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Abstract: The analysis of multi-degree-of-freedom (MDOF) nonlinear systems is studied
using the concept of Nonlinear Output Frequency Response Functions (NOFRFs). The
results reveal very important properties of MDOF systems, which are of significant
importance for the analysis of nonlinear structures. One important application of the
results obtained in this study is the detection and location of faults in engineering

structures which make the structures behave nonlinearly.

1 Introduction

Linear system methods, which have been widely studied by practitioners in many
different fields, provide a basis for the development of the majority of control system
synthesis, mechanical system analysis and design, and signal processing algorithms.
However, there are many qualitative behaviours in engineering, such as the generation of
harmonics and inter-modulations, which cannot be produced by linear models [1]. In
these cases, nonlinear models are needed to describe the system, and nonlinear system

analysis methods have to be applied to investigate the system dynamics.

The Volterra series approach [2] is a powerful tool for the analysis of nonlinear systems,
which extends the familiar concept of the convolution integral for linear systems to a
series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra
kernels, called Generalised Frequency Response Functions (GFRFs) [3], are an extension
of the linear Frequency Response Function (FRF) to the nonlinear case. If a differential
equation or discrete-time model is available for a nonlinear system, the GFRFs can be
determined using the algorithm in [4]~[6]. However, the GFRFs are multidimensional
functions [7][8], and are much more complicated than the linear FRF and can be difficult

to measure, display and interpret in practice. Recently, the novel concept known as



Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by the authors
[9]. Thus concept can be considered to be an alternative extension of the FRF to the
nonlinear case. The NOFRFs are one dimensional functions of frequency. This allows the
analysis of nonlinear systems in the frequency domain to be implemented in a manner
similar to the analysis of linear systems and provides great insight into mechanisms

which dominate important nonlinear behaviours.

In practice, many mechanical and structural systems can be described by MDOF models.
In addition, these systems may also behave nonlinearly due to nonlinear characteristics of
some components within the systems. For example, a beam with breathing cracks
behaves nonlinearly because of the cracked elements inside the beam [10]. These
nonlinear MDOF systems can be regarded as locally nonlinear MDOF systems. This
paper is concerned with the study the properties of locally nonlinear MDOF systems
using the concept of NOFRFs. The results reveal, for the first time, very important
properties of these systems and are of significant importance for the analysis of nonlinear
structural systems. One important application of the results obtained in the study is the
detection and location of faults in engineering structures which make the structures

behave nonlinearly.

2. Nonlinear Output Frequency Response Functions

2.1 Nonlinear Output Frequency Response Functions under General Inputs

The definition of the NOFRFs is based on the Volterra series theory of nonlinear systems.
The Volterra series extends the well-known convolution integral description for linear
systems to a series of multi-dimensional convolution integrals, which can be used to

represent a wide class of nonlinear systems [3].

Consider the class of nonlinear systems which are stable at zero equilibrium and which
can be described in the neighbourhood of the equilibrium by the Volterra series

0= [ bz Jutt-z)ds, (1)

n=1
where y(¢) and u(f) are the output and input of the system, %,(z,,...,7,) is the nth order
Volterra kernel, and N denotes the maximum order of the system nonlinearity. Lang and
Billings [3] derived an expression for the output frequency response of this class of

nonlinear systems to a general input. The result is
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This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (2), Y(jw) is the spectrum of the

system output, Y (jw) represents the nth order output frequency response of the system,
Hn (.]a)l L ja)n ) = J-_DO J‘_DD hn (Tl LR 2-n )e_(a)lrl +,...,+w,,1,,)jd2_1 "'dTn (3)
is the nth order Generalised Frequency Response Function (GFRF) [3], and
j H,(joy,.... jo)[[U(jo,)dao,,
i=1

denotes the integration of H, (jo,,..., jo, )H U(jw,) over the n-dimensional hyper-plane
i=1

®, +---+w, =w . Equation (2) is a natural extension of the well-known linear relationship

Y(jo)=H(jo)U(jow) , where H(jw) is the frequency response function, to the

nonlinear case.

For linear systems, the possible output frequencies are the same as the frequencies in the
input. For nonlinear systems described by equation (1), however, the relationship between
the input and output frequencies is more complicated. Given the frequency range of an
input, the output frequencies of system (1) can be determined using the explicit expression

derived by Lang and Billings in [3].

Based on the above results for the output frequency response of nonlinear systems, a new
concept known as the Nonlinear Output Frequency Response Function (NOFRF) was
recently introduced by Lang and Billings [9]. The NOFREF is defined as

| HGo.mjo)] UGN,
G,, (]a)) — O+, 0, =0 - i=1 (4)
J‘ H U(]a)z )do-n(u

O+ to,=0 =1

under the condition that

UGo= [ TIVGexs,, =0 5)

O+t @, =0 =1

Notice that G,(jw) is valid over the frequency range of U, (j®w), which can be

determined using the algorithm in [3].

By introducing the NOFRFs G, (jw), n=1,---N, equation (2) can be written as



Y(ja>)=ZYn(jw) ZZGn(jw)Un(jw) (6)

which is similar to the description of the output frequency response for linear systems.
For a linear system, the relationship between Y(j®) and U(j®w) can be illustrated as
shown in Figure 1. Similarly, the nonlinear system input and output relationship of

Equation (6) can be illustrated as shown in Figure 2.

U(jw) Y(jow)

’ H(jw)=Gi(jw) ’

Figure 1. The output frequency response of a linear system
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U(jw)= Ui(jo) Gr(j)

Figure 2. The output frequency response of a nonlinear system

The NOFRFs reflect a combined contribution of the system and the input to the system
output frequency response behaviour. It can be seen from equation (4) that G (jw)
depends not only on H, (n=1,...,N) but also on the input U(j®) . For a nonlinear system,
the dynamical properties are determined by the GFRFs H, (n=1,...,N). However, from
equation (3) it can be seen that the GFRFs are multidimensional [7][8], which can make
the GFRFs difficult to measure, display and interpret in practice. Feijoo, Worden and
Stanway [11][12] demonstrated that the Volterra series can be described by a series of
associated linear equations (ALEs) whose corresponding associated frequency response
functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to
equation (4), the NOFRF G, (jw) is a weighted sum of H (jo,,...,jo,) over
o, +---+ o, = o with the weights depending on the test input. Therefore G, (j®) can be
used as an alternative representation of the dynamical properties described by H,. The
most important property of the NOFRF G, (jw) is that it is one dimensional, and thus
allows the analysis of nonlinear systems to be implemented in a convenient manner
similar to the analysis of linear systems. Moreover, there is an effective algorithm [9]
available which allows the estimation of the NOFRFs to be implemented directly using

system input output data.



2.2 Nonlinear Output Frequency Response Functions under Harmonic Input

Harmonic inputs are pure sinusoidal signals which have been widely used for the
dynamic testing of many engineering structures. Therefore, it is necessary to extend the

NOFRF concept to the harmonic input case.

When system (1) is subject to a harmonic input
u(t) = Acos(w.t+ f) (7)
Lang and Billings [3] showed that equation (2) can be expressed as

Y(jw)=iYn(j60)=i ln D H, (jo s jo Ao ) A(jo,) | ()
= = 2

L e
where
| A0 if o, elko, k=*1}i=1,n

0 otherwise

A(jo,) = { ©)

Define the frequency components of the nth order output of the system as Q , then
according to equation (8), the frequency components in the system output can be

expressed as
a={]Q, (10)
where Q) is determined by the set of frequencies
{a):a)kl+-~-+a)k”|a)ki:J_ra)F,z':l,~--,n} (11)
From equation (11), it is known that if all @, ,---,, are taken as — @, , then @ =-nao, .

If k of these are taken as ®,, then @ = (—n+2k)®, . The maximal k is n. Therefore the

possible frequency components of Y (jw) are
Q,={(-n+2k)w, ,k=01,--,n} (12)

Moreover, it is easy to deduce that
N

Q=|JQ, ={ko, k=-N,,~1,0,,---,N} (13)
n=1

Equation (13) explains why superharmonic components are generated when a nonlinear
system is subjected to a harmonic excitation. In the following, only those components

with positive frequencies will be considered.

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as

1 . . . .
p an(Ja)kl,‘”,Ja)kn)A(Ja)kl)"'A(]a)k,,)

Wy + -+ Oy =0

G, (jo)= 1

n=1,..N (14)

D AGo) - A(jo,)

2n
Oy + O =0



under the condition that

4,y =— 3 A(jw, ) A, ) %0 (15)

Oy + Oy =0

Obviously, G (jw) is only valid over Q  defined by equation (12). Consequently, the
output spectrum Y (j®) of nonlinear systems under a harmonic input can be expressed as
N N
Y(jo)=) Y,(jo) =) G, (jo)4,(jo) (16)
n=1 n=1
When k of the n frequencies of @, ,---,@, are taken as @, and the remainders are as

— ;. , substituting equation (9) into equation (15) yields,
A+ 2000,) = A /20 (7

Thus G/ (jw) becomes

k n—k

1 .
H, Gy, jop,= jog—jo) | A" &7

G (j(-n+2k)w,) =2

1 ’A|n ej(—)1+2k)ﬁ
on
k n—k
:Hn(ja)Fa'"aja)Fa_ja)Fa"'a_ja)F) (18)

where H,(ja,,..., jo,) 1s assumed to be a symmetric function. Therefore, in this case,
G (jw) over the nth order output frequency range Qn={(—n+2k)a)F,k = 0,1,~--,n} is
equal to the GFRF H, (ja,,..., jo,) evaluated atw, =-- =0, =0, o, = =0, =-0,,
k=0,--,n.

3. Analysis of Locally Nonlinear MDOF Systems Using NOFRFs

3.1 Locally Nonlinear MDOF Systems

Without loss of generality and for convenience of analysis, consider an undamped multi-

degree-of-freedom oscillator as shown in Figure 3.

ki my kra mpg kp  mp ke mpy Mpy kn o may fip)

M- O
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S, (A)= ZC‘[-Ai Nonlinear Component
i=l

Figure 3, a multi-degree freedom oscillator



If all the springs have linear stiffness, then the governing motion equation of the MDOF

oscillator in Figure 3 can be written as

Mi+ Kx = F(t) (19)
where
m, 0 0 k1+k2 _kz 0 0
0 m, - 0 —k, ky + ks =k - :
M = : : .. : K= 0 R . R . K . 0
0 0 .. mn : - - kn—l kn—l + kn - kn
0 - 0 -k, k|
are the system mass matrix and stiffness matrix respectively. x=(x,,---,x,) is the

displacement vector, and F(¢) = (O,---,O, f (t))' is the external force vector acting on the
oscillator.

Equation (19) is often used for a simplified modal analysis. Modal analysis is a well-
established approach for determining dynamic characteristics of engineering structures

[13]. In the linear case, the displacements x,(¢) (i =1,---,n ) can be expressed as
50 =[ hyt-0)/(0)dz (20)

where 4, (t) (i=L---,n) are the impulse response functions that are determined by
equation (19), and the Fourier transform of 7, (¢) is the well-known FRF.

Consider the case where one of the springs, say the Lth spring, has a nonlinear stiffness,
and, as shown in Figure 3, assume the restoring force S,(A) of the spring is a

polynomial function of the deformation A, i.e.,

S,(8) =Y e (21)

where P is the degree of the polynomial. Without loss of generality, assume L #1 and
L#n and k, =c,. Then for the masses which are not connected to the Lth spring, the
governing motion equations are
mx, +(k, +k,)x, —k,x, =0 (22)
mX;, +(k, + k. )x, —kx,_ —k,x, =0 (izL-1land i#=L) (23)

mx +kx —kx , =f(t) (24)

n’n n¥n-1 —

i+l

For the mass that is connected to the left end of the Lth spring, the governing motion
equation is

P
my X, + (ko ko )x, —k o x -k x, + zci (x4 —=x,) =0 (25)
i=2
For the mass that connects to the right end of the Lth spring, the governing motion
equation is



P
m X, +(k, +hp )X, —kpx, —kpaxp,, - Zci (X, —x,) =0 (26)

i=2

Denote
12, 4 » oL '
NF =|0---0 Zci(xL_l—xL)l —Zci(xL_l—xL)l 0---0 (27)
i=2 i=2
Then, equations (22)~(27) can be written in a matrix form as
Mx+ Kx =—NF + F(t) (28)

The system described by equations (27)(28) is a typical locally nonlinear MDOF system.
The Lth nonlinear spring component can lead the whole system to behave nonlinearly. In
this case, the Volterra series can be used to describe the relationships between the

displacements x,(¢) (i =1,---,n) and the input force f(¢) as below
SXOED IR B NCINES) | FACEE AT (29)
Jj=1 i=1

under quite general conditions [3]. In equation (29), A, (7,,....7;), (i=Ll-,n,
j=1L---,N), represents the jth order Volterra kernel for the relationship between f{¢) and
the displacement of m;. The Fourier transform of 4 ,(7,,...,7;) is the corresponding
GFRF H, , (jo,,....jo;) (i=Ln, j=1-,N).

3.2 GFRFs of Locally Nonlinear MDOF System

From equations (22)~(26), the GFRFs H, , (j@,,..., jo®,), (i=1,--,n, j=1,---,N) can
be determined using the harmonic probing method [5][6].

First consider the input f(¢) is of a single harmonic

f(t)y=e™ (30)
Substituting (30) and
xi(t):H(i,n(ja))ejwt (i=1---,n)(31)
into equation (28) and extracting the coefficients of e’” yields
(- Mo + K)H,(jo)=(0 - 0 1) (32)
where
H (jo)= (H(l,l)(ja)) H(n,l)(ja)))’ (33)
From equation (32), it is known that
H (jo)=(-Mo* +K)'(0 - 0 1) (34)
Denote
O(jw)=-Mo’ +K (39)
and



Q(l,l) (o) - Q(l,n) (Jo)
07 (jo)= : : (36)
Q(n,l)(ja)) Q(n,n)(ja))
From (34)~(36), it follows that

H(i,l) (Jow)= Q(i,n) (Jo) (i=L--,n) (37)
Thus, for any two consecutive masses, the relationship between the first order GFRFs can
be expressed as

H(i,l) (Jo) _ Q(i,n) (Jo)

H (Jo) Q(i+1,n) (Jo)
Moreover, from the first row of equation (32), it can be shown that
- mlwzH(l,l) (Jo)+(k +k,)H , (jo)—k,H ,, (jo)=0 (39)
From equations (38) and (39), the relationship between H ,(jw) and H ,, (j®) can be

(i=1---,n-1) (38)

described as
H(l,l) (Jo) _ Q(l,n) (o) _ k,
H(2,1) (Jo) Q(z,n) (o) (_ mla)z +k, +k,
Similarly, for the other first order GFRFs, the relationship between the GFRFs of any two
consecutive masses can be expressed as
H(1,1) (jo) _ Q([,n) (o) _ k., 3
H(i+1,1) (Jo) - Q(i+l,n) (o) - I__ mia)z + (1 - /ﬁ_l’i (]a)))kz +k,., -
(i=2,---,n—1) (41)
Denote A (jw) = 0. Then equations (40) and (41) can be written together as
H(ial) (Jo) _ Q(i,n) (Jjo) _ ki+l B
H(i+1,1)(ja)) - Q(Hl,n) (jo) - l_ mia)z + (1 - /ITU (]a)))kz + ki+1J -
(i=L---,n—1) (42)

Equation (42) gives a comprehensive description of the relationships between the n first

)™ A (jo) (40)

A (jo)

A (jo)

order GFRFs of the locally nonlinear #n-DOF systems.

The above procedure used to analyze the relationships of the first order GFRFs can be
extended to investigate the relationship between the N th order GFRFs with N >2. To
achieve this, consider the input

OED N (43)

Substituting (43) and

xi(t) = H(i,1)(ja)1)ej“’" +...+H(i,1)(jwﬁ)ejwm T |
Jlo+rag)t (l = 1,"',71) (44)

+N!H(i’ﬁ)(ja)li.”i‘ja)ﬁ)e +”.

into (22)~(26) and extracting the coefficients of e/ ") yields

10



—m (@, +"'+wﬁ)zH(l,p)(jwn'”aja)ﬁ)‘*‘(k1 +k2)H(1,N)(ja)la"'ajwﬁ) (45)
_kZH(Z’N)(ja)l""aja)ﬁ) =0

—m, (o, +“'+jwﬁ)zH(n,N)(jwlﬁn'aja)ﬁ)+an(,,’ﬁ)(ja)l7'“7jwﬁ) (46)
_an(n_l,ﬁ)(ja)l’”.’ja)ﬁ):0
—m (@, +"'+a)ﬁ)zH(i,ﬁ)(ja)p"':ja)ﬁ)+(ki +ki+1)H(i,ﬁ)(ja)19"'aja)ﬁ)

_kiH(i_l’N)(ja)li'“’ja)ﬁ)_ki+1H(i+1,ﬁ)(ja)l’.”’ja)ﬁ) =0
(i#1,L-1,L,n) (47)

_mL—l(a)l +”.+a)ﬁ)zH(L_l’N)(ja)l’.uﬁja)ﬁ)+(kL—1 +kL)H(L_l’N)(ja)lJ”.7ja)ﬁ) (48)
_kalH(L_Z’N)(ja)l’“Uja)ﬁ)_kLH(L’N)(ja)la""ja)ﬁ)+A%15L(ja)la"'7ja)ﬁ) =0
—my (o, +"'+wﬁ)zH(L,ﬁ)(ja)p”'aja)p)+(kL +kL+1)H(L’ﬁ)(ja)l""ﬂja)N) 49)
_kLH(L,I’ﬁ)(ja)l’.”’ja)ﬁ)_kL-HH(LJrl’ﬁ)(ja)l’.'.’ja)ﬁ)_Al}T/_l’L(ja)l7""ja)ﬁ) =0

In equations (48) and (49), A%"" (j@,, -+, jo, ) represents the extra terms introduced by

P
Zci (x, , —x,)' for the Nth order GFRFs, for example, for the second order GFRFs,

i=2

AT (o, jo,)=c, (H(L—l,l) (o) H n(jo,)+Hy(jo)H ,(jo,)

: : . : (50)
_H(L—l,l)(]a)l)H(L,l)(.]a)z)_H(L—l,l)(.]a)z)H(L,l)(.]a)l))
Denote
Hﬁ(ja)li'”h]‘a)ﬁ)=(H(1,N)(ja)17.”’ja)ﬁ) e H(,,I,N)(ja)l)'“,ja)ﬁ)) (51)
and
A-(jo,,, jo-)=]0---0 A= (o, -, jo-) —A=" (o, jo-) 0---0
N 1> 2SN N 1> 2SN N 1> 2SN
(52)
Then equations (45)~(49) can be written in a matrix form as
so that
Hy(jay, -, jog) =07 (j(@ + -+ o DA (jay, -, joy) (54)

Therefore, for each mass, the N th order GFRF can be calculated as
H(i’ﬁ)(ja)l"."ja)ﬁ)

. . ALf_l’L(ja):'“:ja)f)
= (0., (@, +-+ 0,0, (@ +-+w )| 8 7T
A (o, jog)

(i=1---,n) (55)

11



and consequently, for two consecutive masses, the N th order GFRFs have the following
relationships

H 5oy, jog) _ O (o ++0;) -0, (J(o +--+ y))
H(i+1,ﬁ)(ja)1:"':ja’ﬁ) Qo+ +03) -0, (@ ++ 0y))
=0""(j(oy +-+ o)) =2 (o -+ og)  (i=1-n-1) (56)

From equation (45), it is known that

Hym o, joy) k
H o (o jog)  |-m(o ++oy) +k +k, |
:ﬂ'%z(wla"'aa)ﬁ) (57)

Moreover, from equation (47), it can be deduced that
H([,ﬁ)(ja)lﬂn'ﬂja)ﬁ) _ k
H 5o, joy) [— m (@, +-+ o)’ + (1 — A5 (0, + -+ a)ﬁ))k,. +k

i+1

i+l
=2 (@ + -+ o) (1<i<L-1and L<i<n)(58)

For the two masses that are connected to the nonlinear spring, denote

k, —L-1,L
—— =A- (o ++w:) (59)
Fm @+ o) + (-2 (o + o) e, +h, | Y N
k —L,L+

L+1

=A< (o ++w.) (60
[—mL(a)l+...+%)2 +(1_2*LN_1,L((01+'“+a)ﬁ))kL+kL+1 N ( 1 N) ( )

Then, from equations (48),(49), it can be known that

i e T— L-1,L/ + .
H(L—l,ﬁ)(']a)l’ "Ja)N) :z%—li(a)l +~~-+a)ﬁ) I—L AN (]'a)la"'a]‘wﬁ)
H, 5 (o, joy) ky H, 5 (o, joy)

= /”LLN"I’L(Q)1 +eo o) (61)
1 A%I’L(jmla""ja)ﬁ)
L+1 H(L+1,N)(ja)l’.”’ja)ﬁ)

= 22" N0+ + 0y) (62)

H f(j((),"',ja)*) —L,L+
) Rt YN @ )| 1+
H - (o, jo-) " N k
(L+1,N) [ N

Equations (56)~(62) give a comprehensive description of the relationships between the n
N th order GFRFs of the locally nonlinear #n-DOF system.

It can be seen that 4""'(w) and A;"(w, + --+w;) have the same form. Thus, by

denoting
ALl_l,L(jw):() and ﬂ,%l(a)1+~-~+w;)=0 (ISN<ZN) (63)

the relationship between GFRFs up to Nth order of two consecutive masses of the locally

nonlinear n-DOF system can be summarized as

12



i+1

P k
AN o+ +o-) = i-Li
N ( 1 N) l_mi(a)l_;,_...q_a)ﬁ)z+(1—/’i,%1’l(a)l+"'+a)ﬁ))k,-+k

i+l
(1ISN<N, 1<i<ni#L-1,L) (64)
and
. ALLE i@, jO-
A (4t 0 )= A (@t @) l—kLHN (J. Sl v
L (L,ﬁ)(.]a)l’”".]a)ﬁ)
(1< N < N) (65)
1 A (o, jog)
kL+l H(LH,N)(ja)l’”"ja)ﬁ)

(1< N < N) (66)

L,L+1 —L,L+]
o+ rog) =5 (o +---+%)[1+

3.3 NOFRFs of Locally Nonlinear MDOF Systems

According to the definition of NOFRFs in equation (4), the N th order NOFRF of the ith

mass can be expressed as

N
| U je)]|FleXo,

- =1
Oyt O =0 q

j ﬁF( jo,)do~

O+t og=0 971

G,xUo) =

(1<SN<N, 1<i<n) (67)
where F(jw) is the Fourier transform of f(z).

According to equation (56), for any N>2, equation (67) can be rewritten as

N
J oG s o G jop [ [P, Moy,

O+t O—=0 q=1

j ﬁF( jo,Mdo

) q=1

i+l -« . _ i+ .
= 0" (jo)G 5, (jO) =2 (@G, 5 (jo)

(2<N<N, 1<i<n) (68)
For N = 1, it is known from equation (42) that
Gy (jo) = 4" (@G, ) (jO) (I<i<n) (69)
Moreover, denote /1%1 (w)=0, for the first mass, it can be deduced that
G(l)ﬁ) (]a)) _ k 1.2

G (o) [Ema’ +(1=2 (@)k, +1,) =4 (@) (1 SN< N) (70)

Thus, for all (L —1)th and Lth masses, the following relationship can be established,
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G(i,ﬁ) (]CU) kHl l i+l (C())
G @) Cm@® + (1= 25 (), + k)

(I<N<N, 1<i<nizL-1L)(71)

For the (L-1)th and Lth masses

G, - —L-1,L N
(L-1,N) (]60) _ AN ’ (o) 1- 1 M Z%_I’L (w) (1 <N N) (72)
G, (o) k, G5 (o)

G, - —L,L+1 ‘ EV:
(L,N)(Ja’) _7- (C()){l'i'kl (L 1N)(J )] LL+1( ) (ISNSN) (73)

G(L+1,N) (jo) ! L+l G(L+1 N)( Jjo)

where
k, — _
l-m, @ +(1- ﬂ““(a}))/f +kJ_/1L1L(w) (ISNSN)(M)
L-1 L-1
k —LL+ —
|- m a)2+(1—/1;1’L(a)))/( vhoa V@ h<F<n) o)
L N L L+
and

N
I ALN_LL(ja)l5“"ja)ﬁ)HF(jwq)dO-Nw
Ot O =0 _ 4= (1 NN ) (76)

J. ﬂ F(j @, )do-ﬁw

O+, Oy =0 q=1

F(Lfl,ﬁ) (.]a)) =

Equations (71)~(76) give a comprehensive description of the relationships between the n

N th order NOFRFs of two consecutive masses of the locally nonlinear #n-DOF system.

3.4 The Properties of NOFRFs of Locally Nonlinear MDOF Systems

Important properties of the NOFRFs of locally nonlinear n-DOF systems can be obtained
from the equation (69)~(76), as follows

1) For the masses on the left of the nonlinear spring, excluding the (L-1)th mass

G. .(jo G, (o
(,,D(J') :...:L]_) (1<i<L-1) (77)
G([+1,1) (Jo) G(HI,N) (jo)
that is
2N w) == 1N (0) = 1 () (I<i<L-1) (78)
where 1" (w) =0, and
(@) = i (1<i<L-1)(79)

(- m,@® + (1= A" (@)K, +k,., )
i1) For the masses on the right of the nonlinear spring, including the (L-1)th mass
G, (jo G.,(jo G, (o
(1,1)(1‘ ) o (,,2)(].) L (l,N)(.]‘ ) (L=1<i<n) (80)
Gn(Jo) Gi,(jo) Gium(jo)
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that is
AN @)= 5 (0) == (@)= 2" (0) (L-1<i<n)(81)
ii1) For the masses on the left of the nonlinear spring, the following relationships of the
output frequency responses hold
x,(jo) = 2 (@)x,, (j) (1<i<L-1)(82)
The first property is straightforward. From equation (70), it can be known that

k
A(w)=-=A1(0) = 2 =1 (o 83
() O =)@ (83)
Consequently, substituting (83) into equation (71) yields
k _ 23

@)= =2 (0= = 7 (@) (84)

3
—my0* + (1= 1)k, +k, )

Following the same procedure until i=L-2, the first property can be proved.

Using equation (68), it is known that, for the masses on the right of the nonlinear spring,

including the (L-1)th mass, the relationship

G.,(jo G, 10, -
(1,2)(]. ) L (l,N)(]. ) =Ql’l+l(ja)) (L-1<i<n) (85)
Gl (@) G (JO)
1s tenable.
For the (L-1)th mass,
G(L—l,l) (Ja)) _ kL _ ﬂlL,l’L (a)) (86)
Gup(o)  m o +(1-27 @)k, +k, )
and
G(L_l,z) (]0)) _ kL 1— i 1—‘(L—1,2) (]0)) — ﬂL—l,L (a))
G(L,z) (Jo) (_ mL—la)z +(1- ZQ—Z,L—I (0)k, , +k, ) k, G(L,Z) (Jo) ?
(87)

According to the first property, 2" (w) = 25> (w). So, from equations (86) and (87)
I @

2t (@)= 1 LU | ) (88)
k, G(L,Z)(]a))

Obviously, 4™ (@) # 2, (w) since T, , (jw)#0.

Substituting A/ " (@) and A" (w) into equations (73) and (75) for the Lth mass, it
can be deduced that

k
2L,L+1 ) = L+1
1 ( ) (_ mL a)2 + (1 — /If’*l,l, (a)))kL + kLJrl ) (89)
T 12
a 2 kLL:rllL 1+ S ) (J. ) = ﬂé’LH (@)
(_ mo”+(1-4""(0)k, +k, ) k. G(L+1,2) (o)
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Iteratively using the above procedure and terminating at the (n-1)th mass, the relationship
AN (w)# 25 (w) (L-1<i<n) can be proved. So far, the whole second property is

proved.

The third property is also straightforward since, according to equation (6), the output

frequency response of the ith mass can be expressed as

N
X, (Jo)= Z G(i+1,k) (Jo) F,(jo) (90)
=
Using the first property, equation (90) can be written as
N
X, (Jo) = zﬂu“ (ja))G(i,k) (Jo) F,(jo) 91)
k=1

Obviously, x,,,(jw)= A" (jw)x,(jo), then the third property is proved.

Above three properties can be easily extended to a more general case, as follows.

iv) For any two masses on the left of the nonlinear spring, the following relationship holds.

G. .(jo G, 10] -
—<””(J_ ) :---:—“’N)(], ) = 2" (@) (1<i<L-1land i+k<L) (92)
G(i+k,1) (Jo) G(i+k,N) (Jo)
and
2{1,1+k (a)) — Hll+d,l+d+l (a)) (93)
d=0

v) For any two masses on the left of the nonlinear spring, the output frequency responses
satisfy the following relationship

x,(jo)=1"(o)x,, (jo) (1<i<L-1and i+k<L)(94)

vi) For any two masses on the right of the nonlinear spring, including the (Z-1)th mass, the
following relationships can be deduced from property ii).

G(i,l) (Jo) - G(i,z) (Jo) o G(i,N) (Jo) _ itk ()

G(i+k,1) (jo) G(i+k,2) (o) G(i+k,1v) (o)

(L-1<i<nand i+k<n) (95)

and
k-1
/’ii’Hk (a)) — H/’i,i+d,i+d+1 (a)) (96)
d=0
vii)For any two masses on different sides of the nonlinear spring, the following
relationship holds.
G(i,l)(ja)) o G(i,z) (o) N G(i,N) (o)
G(k,l) (Jo) G(k,2) (Jo) G(k,N) (Jo)

(1<i<L-1and L<k<n)(97)
The above four properties are straightforward, so the details of the proofs are omitted.
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4 Numerical Study

In order to verify the analysis results in the last section, a 6-DOF oscillator was adopted, in
which the fourth spring was nonlinear. As widely used in modal analysis [13], a damping
characteristic was considered in this numerical study where the damping was assumed to be
a proportional damping, e.g., C = ¢K . The values of the system parameters used are

m o=-=mg=1,c =k ==k, =3.5531x10*, ¢, =0.8x¢], ¢, =0.4xc’, 1£=0.01
and the input is a harmonic force, f(¢) = Asin(27 x20¢).

If only the NOFRFs up to the 4™ order is considered, according to equations (16) and (17),
the frequency components of the outputs of the 6 masses can be written as

x,(jop) = G(z n(Jor)E (]a)F)+G(z yop)E(jor)

x;(J20r) = G(z »(20:)F,(j20,) + G(z »(J20:)F,(j20,)

x;(j3wp) = G(z 3y (J3wp)F;(j30,)

x,(jAo, ) = G(z »(J4op)F,(jAo,) (i=1---,6) (98)
From equation (94), it can be seen that, using the method in [9], two different inputs with
the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4™
order. Therefore, in this numerical study, two different inputs of amplitudes 4,=0.8 and
A>=1.0 were used. The simulation studies were conducted using a fourth-order Runge—
Kutta method to obtain the forced response of the oscillator.

The evaluated results of G/’ (jw,), G (jo,), Gi (j2w,) and G (j2w,) for all
masses are given in Table 1 and Table 2. According to analysis results in the previous
section, it can be known that the following relationships should be tenable.

Giy(jor)  Giy(jop)

A (jop) = — = —— =" (o) for i=1,2
1 " G(1H+1 ) (Jor) G([i1+1,3) (Jor) ’ g
y @ GY (jw »
A (jog) = 5 ) :,3>(1 . r) =45 (jop) for i =3,4,5
G(m 1 (Jog) G([+1,3) (Jop)
. 20 G (2w ,
(o) = G, (j20.) G, (j20,) =" (j2w,) fori=1,2,345

G(IZH,Z) (J2w;) G([Zi-l,4) (J2w;)

(99)
From the NOFRFs given in Table 1 and Table 2, 4"'(jo,) , A" (jo,) ,
A (2w, ) and A7 (j2w,) (i=1,2,3,4,5) can be evaluated. Moreover, from equations
(36), (65) and (66), the theoretical values of A" (jw,), A" (jo,), 4" (j2w,) and
2 (j2w,) (i=1,2,3,4,5) can also be calculated. Both the evaluated and theoretical
values of 2" (jw,), 4" (jwp), 5 (j2w,)and A" (j2w,) (i=1,2,3,4,5) are given in
Tables 3, 4, 6 and 7 respectively. The associated moduli are given in Table 5 and Table 8.
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Table 1, the evaluated results of G (jw,) and G (jw,)

G/ (jop) (x107) Gy (jo) (x10%)
Massl1 0.248755981292+0.105083252913i -2.640653692313-0.1343466510491
Mass2 -0.431887829736-0.2459270631111 4797297679103+ 0.8174185042891
Mass 3 -0.984866548167-0.648079124466i1 11.23083043936+ 2.666885065817i
Mass 4 -1.227215155076-1.1519762678141 -3.690332450620+4.775081343252i
Mass 5 -1.009037585829-1.7229582654541 -0.167765943288+6.975012211228i
Mass 6 -0.243826521314-2.215514088592i 1.874038990979+7.9369550649901
Table 2, the evaluated results of G, (j2w,) and G, (j2w,)
Gy (j2w,) (x10) G/ (j2w,) (x107)
Mass 1 -3.600986560925-0.8433964893451 -1.744362683969+1.791582813072i
Mass 2 5.812267183838+3.680180095536i 4.158928956405-2.0830203112511
Mass 3 11.56344137006+10.86504193730i 10.32469589716-2.9083974938931
Mass 4 -8.362748079065-6.117344659423i -6.458494748740+2.7103280950261
Mass 5 -6.288845518790+ 1.868823507184i -1.111106770191+4.294340994126i
Mass 6 -3.826040708263+ 5.5541080590521 1.882654455592+4.1531367442331
Table 3, the evaluated and theoretical values of 4" (jw,)
Evaluated Theoretical
=1 -0.53956923942555+ 0.063931936913301i -0.53956812565722+0.06392927976739i
=2 0.42068003742786-0.02711726504942i 0.42068338945362-0.027121783117381
i=3 0.69013114133652-0.11973089757392i 0.69003905565205-0.11950391902279i
i=4 0.80845793934758-0.238804802160571 0.80846919607333-0.238816868904381
i=5 0.81789573641784-0.365428916832251 0.81789109869642-0.365419462574371
Table 4, the evaluated and theoretical values of 2" (jw,)
Evaluated Theoretical

i=1 -0.53955286025570 + 0.06393054204275i1 -0.53956812565722 + 0.063929279767391
=2 0.42071440540958 - 0.02711985209971i 0.42068338945362 - 0.02712178311738i
i=3 -0.78832894098333 - 1.74272100693032i1 -0.78847736178192 - 1.742695938066361
i=4 0.69692072700836 + 0.51231636293108i 0.69688121980439 + 0.51240060371508i
=5 0.82766819458198 + 0.216562699102341i 0.82767705033815 + 0.216547405081031
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Table 5, the evaluated and theoretical values of Il’f”l (jo, )I and Ii’;"” (jo, )I

A o) A (oo,
Evaluated Theoretical Evaluated Theoretical

=1 0.54334358990583 0.54334217122990 0.54332716038864 0.54334217122990
=2 0.42155312826982 0.42155676400890 0.42158759148846 0.42155676400890
i=3 0.70044020449736 0.70031070603482 1.91273077749801 1.91276911377081
=4 0.84298990102437 0.84300411497973 0.86496621636963 0.86498428494605
=5 0.89581902687299 0.89581093594295 0.85553143891097 0.85553613500763

Table 6, the evaluated and theoretical values of 25" (j2w,.)

Evaluated Theoretical
=1 -0.50783201497968 + 0.176440062306701 -0.50780274212003 + 0.176493868719311
i=2 0.42577906425913 - 0.081803268023041 0.42588382195297 - 0.081644966121631
=3 -1.51985108140719 - 0.18744903308276i -1.51994279230261 - 0.18777462404959i
i=4 0.95626870235269 + 1.256898752870771 0.95679114362216 + 1.25620885732202i
=5 0.75716690291690 + 0.610700060066791 0.75701955822647 + 0.610676456673371

Table 7, the evaluated and theoretical values of ;"' (j2w,)

Evaluated Theoretical
i=1 -0.50779971566753 + 0.176445834728411 -0.50780274212003 + 0.176493868719311
i=2 0.42585370950162 - 0.08179112084103i 0.42588382195297 - 0.081644966121631
=3 -1.51992857059729 - 0.18752165334900i -1.51994279230261 - 0.18777462404959i1
i=4 0.95625249450690 + 1.256536482655251 0.95679114362216 + 1.256208857322021
=5 0.75713972408720 + 0.610752643474041 0.75701955822647 + 0.610676456673371

Table 8, the evaluated and theoretical values of Iﬂ;’i 2w, )I and I/i’;;”l (jRo, )I

A (j20,) A (20,
Evaluated Theoretical Evaluated Theoretical
i=1 0.53760994319778 0.53759995405517 0.53758132763800 0.53759995405517
=2 0.43356612669883 0.43363917061801 0.43363714018142 0.43363917061801
i=3 1.53136685665397 1.53149776405636 1.53145265359157 1.53149776405636
=4 1.57931767104259 1.57908517367750 1.57901955830012 1.57908517367750
i=5 0.97275705201163 0.97262754755998 0.97276891053393 0.97262754755998
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It can be seen that the evaluated results match the theoretical results very well. Moreover,
the results shown in Tables 5 and 8 have a strict accordance with the relationships of
equations (78) and (81). Therefore, the numerical study verifies the properties of

NOFRFs of locally nonlinear MDOF systems described in previous section.

2 a, )‘ and ‘ Ao, )‘ are only slightly
47 (jo, )| and

, for the two masses connected to the nonlinear spring, have a considerable

From Table 5, it can be seen that, for i=4,

different, but they have a significant difference for i=3. This means that,
2 o)
difference. This result implies that a class of novel approaches can be developed based on

the properties of NOFRFs derived in the present study for MDOF nonlinear systems to
detect and locate fault elements which make engineering structures behave nonlinearly.
This is the focus of our current research studies. The results will be present in a series of

later publications.

5 Conclusions and Remarks

In this paper, the properties of locally nonlinear MDOF systems have been investigated
using the concept of Nonlinear Output Frequency Response Functions (NOFRFs).
Important results regarding the relationships between the NOFRFs of MDOF systems
have been derived, and these reveal, for the first time, very significant characteristics of
this class of nonlinear systems. A direct application of the derived results is the location
of the position of the nonlinear element in a locally nonlinear MDOF system. This idea
can be used to develop novel fault diagnosis techniques for a wide range of engineering
structures [10][14][15]. Numerical studies verified the theoretical analysis results. It is
worthy noting that, although, for convenience, it was assumed that each mass has only
one degree of freedom, the obtained results are still tenable for the cases where each mass
in the MDOF system has more than one degree of freedom. During the analysis, if

x,,(i=1,---,n) is taken as a vector, the same results will be achieved.
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