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Abstract: The concept of Nonlinear Output Frespcy Response Functions (NOFRFsS) is
extended to the nonlinear systems that can be described by a multi-input Volterra series
model. A new algorithm is also developeddetermine the output frequency range of
nonlinear systems from the frequency rangtefinputs. These relssiallow the concept

of NOFRFs to be applied to a wide rangen§ineering systems. The phenomenon of the
energy transfer in a two degree of freednanlinear system is studied using the new
concepts to demonstrate the siigiance of the new results.

1 Introduction

Linear systems, which have been widely sddy practitioners in many different fields,
have provided a basis for the developmenthef majority of control system synthesis,
mechanical system analysis and design, @igdal processing methods. However, there
are certain types ajualitative behaviour encountered engineering, wich cannot be
produced by linear models [1], for examptbe generation of harmonics and inter-
modulation behaviour. In cases where thefects are dominant or significant nonlinear
behaviours exist, nonlinear models are mexlito describe the system, and nonlinear
system analysis methods have to bdiadgo investigate # system dynamics.

The Volterra series approach [2] is a powetddl for the analysis of nonlinear systems,
which extends the familiar concept of thengolution integral for linear systems to a
series of multi-dimensional conluion integrals. The Fouridransforms of the Volterra
kernels are known as the kernel transfordigher-order Frequency Response Functions
(HFRFs) [3], or Generalised Frequency passe Functions (GFRFs), and these provide
a convenient tool for analyzing nonlineaystems in the frequency domain. If a
differential equation or discrete-time modelaxailable for a system, the GFRFs can be
determined using the algorithm in [4]~[6]. §lI6GFRFs can be regarded as the extension
of the classical frequency response functiodRKJ-of linear systems to the nonlinear case.



However, the GFRFs are much morempiicated than the FRF. GFRFs are
multidimensional functions [7][8], which can be difficult to measure, display and
interpret in practie. Recently, the novel concept dfonlinear Output Frequency
Response Functions (NOFRRsas proposed by the authd@. The concept can be
considered to be an alternatiggtension of the FRF to the nonlinear cd4®FRFs are
one dimensional functions of frequency, whatlow the analysis of nonlinear systems to
be implemented in a manner similar to the analysis of linear systems and which provides
great insight into the mechanisms whidominate many nonlinear behaviours. The
NOFRF concept was recently used to investigateteegy transfer properties of bilinear
oscillators in thdrequency domain [10]. The results ealed the existence of resonances
at frequencies different from the frequencesthe input excitation in this class of
oscillators.

The objective of this paper is to extené ttoncept of NOFRFs to multi-input nonlinear
Volterra systems so that the concept of NO§FR&n be applied to a much wider range of
engineering systems. The pherermn of energy transfer in a 2DOF nonlinear system is
also investigated using the extended cohoéPplOFRFs to demonstrate the effectiveness
and significance of the results obtained in the present study.

2 The Concept of Nonlinear Output Frequency Response Functions

NOFRFs were recently proposed and used tostiyate the behaviowf structures with
polynomial-type non-linearitiesThe definition of NOFRF3Ss based on the Volterra
series theory of nonlinear systems.

Consider the class of nonlinear systems Wwhace stable at zerequilibrium and which
can be described in the neighbourhoothefequilibrium by the Volterra series

vO=3[ [ by )] T2, CED

where y(r) andx(7) are the output and input of the systen(z,,...,z,) is the nth order
Volterra kernel, an&V denotes the maximum order of the system nonlinearity. Lang and
Billings [3] have derived an expression for thé&put frequency response of this class of
nonlinear systems to a general input. The result is
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This expression reveals how nonlinear medraa operate on the input spectra to
produce the system output frequency response. In ({A(2%) and X (jw) are the spectra
of the system output and input respectively(j®) represents theth order output
frequency response of the system,

H,(jo,...jo,) = J:f; h (z,,...,r,)e attem)ide  dr (1.3)

is the definition of the Generalis€dequency Response Function (GFRF), and

[ H(oyjo)][]X(e)ds,,
i=1

o +,.. 0, =0

denotes the integration af, (ja)l""’ja)n)HX(ja)i) over the n-dimensional hyper-plane
i=1
o, +--+o,=w . Equation (1.2) is a natural ergon of the well-known linear

relationshipY (jw) = H,(jw) X (j®) to the nonlinear case.

For linear systems, the possible output fregie=nare the same as the frequencies in the
input. For nonlinear systems described byu&ion (1.1), however, the relationship
between the input and outpuéquencies is more complieat Given the frequency range
of the input, the output freqoeies of system (1.1) can lbetermined using an explicit
expression derived by Lang and Billings in [3].

Based on the above results for output freqyeresponses of nongar systems, a new
concept known as the Nonlinear Outgtrequency Response Function (NOFRF) was
recently introduced by Lang and Billings [9]. The concept was defined as

[ H,(onjo)]X(je)ds,,
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under the condition that

v,Go)= [ [[XGeMs,,#0 (L.5)
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Notice thatG, (jw) is valid over the frequency range of (jw), which can be
determined using the algorithm in [3].

By introducing the NOFRF¢&, (jw), n=1---N, Equation (1.4) can be written as
N N
Y(jw)=2 Y,(jo) =).G,(jo)U,(jo) (1.6)
n=1 n=1

which is similar to the description of tletput frequency response of linear systems. For
a linear system, the relationship betwadhw) and X(jw) can be illustrated as in



Figure 1. Similarly, the nonlgar system input and outputatonship of Equation (1.1)
can be illustrated in Figure 2.
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Figure 1. The output frequency response of a linear system
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Figure 2. The output frequencysponse of a nonlinear system

The NOFRFs reflect a combined contributiof the system rad the input to the
frequency domain output behaviour. It che seen from Equation (1.4) th@(jo )
depends not only o/, (i=1,...,N) but also on the inpuk'(j®) . For a nonlinear system,
the dynamical properties are determined by the GFRF$= 1,... N). However, from
Equation (1.3) it can be seen that a GR&multidimensional [7][8], and may become
difficult to measure, display and interpretpractice. Feijoo, Worden and Stanway [11]-
[12] demonstrated that the Volterra serieslsamlescribed by a series of associated linear
equations (ALEs) whose corresponding assedifitequency response functions (AFRFs)
are easier to analyze anderpret than the GFRFs. Aacling to Equation (1.4), the
NOFRF G,(jw) is a weighted sum off ,(j@,,....jo, Overw, +---+o, = with the
weights depending on ¢hinput. ThereforeG,(jo )can be used as an alternative
representation of thersttural dynamical characteristics described A)y. The most
important property of the NOFRE, (jw) is that it is one dimensional, and thus allows
the analysis of nonlinear sgshs to be implemented incanvenient manner similar to
the analysis of linear systems. Moreoveerénhis an effectivalgorithm [9] available
which allows the evaluation of the NOFRFskie implemented directly using system
input output data.

2 NOFREFS for Multi-Input Nonlinear Volterra Systems
2.1 Multi-Input Nonlinear Volterra Systems

Multi-input multi-output nonlinear Volterra systsngcan be expressed so that each output
can to be modeled as a muitput Volterra series. The #nsion of the single input
single output Volterra series representation (1.1) to this more general case is as follows



5= 3 () (2.2)

n=1
where

(n) +00 ~+00 (n)
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x, (1= TN1+1) Xy (f— TN, +N, )-x, (- TN1+..-+NM,1+1) ~ox,(t-7,)dz,--dt,
anda{")_. ., _\ , represents theth order kernel associated with titie output andnith
input x,(¢) , Nath input x,(z) ,..., Nmth input x,, (¢) .

Equation (2.2) can be rewritten as

-+00 -+00
W= J-_m"'J._ooh((i%:Nl,m,Pm:Nm)(711""Tn)x(N1w-uNm)(Tl"”’Tn)dflde" (2.3)

Ny++N,,=n
where
x(Nl,w,Nm)(Tl’“"Tn): (2.4)
X (t—7) - x (1 — TNl)x2 (t- TN1+1)“'x2 (- TN1+N2)”'xm (t- 7N1+---+N,,,,1+1)"'xm (t-7,) .
In the single-input case, the Volterra series has only one kernel for each order of
nonlinearity, for examplez, (z,,7,) is the second order kerné.can be seen, however,
that in the multi-input case more kernels ineolved for each order of nonlinearity. For
example, for a two input system there are thfé@@ler kernels for théh output which
are h((i2,1)f’1:2,P2:0) (71,75), h((i2,1)f’1:0,P2:2) (71,7,), and hg}azwfl) (71,75) -

The frequency domain description of{® (2.2) can be expressed as

N
Y,(jw) = y" (jo) (2.5)
=1
1 n-1
Yi(n) (jo)= (Zj Z J-H((ilfg’lle,---,Pm:Nm) (Jor, - jw,)
Ni+--+N, =n o+, =0 (26)
N, Ni+N, n
XHXl(ja)i) HXZ(]a)l) HXm(ja)i)do-nw
i=1 i=N;+1 i=Ny+-+N,,_1+1

This is an extension of Equation (1.2) tbe single-input case to the multi-input case.
Define N, =0, then Equation (2.6) can be written as

n-1 No++N

0 (s 1 1 0 . CNTT T T v g

Yi( '(jo) :(_) - Z .[H((i}’l:Nl,---,Pm:Nm)(]a)l"“"]a)n)H HXj (jo)do,,
2r \/; Nyt Ny =1 o 4o 0, =0 Jj=1 i=Ng+--+N, 1 +1
(2.7)
For a given setoN,,N,,---N, , define
(Ej%:Nl,--~,Pm:N,,,) (o)
n-1 No+-+N
1 1 ) , , o NoroN, (2.8)
:(_j - J'H((i,l)”le,m,Pm:Nm)(.]a)l’“"]a)n)XH HXj(.]a)i)do-nw
27[ \/; o+, =0 J=1i=Ng+-+N; 1+1



then Equation (2.7) can be written in a compact form

¥ (jo) = YD n oy (@) (2.9)

Ny+-+N,,=n

2.2 Definition of the NOFRFs for Multi-Input Nonlinear Volterra Systems

Define
1 n-1 1 m No+:++N;
U (o) =|—] — X (jw)do 2.10
B nti) = o | s N R (2.10)

then (2.8) can be rewritten as

Y(E,nl-)’lle,m,Pm:Nm) (jo)=

(n) . .
H(i,ale,---,Pm:Nm) (o, jo,)

.[ m No+-+N; o
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where
H((iy,lz’lle;u,Pm:NW) (o, jo,)
'[ m No+-+N; O-na)
o+ +0,=0 X H HXJ (ja)l)
n . J=1i=Ng+-+N; 1+1
G((i,l)Jl:Nl,m,Pm:Nm) (jo)= w Nor 4N, (2.12)
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o++m, =0 j=1 i=No++N, 1 +1
will be referred to as the Nonlinear @ut Frequency Response Function for multi-input
nonlinear Volterra systems, and is a naturé&tmesion of Equation (1.4) to more general
case. Substituting (2.12) into (2.9) yields
YOG@)= 2 G, oy GO o, o () (2.13)

Ny+-+N,, =n

It is easy to verify thaG((i’f},l:le,,,’Pm:Nm)(ja)) has the following important properties.

(i)  Ghy,non,(jo) allowsY)_ . _. (jo) to be described in a manner similar
to the description for the output frequency response of linear systems.

(i) G _r..r_n,(jo) isvalid over afrequency range wherg), . . (jw)#0.

(iir) G(([’f}ﬁle,._,,R":Nm)( jo) is insensitive to the change thfe input spectra by a constant
gain, that is,
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2.3 Determination of the Output Frequency Range of Multi-Input nonlinear
Volterra Systems

For a nonlinear system that can be modeled single-input Volterra series, given the
frequency range of the input, Lang and Billif8Fderived an explicit expression for the
output frequency range. In the following,n@ethod will be derived to determine the
output frequency range of multi-input nonlinear Volterra systems.

Obviously, the frequency range Uif}”,lLle,‘_%:Nm)(ja)) is given as the range of
o=y o (2.15)
k=1
where o™ is associated to thigh input x, (¢) of orderN,, and
O =0y, Oy (2.16)
Define the frequency range of thih inputx, () (k=1,...m) as
[_bk _ak]U[ak bk]
Now, assumel;, of N, components are located jab, —a,], and the remainder are
located[a, b, ], in this case, the frequency range is

(N, -L)a, —L,b, (N, -L,)b,—L,a,] (2.17)
that is

[N.a,—L,(b, +a,) Nb,—L,(a, +b,)] (2.18)
Therefore the range @ is

Ny

! [Nkak_Lk(bk +a,) N.b, —L,(a, +bk)] (2.19)
that is

Ny
Ve UINa, — L, (b +a,) Nib, — L (a; +,)] (2.20)

This can easily be extended to cased? +---+ o™
o=(@" +-+0™)e U U[sza ZL(a +b,) szb ZL(a +b)} (2.21)
L,=0 L,=0| i=1

Therefore, the frequency rangelczij‘,’il) N,-p-n (@) can be expressed

S ey = U U{ZNa —ZL (a,+b,) ZNb ZL(a +b)} (2.22)

L,=0 L,=0L i=1
From Equation (2.11), it can be shown thigp_, . \(jw) andU{) ., v (j®)
have the same frequency range. Furthermore, according to Equation (2.9), it can easily be
shown that the frequency rangeXdf’ (o) is



f;‘(n) = Uf‘(s'zile'me=Nm) (223)

Ny+--N, =n

Finally, according to Equation (2,3he frequency range of(jo i3 given by

/= Uff’” (2.24)

Therefore, given the freqoey ranges of the inputs (1) k€ 1,...,m) as

[_bk _ak]U[ak bk]’
the output frequency range can be determimeBquations (2.22), (23) and (2.24). The
validity of this method will be verifiethy numerical studies in Section 3.

2.4 Evaluation of the NOFRFs for Multi-Input Systems

For single-input nonlinear systems, Lang and Billings [9] derived an effective algorithm
for the estimation of the NOFRFs, which canitn@lemented directly using system input
output data. To estimate the NOFRFs upvtb order, the algorithm generally requires
experimental or simulation results for the system undledifferent input signal
excitations, which have the same waveformsdiffiérent intensities. This algorithm can

be extended to estimate the NOFRFs in thétinmput case. As a multi-input system of
nonlinearity up tavth order involves more tha¥i NOFRFs, more thaN experiments or
simulations under differentgmal excitations are needamestimate the NOFRFs.

Combining Equation (2.5) and (2.13) yields

N
y:(jo)= z ZY(S,n}Zl:Nl,---,R":Nm) (o) (2.25)

n=1 Ny+--+N, =n
Equation (2.25) can be furtheritten in the polynomial form
y(jo) =Y. GO (olu, (jo)|+d. Y GE, Go)lu, Go)u,, )]+

k=1 fq=Lk,=k,
+ Z - ikG,EjY?kN (U, (o) -U,, (jo)]
where G, (]N'a);irepresents a specific
Gty ) UO) = Gy () (2.27)

N1 N2 N

with N, +---+ N, =n,andn=1---,N, and

(2.26)

UGy vy (@) = U, (j@)---U,(jo)U,(jo)---U,(jw)---U,(jo)---U,(jo) | (2.28)

Nl NZ Nm

The number of terms contained in Equat{@i26) can easily be calculated using the
method given in [13], as
C(Nym)=m+m+Ym/2+---+(m+N-2)---(m+Lm/ N! (2.29)



It can be seen that there dre+n—1)---(m+2Lm/ n! terms for theith order NOFRFs.

Sorting allG!", (jw), k, =k,_,,---,m,i=1---,n, k, =1 as a series, and labeling them

fyoky
as
Gl (jo), k=1:C,,, (2.30)
where
Comy =(m+n=2---(m+Dmln (2.31)
Denoting the corresponding/| (jw)---U, (jo ] s
Ui (jo), k=1:C,,, (2.32)
then Equation (2.25) can be rewritten as
. (jow) = [U(%) L UQ U US| |t (2.33)
where
[ 1=let 6k, 613--602, (234)

when, x, (t) = ax, (¢),i =1---m., wherea is a constant and (¢),i =1---m. are the input

signals under which the NOFRFs oétbystem are to be evaluated,
1 1 m No+-+N;;

n-1
U((;’1)=N1r-nf’m=Nm)(ja)) = an(gj T '[ H HX: (ja)[)danw

o+ ta,=0 J=1 i=No++N; 1+1
:anU(*I(’Qle-,Pm:Nm) (jo) (2.35)
where
1 n-1 1 m No+-+N;
Ui ear, - (jw)=[——j —= X;(jw)do,, (2.36)
(s io) 2r \/Z %+.4.‘[(u,1=w1;!i—No+-1:[leil
In this case, from (2.33), Equi@en (2.25) can be written as

y(jo)=laU aUf) o U a6 (2.37)
where [Gl.* ]: [G((?) G,y Gy '“G(*,-(,]cv(),v,,,,))]j are the NOFRFs to be evaluated.

Excite the systenC'(N,m)=C,, +---+C,, times by the input signals
x()=a;x (), i=1:m,and, j=1:C(N,m)

A > Oy > >0 >0

chm 1
to generateC(N,m) output frequency respons&$(jw), k =1: C(N,m). From (2.37),
these output frequency mmses can be written as

alU(*l()l) alU(*él(im)) alNUzl()N) alNU(*(Cz}m)
Y. (jo) = : : : z : z s ;]
O‘C(N,m)U(*l()l) O‘C(N,m)U(*&i,m) “év(zv,m)sz)N) “évuv,m)U(*g(,vv),m))
(2.38)
where
Y(jo) =1} (@) - v ()] (2.39)
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Moreover, defining

AUL--~,C(N,m) (ja))
*@) *@) Nrr*(N) Nrr*(N)
a,U o U ci) a, Uy a; U
O *@) N Ny L. N *(N)
%evmU Aeiv U (Ca) e e mU Cm)
(2.40)
yields
. 1.--,C(N,m .
Y, (jo) = AU (jo)[G,] (2.41)
- * * * * * T -

From Equation (2.41)[(}1. ]: [G(l.(j)) G, Gy --.G(i(g()m_m))] can then be determined

using an Least Square based approach to yield

[6: = [uv<m o (v oy | (v o v (o) (242)
From Equation (2.29), it is known that the number of NOFRF demill increase with
the number of system inputs. For ingt@na single input nonlinear system—() with up
to 4" order nonlinearity{=4) has only 4 NOFRF terms; however, a nonlinear system of
N=4 andm=2 will have 14 NOFRF terms. This implies that 14 different signal excitations
are needed to generate the data obtitput spectra to estimate these NOFRFs.

3 Energy Transfer Phenomena of a Multi-Input Nonlinear System

In this section, the concept of NOFRFs for multi-input nonlinear systems is applied to
investigate the energy transfer phenomdan a 2-DOF nonlinear system [2]. The
differential equation of the considered nonlinear system is given by
My (8) + (Cqy + C10) 01 (8) — €00, () + (kyy + kyp) vy () = Ky y, (8) + ¢, (3, () _yz(t))z
+e3(0,(2) _yz(t))3 +k2y12(t) +k3y13(t) =u, (?)
M35 (1) +(Crp + C0p) 0o (8) = ooy (8) + (Kyp + kipp) 1o (8) — o1 () = ¢, (01 () = 3, (®)?
—&3( (1) = 7, (1) = u,(2)
Where y, (t),v,(t) are the two outputs of the system, m,, ¢,;,¢15,Cos, Co , C3 5 kip,kios
k., k,, k, are the system parameters: mass, damping and stiffness respectively. The
nonlinear system can be illustrated as a mechanical oscillator shown in Figure 3.

(3.1)

k22 k12 ks, k21 kll
I S
my ma
e P HE—
€22 C3, C2, C12 C11

Figure 3, a 2-DOF nonlinear system
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In the following study, the values of all the parameters usedngten, =1kg, ¢, =
c,=Cp =20N/m/s , ¢, =1x500N(M/Sf , c,=1x10"N(m/s) , ky, =k, =k,
=1x10" N/m, k, =1x10" N/m?, k, =5x10° N/m®, and the two input excitations are

3 sin(x35x rxt)—sin(2x10x 7z xt)

u,(t)=— —10sec<t<10sec (3.2)
2r t
3 sin(2x100x 7z x t) —Sin(2x85x 7 x ¢t
u,(t) =— ( ) ( ) —10sec<t<10sec (3.3)
2 t
U, u,
0.15 I 1 0.15 »_4
0.1 1 0.1
0.05 1 0.05
0 ‘ : : 0
0 10 20 30 40 50 0 50 100 150
Frequency / Hz Frequency / Hz
Figure 4, The spectra dfe two inputs for the system in Equation (3.1)
u? u?
1 2
10 1 6
8 5
4
6
3
4
2
2 1
0 : : : 0
0 20 40 60 80 0 50 100 150 200 250
Frequency / Hz Frequency / Hz
UlUZ
3
25
2
15
1
0.5
O L T T
0 50 100 150 200

Frequency / Hz
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Figure 5 The spectra of’ (¢), u>(¢) andu, (t)u,(¢) for the system in Equation (3.1)

The frequency ranges of the firsput and the seconidput are [-10 -35))[10 35] Hz
and [-85 -100]J [85 100] Hz respectively. Thesspectra are shown in Figure 4.
According to Equation (2.21), it can keown that the frequency range@f;. , , , (j®)

is [2x10 2x35]U[10-35 35-10]U[-2x35 -2x10] = [-70 70] Hz. Similarly, it can be
deduced that the frequency rangelgff., , , (j®) is [-200 -1701J[-15 15] U [170 200]
Hz. According to Equation (2.23), it cabe known that the frequency range of
U@ 1p, (o) is [-135 -95)J [-90 -50] U [50 90] U [95 135] Hz. These results are
verified by the spectra ofu’ () andu,(t)u,(t) shown in Figure 5. Furthermore, using
Equation (2.25), the possible dneency range of the output candadculated to be [-200 -
170]U[-135 135]J[170 200] Hz.

The forced response of the system is aigdithrough integratingquation (3.1) using a
fourth-order Runge—Kutta method, and the of results over3<¢<3) are shown in
Figure 6. Figure 7 shows the spectra a# thutputs, which clearly indicate the two
outputs have the same dreency range over [0 13%][170 200] Hz, and this frequency
range is the same as determined using thé/sis result by Equatin (2.24). From Figure
7, it can be seen that considerable inputgner transferred by the system from the input
frequency band [10 33)) [85 100] Hz to the other frequency ranges [0 UdB5 70] Hz.

x 10°
15F =
10+ .
=] L i
>
i | | | | | 1
3 2 1 0 1 2 3
Time / Sec
0.01
0.005 - B
S o ]
>
-0.005 - B
_001 L | | | |
-3 -2 -1 0 1 2 3
Time / Sec

Figure 6 The output responsetbé system in Equation (3.1)
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Figure 7 The output spectratbie system in Equation (3.1)

The NOFRFs of system (3.1) under the excita{h) and (3.3) have been evaluated up
to second order over the frequency range [0 1B8H]70 200] Hz. According to Equation
(2.30), to evaluate the NOFRFs of a 2-D@énlinear system up to the second order,

generally, five different signal excitatiorese needed. However, from the frequency
ranges OfU((zlazzl) (o), U((zlaizl) (o), U((Igl):Z,PZ:O) (jo),U ((121):0,P2:2) (jo) andU((Izl):l,Pzzl) (jo),

the output frequency responses in Equatibf6) can be simplified as the below
v (jo)= G((i2,331:2,P2:0) (Jj a))U((Igl):Z,PZ:O) (Jo)+ G((iz,;l:O,PZ:Z) (jo)U ((é):O,PZ:Z) (jo) w<[0 10)Hz (a)
y:(jo)= G((,-l,)Pl=1) (J a))U((}Jz:l) (o) + G((i2,1)5’1=2,P2=O) (J W)U((éLz,Pz:m (o)

+ G((i2,1)01:0,P2:2) (ja’)U((lél):o,Pz:z) (Jo) w € [10 15]Hz (b)
y.(jo)= G((il,)azl) (ja))U((zlnzzl) (jo)+ G((iz,j)q:z,PZ:O) (ja))U((ng):z,PZ:O) (jo) we (15 35]Hz (c)
v (jo) = G(S%:Z,Pz:m (ja))U((ﬁlLZ,Pz:O) (jo) we 35 50 Hz (d)

y.(jo)= G((iz,z—’l:Z,PZ:O) (J a))U((Igl):Z,PZ:O) (Jo)+ Gé?}?lzl,Pzzl) (J a))U((zgl):Lpzzl) (Jo)
w e [50 70|Hz (e)
y:(jo)= Gézz))lzlpzzl) (jw)U((}z’l):lezl) (jo) we (70 85U (100 135 Hz (f)
y.(jo)= G((il,)Pzzl) (J a))U((zl%:n (Jo)+ Géiz}l:l,Pzzl) (J a))U((é):l,Pzzl) (jo)
e [85 90]U[95 10Q1 Hz (g)

1.(j©) =Gy (jO)U Ry (@) we (90 95 Hz (h)
y.(jo)= G((iz,l)fi:O,PZ:Z) (ja))U((]El):O,PZ:Z) (o) w €[170 20 Hz (i)
fori=1,2 (3.4)

Equation (3.4) indicates thatp estimate the NOFRFs up the second order, three

different excitations are enough. Equationg-+&-3.4-i) also clearly show how the energy
transfer happens in the nonlinear system @Hgn subjected to the inputs (3.2) and (3.3).
For example, from Equation (3.4-aj}, is clearly that it is the " order NOFRFs
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Gihon0(J®), Gy on o (jo) Which transfer the energyoim the frequency bands of
the first input ([10 35] Hz)rad the second input ([85 100] H&spectively to the frequency
band [0 10) Hz in the output. The evaluadFRFs are shown iRigure 8 and Figure 9.
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15 Output y Output y
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0 ‘ ‘ ‘ : : 0 :
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Input: Uy 3f Input: U,
For 25l For
Output y Output y
2 L
1r 1 1.5¢
1 L
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0 : : : : : 0 :
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Figure 8, The first order NOFRFF@(%:D
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Figure 9, The second order NOFF{G@:ZPZ:O) (ja))‘ : ‘G((f},lzw,z:z) (ja))‘ and
‘Géz,l)f’l=l,P2=l) (]a’)‘, (i=12)

As the spectra in Figure hew, most of the output energy located in the frequency
range [0 70] Hz. From Figureahd Figure 9, it can be sethat, in the frequency range
of [0 70] Hz, the first inpti dependent NOFRFs, such as(,_(jw) and
G((f},lzzypzzo) (jw), are much bigger than the other NRHS. This implies that the output
energy in this frequency range is mainigntributed by the first input. For example,
according to Equation (3.4-b), the first outpasponse at 14 Hz is contributed by the
three terms G((i)ﬂzl) (J a))U((jg:l) (o) GE]?%:Z,PZ:O) (J a))U((]El):Z,PZ:O) (o) and
G op (@O os o (jw). The contributions from #se terms to the output are
given in Table 1.
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Table 1. The contributions of different tertosthe output response at frequency of 14 Hz

Terms Values Modulus
GO, (joU L, (jo) (0.1496 + 0.0066i)> 2.9135e-004
(1.5899e-004-1.1215e-004i)
G op0)(JOWUE,, o(j0) (4.9330 + 0.2171i)> 3.8944e-005
e T (-6.0092e-006 +5.1081e-006i)
G®, oy GOUL o o (j) (0.3888 + 0.0171i) % 2.4117e-007
T s (4.8131e-007 -3.9035e-007i)

From Table 1, it can be seémat the contribution o), , . ,, (j@)U{$.,, 5 (jw) is SO
small that it can be ignoretdhe output response ather frequencies care analyzed in a
similar way.

Comparing Equation (1.4) and Equation (2,1B& main difference between the NOFRFs
of the single-input and the multi-input nordar systems is that the multi-input NOFRFs
have more cross-NOFRF terms, for instanGg)_,, ., (jw), (i =1,2) for the second

order NOFRF. From Equations (3.4-e, f,, d) can be seen that, in this study,
GO ipp(jo), (=1,2) only influence the components at [50 90]95 135] Hz.

Equation (3.4-f) also mlicates that the output responses at (70(88)00 135) Hz are

only determined byG{, ,, ,(jw), (i=1,2) and have a very small amplitude. At other
frequency rangestf}fLPz:l) (jw), (=1,2) will influence the output response together
with other NOFRF terms, for example wit’)_, , ., (j®), (=1,2) at [50 70] Hz. For
the first output response ab5 Hz, the contributions byG®, ,, , (jw) and

Gh1p (jw) are given in below Table 2.

Table 2. The contributions of different tertasthe output response at frequency of 55 Hz

Terms Values Modulus
GE12,331:2,P2:0) (ja,)U(f,l):z’PZ:O) (jw) (3.3131 + 0.5782i) 3.0639e-006
(-9.0729e-007 +8.2225e-008i)
GEJZ,%:LPZ:D ( ja))Ug,l):LPz:l) (jo) (1.0498 + 0.1832i) » 1.1702e-007
(8.5484e-008 -6.8922e-008i)

The results in Table2 show that, compared W), ,, o (jo)U{.,, o (jw), the
contribution of G%), ,,  (jo)U{.,, . (jw) to the output response at 55 Hz is very
small and can be ignored. Similarly, it che found that the contribution of the cross-
NOFRF to the output responsas other frequencies is als@ry small. To a certain

degree, this implies that the influencetloé cross-NOFRFs on tleaitput responses can
be ignored in this specific case.

17



The results shown in Figure 8 and Figuren@icate that the maximum gains in the
NOFRFs of‘G(ﬂ.z},l:z,Pz:O) (ja))‘ appear near 16Hz and 28Hz,=(,2). This means that, at
these frequencies, the energy transfeouph these NOFRFs becomes more efficient,
and the frequency components at these frequencies will become significant in the output
spectra. This can be confirmed by thepotitspectra shown in Figure 7 where some
significant components can baund at these frequencies.

The above qualitative analysis gives a clederpretation regarding why and how the
generation of new frequencies happens in a multi-input nonlinear system, and extends the
procedure for the same analysis for singlait nonlinear systems to the more general
multi-input nonlinear system case.

4 Conclusions and Remarks

In the present study, the concept of NOFREs been extended from the single-input
nonlinear system case to theulti-input nonlinear system case. Given the frequency
range of the inputs, a new method was als@ldped to determine the output frequency
range. The phenomenon of enetggnsfer in a 2DOF nonlinear system subjected to two
input excitations was investigated using tbacept of NOFRFs for multi-input systems.

Multi-input systems are important in mamngineering systems and structures. For
example, multi-degree of freedom mechans@lctures are a typical example of this
category of systems. Therefore, the extem&f the NOFRF concept to the more general
multi-input case of nonlinear systems is impottéor the potential applications of the
NOFRF concept to a widerrige of engineering areas.
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