ωωω =                                        (98) )6,,1( L=i

From equation (94), it can be seen that, using the method in [9], two different inputs with 

the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4
th

 

order. Therefore, in this numerical study, two different inputs of amplitudes A1=0.8 and 

A2=1.0 were used. The simulation studies were conducted using a fourth-order Runge�

Kutta method to obtain the forced response of the oscillator.  

The evaluated results of , ,  and for all 

masses are given in Table 1 and Table 2. According to analysis results in the previous 

section, it can be known that the following relationships should be tenable. 

)(1 F

H jG ω )(3 F

H jG ω )2(2 F

H jG ω )2(4 F

H jG ω

)(
)(

)(

)(

)(
)( 1,

3

)3,1(

)3,(

)1,1(

)1,(1,

1 F

ii

F

H

i

F

H

i

F

H

i

F

H

i

F

ii j
jG

jG

jG

jG
j ωλ

ω
ω

ω
ω

ωλ +

++

+ ===                for 2,1=i  

)(
)(

)(

)(

)(
)( 1,

3

)3,1(

)3,(

)1,1(

)1,(1,

1 F

ii

F

H

i

F

H

i

F

H

i

F

H

i

F

ii j
jG

jG

jG

jG
j ωλ

ω
ω

ω
ω

ωλ +

++

+ =≠=            for  5,4,3=i

)2(
)2(

)2(

)2(

)2(
)2( 1,

4

)4,1(

)4,(

)2,1(

)2,(1,

2 F

ii

F

H

i

F

H

i

F

H

i

F

H

i

F

ii j
jG

jG

jG

jG
j ωλ

ω
ω

ω
ω

ωλ +

++

+ ===     for  5,4,3,2,1=i

(99) 

From the NOFRFs given in Table 1 and Table 2, , , 

and  (i=1,2,3,4,5) can be evaluated. Moreover, from equations 

(36), (65) and (66), the theoretical values of , , and 

 (i=1,2,3,4,5) can also be calculated. Both the evaluated and theoretical 

values of , , and  (i=1,2,3,4,5) are given in 

Tables 3, 4, 6 and 7 respectively. The associated moduli are given in Table 5 and Table 8. 
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Table 1, the evaluated results of  and  )(1 F

H jG ω )(3 F

H jG ω

 )(1 F

H jG ω (×10
-5

) )(3 F

H jG ω (×10
-8

) 

Mass1 0.248755981292+0.105083252913i -2.640653692313-0.134346651049i 

Mass2 -0.431887829736-0.245927063111i 4.797297679103+ 0.817418504289i 

Mass 3 -0.984866548167-0.648079124466i 11.23083043936+  2.666885065817i 

Mass 4 -1.227215155076-1.151976267814i -3.690332450620+4.775081343252i 

Mass 5 -1.009037585829-1.722958265454i -0.167765943288+6.975012211228i 

Mass 6 -0.243826521314-2.215514088592i 1.874038990979+7.936955064990i 

Table 2, the evaluated results of  and  )2(2 F

H jG ω )2(4 F

H jG ω

 )2(2 F

H jG ω (×10
-8

) )2(4 F

H jG ω (×10
-9

) 

Mass 1 -3.600986560925-0.843396489345i  -1.744362683969+1.791582813072i  

Mass 2 5.812267183838+3.680180095536i 4.158928956405-2.083020311251i  

Mass 3 11.56344137006+10.86504193730i     10.32469589716-2.908397493893i    

Mass 4 -8.362748079065-6.117344659423i     -6.458494748740+2.710328095026i     

Mass 5 -6.288845518790+ 1.868823507184i    -1.111106770191+4.294340994126i     

Mass 6 -3.826040708263+ 5.554108059052i    1.882654455592+4.153136744233i     

Table 3, the evaluated and theoretical values of  )(1,

1 F

ii jωλ +

 Evaluated Theoretical 

i=1 -0.53956923942555+ 0.06393193691330i -0.53956812565722+0.06392927976739i 

i=2 0.42068003742786-0.02711726504942i 0.42068338945362-0.02712178311738i 

i=3 0.69013114133652-0.11973089757392i 0.69003905565205-0.11950391902279i 

i=4 0.80845793934758-0.23880480216057i 0.80846919607333-0.23881686890438i 

i=5 0.81789573641784-0.36542891683225i 0.81789109869642-0.36541946257437i 

Table 4, the evaluated and theoretical values of   )(1,

3 F

ii jωλ +

 Evaluated Theoretical 

i=1 -0.53955286025570 + 0.06393054204275i -0.53956812565722 + 0.06392927976739i 

i=2 0.42071440540958 - 0.02711985209971i 0.42068338945362 - 0.02712178311738i 

i=3 -0.78832894098333 - 1.74272100693032i -0.78847736178192 - 1.74269593806636i 

i=4 0.69692072700836 + 0.51231636293108i 0.69688121980439 + 0.51240060371508i 

i=5 0.82766819458198 + 0.21656269910234i 0.82767705033815 + 0.21654740508103i 
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Table 5, the evaluated and theoretical values of )(1,

1 F

ii jωλ +  and )(1,

3 F

ii jωλ +  

)(1,

1 F

ii jωλ +  )(1,

3 F

ii jωλ +   

 Evaluated Theoretical Evaluated Theoretical 

i=1 0.54334358990583 0.54334217122990 0.54332716038864 0.54334217122990 

i=2 0.42155312826982 0.42155676400890 0.42158759148846 0.42155676400890 

i=3 0.70044020449736 0.70031070603482 1.91273077749801 1.91276911377081 

i=4 0.84298990102437 0.84300411497973 0.86496621636963 0.86498428494605 

i=5 0.89581902687299 0.89581093594295 0.85553143891097 0.85553613500763 

Table 6, the evaluated and theoretical values of  )2(1,

2 F

ii j ωλ +

 Evaluated Theoretical 

i=1 -0.50783201497968 + 0.17644006230670i -0.50780274212003 + 0.17649386871931i 

i=2 0.42577906425913 - 0.08180326802304i 0.42588382195297 - 0.08164496612163i 

i=3 -1.51985108140719 - 0.18744903308276i -1.51994279230261 - 0.18777462404959i 

i=4 0.95626870235269 + 1.25689875287077i 0.95679114362216 + 1.25620885732202i 

i=5 0.75716690291690 + 0.61070006006679i 0.75701955822647 + 0.61067645667337i 

Table 7, the evaluated and theoretical values of  )2(1,

4 F

ii j ωλ +

 Evaluated Theoretical 

i=1 -0.50779971566753 + 0.17644583472841i -0.50780274212003 + 0.17649386871931i 

i=2 0.42585370950162 - 0.08179112084103i 0.42588382195297 - 0.08164496612163i 

i=3 -1.51992857059729 - 0.18752165334900i -1.51994279230261 - 0.18777462404959i 

i=4 0.95625249450690 + 1.25653648265525i 0.95679114362216 + 1.25620885732202i 

i=5 0.75713972408720 + 0.61075264347404i 0.75701955822647 + 0.61067645667337i 

Table 8, the evaluated and theoretical values of )2(1,

2 F

ii j ωλ + and )2(1,

4 F

ii j ωλ +  

)2(1,

2 F

ii j ωλ +
 )2(1,

4 F

ii j ωλ +
  

Evaluated Theoretical Evaluated Theoretical 

i=1 0.53760994319778 0.53759995405517 0.53758132763800 0.53759995405517 

i=2 0.43356612669883 0.43363917061801 0.43363714018142 0.43363917061801 

i=3 1.53136685665397 1.53149776405636 1.53145265359157 1.53149776405636 

i=4 1.57931767104259 1.57908517367750 1.57901955830012 1.57908517367750 

i=5 0.97275705201163 0.97262754755998 0.97276891053393 0.97262754755998 
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It can be seen that the evaluated results match the theoretical results very well. Moreover, 

the results shown in Tables 5 and 8 have a strict accordance with the relationships of 

equations (78) and (81). Therefore, the numerical study verifies the properties of 

NOFRFs of locally nonlinear MDOF systems described in previous section.  

From Table 5, it can be seen that, for i=4, )(1,

1 F

ii jωλ +  and )(1,

3 F

ii jωλ +  are only slightly 

different, but they have a significant difference for i=3. This means that, )(1,

1 F

ii jωλ +  and 

)(1,

3 F

ii jωλ + , for the two masses connected to the nonlinear spring, have a considerable 

difference. This result implies that a class of novel approaches can be developed based on 

the properties of NOFRFs derived in the present study for MDOF nonlinear systems to 

detect and locate fault elements which make engineering structures behave nonlinearly. 

This is the focus of our current research studies. The results will be present in a series of 

later publications. 

5 Conclusions and Remarks 

In this paper, the properties of locally nonlinear MDOF systems have been investigated 

using the concept of Nonlinear Output Frequency Response Functions (NOFRFs). 

Important results regarding the relationships between the NOFRFs of MDOF systems 

have been derived, and these reveal, for the first time, very significant characteristics of 

this class of nonlinear systems. A direct application of the derived results is the location 

of the position of the nonlinear element in a locally nonlinear MDOF system. This idea 

can be used to develop novel fault diagnosis techniques for a wide range of engineering 

structures [10][14][15]. Numerical studies verified the theoretical analysis results. It is 

worthy noting that, although, for convenience, it was assumed that each mass has only 

one degree of freedom, the obtained results are still tenable for the cases where each mass 

in the MDOF system has more than one degree of freedom. During the analysis, if  

 is taken as a vector, the same results will be achieved.  ),,1(, nixi L=
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