This is a repository copy of Crack detection using nonlinear output frequency response
functions - an experimental study.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74575/

Monograph:

Peng, Z.K., Lang, Z.Q. and Billings, S.A. (2006) Crack detection using nonlinear output
frequency response functions - an experimental study. Research Report. ACSE Research
Report no. 926 . Automatic Control and Systems Engineering, University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Crack Detection Using Nonlinear Output
Frequency Response Functions — An
Experimental Study

Z. K Peng, Z Q Lang, and S A Billings

= o
REkVM = 9@
CogNosCER®

Department of Automatic Comtl and Systems Engineering
The University of Sheffield
Mappin Street, Sheffield
S13JD, UK

Research Report No. 926
July 2006



Crack Detection Using Nonlinear Output
Frequency Response Functions — An
Experimental Study

Z.K. Peng, Z.Q. Lang, S. A. Billings

Department of Automatic Control and Sgists Engineering, University of Sheffield

Mappin Street, Sheffield, S1 3JD, UK
Emails: z.peng@sheffield.ac.uk, z.lang@fileld.ac.uk, s.billings@sheffield.ac.uk

Abstract: The new concept of Nonlinear @ut Frequency Response Functions
(NOFRFs) is introduced in this paper taetd cracks in beams using frequency domain
information. The results show that the NOFRIfs a sensitive inditar of the presence
of cracks providing the excitation is of appaopriate strength. Theew results provide a
novel and effective method for the detectioncohcks in beams, ith applications in
structural fault diagnosis.

1 Introduction

Fatigue cracks are a potentiaburce of catasiphic failure in civil structures or
mechanical machines. To avoid failusaused by cracks, many researchers have
performed extensive investigations to develop structural integrity monitoring techniques.
Most of these techniques are based on vidmaneasurements and analysis because, in
most cases, vibration based methods can offer an effective and convenient way to detect
fatigue cracks. Generally, viliran based methods can besd#died into two categories:
linear and nonlinear approaches. Linear apgrea detect the presence of cracks in a
target object by monitoring changes in theomant frequencies [1][2], in the mode
shapes [3][4][5] or in the damping factoj§][7]. However, several researchers have
shown [8]-[10] that, linear detdon procedures are not alwagdiable and they typically
show a low sensitivity to defexctFor example, in [9], the numerical results show that the
presence of a crack, which makes up aldi#20% of the undamaged cross-sectional
area, reduces the natural frequencies béam by only 0.6~1.9%. Some factors, which



may cause difficulties when using linear methdolscrack detectionn practice, have
been discussed in [10]. Over recent yearsreasing attention has been focused on the
application of the nonlinear methods to detdhe presence of cracks [9]-[14]. When a
cracked object is subjected to a harmsomput, the appearance of superharmonic
components and subharmonic resonances map$erved. In [9]-[14], these phenomena
are termed ‘the nonlinear effects’. In [9], Bovsunovsky and Surace claimed that
nonlinear effects are more sensitive to the gmes of a crack than the change in natural
frequencies, or mode shap@&sese authors also studied thuence of damping on the
nonlinear effects. Based on subharmonic resonances, Tsyfansky and Beresnevich [10]
developed a new approach for the detectiofabfjue cracks in flexible, geometrically
nonlinear beam-type structural elements. Latieey [11] used the same procedure to
detect cracks in aircraft wingSundermeyer and Weaver [12] studikd torced response

of a bilinear model subjected to an excitatiith two frequencies, and based on these
results they further exploilethe weakly nonlinear character of a cracked beam to
determine the crack location. In [13], Saagednd Cuitino studied dynamic behaviors of
different multi-beam systems containing a transverse crack theoretically and
experimentally, and gave many results regayavhich nonlinear effects would be useful

for crack detection.

In summary, as indicated by previous studigseveral authors, nonlinear analysis based
methods are often much more sensitive ® phesence of cracks than linear vibration
based methoddS he research reported in this paper is devoted to the introduction of the
concept of the Nonlinear Output Frequegsponse Functions (NOFRFs) [14]-[16] and
the application of this focrack detection. NOFRFs are anneoncept developed recently
by the authors, which allows the analysisnohlinear systems to be implemented in a
similar manner to linear system frequencgp@nse analysis. Thovides great insight
into how nonlinear phenomena such as theegsion of new frequencies occur. This
paper is focused on an experimental sttalylemonstrate that the NOFRFs are a good
indicator of the presence ofawks in a beam, with the aim of establishing a basis for the
use of NOFRFs in structural defetagnosis in engineering practice.

The paper is organized as follows. Sectiayives a brief introduction to the new concept
of NOFRFs. The widely used breathingack model is discussed in Section 3. The
experimental study showing the applicatioh the NOFRFs to crack detection is
presented in Section 4. Finally cdusions are given in Section 5.



2. Nonlinear Output Frequency Response Functions (NOFRFs)

2.1 NOFRFs under General Inputs

NOFRFs were recently proposed and used tostiy&te the behaviowf structures with
polynomial-type non-linearities [14]. The defion of NOFRFs idased on the Volterra
series theory of nonlinear systems.eTWolterra series é&nds the well-known
convolution integral descrijpn for linear systems to a series of multi-dimensional
convolution integrals, which can be useddpresent a wide da of nonlinear systems
[15].

Consider the class of nonlinear systems Wwhace stable at zerequilibrium and which
can be described in the neighbourhoothefequilibrium by the Volterra series
N . n
(1) =ZLD"'J.,wh"(rl""’T")Hu(t_Ti)drf (1)
n=1 i=1
where y(f) andu(z) are the output andchput of the systenm, (z,,...,z,) is the nth order
Volterra kernel, an@&v denotes the maximum order tfie system nonlinearity. Lang and
Billings [15] derived an expression for the output frequency response of this class of
nonlinear systems to a general input. The result is
N
Y(jo)=>Y,(jo) forve

n=1I

n @
1/\n j H,(jo,,.., jw,1)HU(jaJi)dG,,w
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This expression reveals how nonlinear medrasa operate on the input spectra to
produce the system output frequency response. InY(2)w) is the spectrum of the
system outputY, (j®) represents theth order output frequenagsponse of the system,

H,(jor,njo,) = [ o h(ez,)e Omromidr, de, 3)
is thenth order Generalised Frequency Response Function (GFRF) [15], and

[ H,(o,..jo)]U(e)s,
i=1

o+, 0, =0
denotes the integration &, (ja)l,...,ja)n)HU(jcoi) over the n-dimensional hyper-plane
i=1
o, +---+o, =0 . Equation (2) is a natural exteosiof the well-known linear relationship
Y(jw)=H(jo)U(jw) , where H(jw) is the frequency response function, to the
nonlinear case.

For linear systems, the possible output fregie=nare the same as the frequencies in the
input. For nonlinear systems described by Equation (1), however, the relationship between



the input and output frequencies is more clicaped. Given the frequency range of an
input, the output frequencies of system (1) bardetermined using the explicit expression
derived by Lang and Billings in [15].

Based on the above results for the outpujuescy response of nonlinear systems, a new
concept known as the Nonlinear Outgtrequency Response Function (NOFRF) was
recently introduced by Lang and Billings4]. The NOFRF is defined as

[ H,(o,.. jo)[1UGe)ds,,
Gn (]CO) — Oty 0, =0 . i=1 (4)
[ TlvGeds,,

o+, 0, =0 i=1

under the condition that

v,Go)= | [luGes,, =0 (5)

o t,....t0,=0 i=1

n

Notice thatG,(jw) is valid over the frequency range of (jw), which can be
determined using the algorithm in [15].

By introducing the NOFRF¢&, (jw), n=1---N, Equation (2) can be written as
N N
Y(jo)=2 Y,(jo) =3.G,(jo)U,(jo) (6)
n=1 n=1

which is similar to the description of tleitput frequency response for linear systems.
For a linear system, the relationship betw&€n®) andU(j®) can be illustrated as
shown in Figure 1. Similarly, the nonlineaystem input and output relationship of
Equation (6) can be illustrated as shown in Figure 2.

U(jw) Y(jw)

H(jw)=G1(jw)

Figure 1. The output frequency response of a linear system

UM ;
s Gy )
Uz(}a)) :
— Go(jw)
U(jw)= Ui(jw)

Gi(jw)

Figure 2. The output frequency response of a nonlinear system




The NOFRFs reflect a combined contributiontleé system and the input to the system
output frequency response behaviourcdin be seen from Equation (4) th@i(jw)
depends not only o/, (i=1,...,N) but also on the input/(j@). For any structure, the
dynamical properties are determined by the GFREs(i= 1,...N). However, from
Equation (3) it can be seen that the GR&Rultidimensional [17][18], which can make
the GFRFs difficult to measure, display anterpret in practice. Feijoo, Worden and
Stanway [19][20] demonstrated that the Volkeseries can be dedmed by a series of
associated linear equations (ALEs) whaseresponding associated frequency response
functions (AFRFs) are easier to analyze amerpret than the GFRFs. According to
Equation (4), the NOFRFG, (jw) is a weighted sum ofH, (j®,,....jo,) over

o, +---+ o, = with the weights dependinmn the test input. Therefoi@, (j®) can be
used as an alternative representation of the dynamical properties descrided Diye
most important property of the NOFRF, (jw) is that it is one dimensional, and thus
allows the analysis of nonlinear systetesbe implemented in a convenient manner
similar to the analysis of linear systems. Moreover, there is an effective algorithm [14]
available which allows the estimation of tN©OFRFs to be implemented directly using
system input output data. This algbm is briefly introduced below.

Rewrite Equation (6) as
[Y(j@)]=[U, (@), U, (j0)[G(j@)] (7)
where[G(jo)]=[G,(jo), .Gy (o).

Consider the case afr) = au" (r) Wherea is a constant and (¢) is the input signal under
which the NOFRFs of the system are to be evaluated, then

Wn 1 oGy,

(272-) " o+, o,=0 =1

' (8)
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whereU’ (jw) is the Fourier Transform of () and
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In this case, it is known from Equation (7) that

Y(jo)=|av; (o)., U}, o) ||6" (o) (9)
where [G* (ja))]: [G1 (jo), -+, G, (ja))]TWhiCh are the NOFRFs to be evaluated.



Excite the system under study times using the input signadsu”(s), i =1...N , where

N =N anday,a --,a, are constants which satisfy the condition

N-1
ag >ag, >>a; >0

so thatN output frequency respons&S(jw), i=1...N can be generated for the system

under study. From Equation (9),is known that the outputequency responses can be

related to the NOFRFs twe evaluated as below.

Y (jo) = AU ()6 (o) 10
where

YN (o) = [Yl(ja,),...,yﬁ(ja))]r (11)
and

) aU; (jo), o' Uy (jo)
AU (jo) = : (14)
ayU (jo), - aiU, (jo)

Consequently the values of the NOFRGé(jw),---,G;V(jw), can be determined using a
least squares based approach as

6" Go))=[G; ). G )|

o ) 4 o, (12)
:|:(AUl"'*N (]a))) (AUl"'”N (Ja)))i| (AUl...JV (]a))) Yl...JV (]a))

2.2 NOFRFs under Harmonic Inputs

Harmonic inputs are pure sinusoidal signalsich have been widely used for the
dynamic testing of many engineering structurdlserefore, it is ne@sary to extend the
NOFRF concept to the harmonic input case.

When system (1) is sudgjt to a harmonic input
u(t) = Acos@,t + p) (13)

Lang and Billings [15] showed that Equation (1) can be expressed as

V(o) =37, o) = Z( >

ZHH(ja)kl”"’ja)kn)A(ja)kl)"'A(jwk”) (14)

Oy + o+ Oy =0
where

| 4 |ejsign(k)ﬁ if we {ka)F k= il}

) (15)
0 otherwise

A(jw) ={



Defining the frequency components atfh order output of the system &%, , then
according to Equation (14), the frequencynpomnents in the system output can be
expressed as

Q= LNJQH (16)

and Q)  is determined by the set of frequencies

{a):a)k1+---+a)k"|a)ki:ia)p,i:l-~,n} (17)

From Equation (17), s known that if allw, ,---,@, are taken as o, , thenw=-naw, .
If & of these are taken as., thenw = (—n+ 2k)w, . The maximak is n. Therefore the
possible frequency components 8f(j®) are

Q,={(-n+2k)o, k= 0L---,n} (18)

Moreover, it is easy to deduce that

=0, =(ko, k=N, - 101N} (19)

n=1
Equation (19) explains why s@ superharmonic components will be generated when a
nonlinear system is subjected to a harmoexcitation. In the following, only those
components with positive frequencies will be considered.

The NOFRFs defined in Equation (4) canelséended to the case lohrmonic inputs as

1 . . . .
on an(Ja)kli'”’Ja)k”)A(Ja)kl)"'A(]a)kn)

G (jw)= ‘”“’1‘” n=1,..N (20)
o ZA(kal)A(Ja)k)

Oy + Oy =0

under the condition that

L S a(e,)A(e,)#0 (21)

271 O+ + O, =0
Obviously, G/ (jw) is only valid overQ, defined by Equation (18). Consequently, the
output spectrun¥(jw) of nonlinear systems under a harmonic input can be expressed as

4,(jo)=

V(o) =3, (j0) = 361 (je) 4, (jo) @2)

n=1
When £ of the n frequencies ofw, ,---,@, are taken as, and the remainder are as
-, , substituting Equation (15)tmEquation (21) yields,

4, (j(—n+2k)wF)=2—ﬁ|A|" el (23)



Thus G” (jw) becomes

k n—k
2]:1 Hn(jCOF,---’jC()F,—ja)F’--.’_ja)F)|A|n e_/(fn+2k)ﬂ
G (j(—n+2k)w,) =
1 |A|n e«f(7n+2k)ﬂ
2"
K n—k
= H,(jog+, jOr = jOp -+ = joy) (24)

where H,(jw,,...,jo,) is assumed to be a symmetrimé€tion. Therefore, in this case,
G (jw) over thenth order output frequency rang®, = {(—n + 2k)w,.,k = 0L---,n} is
equal to the GFRH ,(j®,,...,jo,) evaluated ab, =---=w, =0,, ©, = =0, =—0,,
k=0,--,n.

This result indicates that the concept of NRBS can represent, to a certain extent, the
dynamic characteristics of a nonlinear systamer investigation, and may therefore be
suitable for fault detection of mechanicalooril structures based on the difference of the
structural dynamics in the fault and fault free situations.

3 Nonlinearity of Cracked Beams

The presence of a crack in a beam will adisce a local flexibility that affects its
dynamic response. During vibrations, a cracksdnot remain always open; it will open
and close over time depending on the loadiogditions and vibrabin amplitudes. If the
static deflection due to loading on a cratkeeam (e.g. body weight of the beam) is
larger than the vibration amplitude, ther ttrack may remain in one condition all the
time, always open or always closed depegdin the position of the crack. In this case,
the cracked beam may be described as a lisysiem. If the static deflection is small,
then the crack may open and close over titepending on the vibration amplitude. In
this case, the cracked beam will behave asrdinear system, and nonlinear effects will
be present in the output response [21].

Using the finite element method, the dynarhiequation of a crack free beam can be
written as [21]

(M0 [K U = {F) (25)
where[M | is the mass matri]K | is the stiffness matrixU } is the displacement vector
and {F} is the load vector. For a cracked beamhen the crack is open, an additional
stiffness—[AK | is introduced, and equation (25) changes to

(MY }+ [k - AR JU} = {F) (26)



In the study of cracks, a breathing crack temfconsidered, and it is assumed that when
the bending moment changes sigracks change from open to closed, or from closed to
open. Therefore, a cracked beam catale like a bilinear nonlinear system, as
described by [21]
[MYi7}+ [k U=1{F}  if crackisclosed

{[M]{U}+[K—AK]{U}:{F} if crackisopen
The bilinear system (27) is a typical nonlinegstem. Numerical studies have shown that
this bilinear model can explain the nomlar phenomena of the generation of super-
harmonic components, which have been plek in the outpuresponse of cracked
beams subjected to a harmomiput. A crack free beam beles linearly as described by
(25) and can thus be analyzed simplyngsthe well-establistte Frequency Response
Function (FRF). However, the FRF cannotdffectively used to explain the nonlinear
phenomena that are characteristic of a créddikeam. This is because the linear FRF
based approaches basically monitor the chaafyjeguctures at the resonant frequencies
or in the mode shapes. However, the presehceacks will oftemot induce aignificant
change in these structural cheteristics. In order to savthis problem, the concept of
NOFRFs was introduced in [14] to descrittee behavior of craed structures. The
results showed that the NOFRFs can providexgiicit explanatiorfor the generation of
superharmonic components from a bilineastegn subjected to a harmonic excitation.
Based on the NOFRF description, the diffeeebetween cracked and crack free beams
can be illustrated as shown in Figure 3gufe 3 indicates that the NOFRF concept can
be used to more effectively distinguish thaaked and crack free siti@ns in structures.

(27)

Crack Free Cracked
| —> J
FRF: H(jw) —> | NOFRF:Gi(jw) = H(jw),
Go(jw),..., Ga(jow)

Figure 3, The difference betweerack free and cracked beams

4 An Experimental Study of Crack Detection Using Nonlinear
Output Frequency Response Functions

A Volterra series based methadhs used in [22] to analyze the vibration of a cracked
beam where the higher order transform functfHOTF) of a cracke cantilevered beam
was estimated. The HOTF was defined the ratio between the output spectrum
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Y(jw)andU,(jo ) for a particularm of interest and is based on the Volterra series of
nonlinear systems. Compared to NOFREse HOTF is not a theoretically well
established concept although under certain conditions, NOFRFs and HOTF can be related
to each other. In this section, the apgiicn of the concept of NOFRFs for crack
detection is investigated based an experimental study.

The experimental test rig is shown in Figyrewhich mainly consists of a shaker to
generate the excitation, a clamp to flxe beam on the shaker, a beam and an
accelerometer mounted at the free end eflibam to measure the acceleration. Three
specimen beams were tested: one crack freewoth a slight crackdefect (the ratio
between the crack depth and the thicknesthefbeam was about 0.2), and one with a
deep crack (the rati@ was about 0.4). According toehrequirements for estimating the
NOFRFs up to % order, four inputs with the sameaveform but different strengths will
be needed to excite the system respectively. But for the harmenicdase, according to
equations (22) and (23), the frequency ponents of the output can be written as

Y(jwp) =G\ (jop)4(jop)+G; (jop)4;(jo,) (28)
Y(j20,) =G, (j2w,)4,(j20,) + G, (j20,)4,(j2w,) (29)
Y (j3w,) = Gy’ (j3w,)4;(j3w;) (30)
Y(jdw,) =G, (jhw,)A4,(j4o;,) (31)

From equations (28)~(31), it can be seen tivatdifferent inputs with the same waveform
but different strengths are sufficietat estimate the NOFRFs up t8 drder. Therefore, in
this study, two different inputsere used in each test. Considgrthe fact that the strength
of the excitation forces mayfa€t the nonlinearity of cracklebeams, for example a small
excitation force may only make the cracks opartly while a strong excitation could make
the cracks open fully, to mak&ure cracks are at the samstatus during one test, the
strengths of the two inputs veechosen such that the sigéhs did not differ from each
other considerably. The frequeneay- of the harmonic excitation was 200 Hz, and the
vibration signals were sampleising an accelerometer ag¢ ttample ratef 8k Hz.

Clamp\ \ |
I i /l»_l

Accelerometer

Beam
\ Shake

Figure 4, Experimental test rig
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Figures 5, 6, 7 show the FFT spectra ofalsets of output reponses which were sampled
from three specimen beams under differentitakon strengths. Figure 5 shows that
under small excitations the nonlinear effeces aery weak for botlthe crack free beam
and the beam with a small crack as the gugzenonic components of the spectra are too
small to be observed. However, Fig 6 skdWwat the second harmonic component has a
large amplitude when the beam has a largelkcrThe spectra in Figure 6 show that,
under moderate excitations, the nonlinear eftestill quite weak for the crack free beam,
however, the nonlinear effect becomes notite#or both the two cracked beams as the
superharmonic components up to fifth order @loservable in the output spectra. Figure 7
shows the output spectra of the vibratiognails sampled under sirg excitation. It can

be seen that some superharmonic comporardssome irregular components appear in
the output spectra of the crack free beamis Ibelieved that in this case the strong
excitations made the wholest rig behavior nonlinearlyror the two cracked beams,
obviously, the nonlinear effect becomes digant, the superharmonic components are
quite clear in the output sge&, especially in the outpspectrum of the beam with a
large crack where the second harmonic compoiseaven larger than the fundamental
harmonic component. These observation results indicate that the presence of cracks will
induce the nonlinear effects in the outpuspense, and the degree of nonlinearity
depends on the strength of the excitations.

FFT FFT
10° |
3 I
10°} 10 |
0 5 10 15 0 5 10 15
Frequency Ratios/w Frequency Ratios/w
(a) Crack free (b) Small crack
FFT
10° |
0 5 10 15

Frequency Ratia/w
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(c) large crack
Figure 5. The output responses under small excitations

FFT FFT
10°} l 10° i
0 5 10 15 0 5 10 15
Frequency Ratia /o Frequency Ratia /o
(a) Crack free (b) Small crack
FFT
10°
0 5 10 15

Frequency Ratias/ow
(c) large crack

Figure 6. The output respons@sder moderate excitations

FFT FFT
10° ¢ .
. 5|

10°} n 10 ,|

0 5 10 15 0 5 10 15

Frequency Ratios/w Frequency Ratios/w
(a) Crack free (b) Small crack
FFT
10° | ]
0 5 10 15

Frequency Ratia /o
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(c) lagre crack
Figure 7. The output respses under strong excitations

Tables 1, 2 and 3 give the NOFRFaluation results for therie specimen beams. It is
worth noting that all the NOFRFs in thebkes have been nwmialized by divided by
G/ (jo,) . It can be seen that, at the sametatioin level, the NOFRFs of the beam with
a large crack are always the largest, whileti@ beam with a small crack, and the crack
free beam the NOFRFs are always relativelylsniais means that the behavior of the
beam with a large crack is considerably mooalinear than the crack free beam. It also
can be seen that, under small excitationsN®&RFs of a beam with a small crack are
quite small, even smallerdah the NOFRFs of the crack free beam under moderate and
strong excitations. This is because smalitakons may not cause the crack to open, and
therefore the beam behaves just like a craeé fream. In addition, the large values of the
NOFRFs of the crack free beam under strongtations indicate that strong excitations
made the test rig behave nonlinearly. Themefin a strong excitation case, the NOFRFs
of the cracked beams reflect the combinedinear effects of the crack in the beam and
the test rig, but compared to the nonlinetiect caused by a crack, the nonlinear effect
from the test rig is less significant.

The results in Tables 1, 2 and 3 show thatNOFRFs are a quitensitive indicator of
the presence of a crack as long as th@aian is strong enough tpen the crack. Under
small excitations, there are slight differenbesween the NOFRFs of the crack free beam
and the slightly cracked beaiout the NOFRFs of the beam with a deep crack are much
larger than the NOFRFs of the crack frearhe Under moderate and large excitations,
most of the NOFRFs of the cracked beamsvaueh larger than the NOFRFs of the crack
free beam. Therefore, the NOFRFs are a gooitator of the presence of a crack.
Moreover, it can be seen that the NOFRIFdhe beam with a large crack are always
larger than the NOFRFs of the beam witbnaall crack under the same excitation, which
implies that the values of the NOFRFs carrdgarded as an indicatof the crack size,
larger NOFRFs inferring a larger crack siZéne advantage of using the NOFRF results
in Tables 1, 2 and 3 is that single valaes given for the NOFRFs which are much easier
to compare and interpret compatedther frequency based methods.

In summary, the experimental study shdahat the NOFRFs are a sensitive indicator of
the presence of cracks. To conduct the lcrdetection procedure using the NOFRFs,
appropriate excitations shoulite employed. Ideally, the exations should be strong
enough to open a crack but should not be tammgt otherwise, thexcitations will make

14



the test rig behave nonlinearly and the dédfece between the NOFRFs evaluated in the
cracked and crack free situationsynmt be considerably different.

Table 1, The estimated results under small excitations

NOFRFs Crack Free Small Crack Large Crack
G (jw,) 1.00000000 1.00000000 1.00000000
G (joy) 0.00100051 0.00263550 0.24103323
Gl (j2m,) 0.00060379 0.00110494 0.22953284
G (j2m,) 0.00007167 0.00184145 0.00755471
G (j3w,) 0.00002036 0.00060981 0.00369901
G (jhw,) 0.00001137 0.00004290 0.00078840

Table 2, The estimated

resulisder moderatexcitations

NOFRFs Crack Free Small Crack Large Crack
G (jo,) 1.00000000 1.00000000 1.00000000
GI (joor) 0.00470760 0.02378153 0.28168441
G (j2m,) 0.00163466 0.02360642 0.24038379
Gl (j2m,) 0.00028966 0.00402358 0.04345069
G (j3w,) 0.00070613 0.00097110 0.02502336
G (jhw,) 0.00010685 0.00034400 0.00859901

Table 3 The estimated rdsuunder strong excitations

NOFRFs Crack Free Small Crack Large Crack
G (jow,) 1.00000000 1.00000000 1.00000000
Gl (jowy,) 0.00554740 0.02742614 0.05101400
G (j2w,) 0.00991495 0.03443461 0.49263892
G (j2m,) 0.00062943 0.00435547 0.21806627
G (j3w,) 0.00097094 0.00286848 0.06451821
G (jhw,) 0.00018662 0.00024341 0.03216557
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5 Conclusions and Remarks

The new concept of the Nonlinear Outpuequency Response Functions (NOFRFs) has
been introduced for fault detiion. The importance of uginthe NOFRFs instead of the

FRF to describe cracked beams in the fraquedomain has been analyzed. Finally, an
experimental study using the NOFRFs to deteracks has been conducted for three
specimens of beams, one without a cracle with a small craclkand one with a large

crack. The results indicate that the NOFRFs are a quite sensitive indicator of the presence
of cracks in a beam as long as the excitatafreppropriate strengths are employed, and

the values of the computed NOFRFs are arcatain of the crack size. Larger values of
NOFRFs normally indicate larger craskes. The present study provides a novel and
effective method for crack detigon, with applications istructural fault diagnosis.
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