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Abstract: An efficient class of nolinear models, constructed using cardinafine (CBS) basis functions,
are proposed for high tide forecasts at the Venice lagoon. Accurate eshogpredictions of high tides in the
lagoon can easily be calculated using the proposed CBS models, whiatsagroduce goddng term (up to
24 hrs ahead) forecasts for normal water levels.
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1. Introduction

The Venice lagoon is one of the world’s most deécantd unstable ecosystems. Since the disastrous
flood that occurred in November 1966, the problems of the Vengmotahave become one of
national and international interest. The threatened Venice city hasffitggheen inundated by high
waters formed ri the northern AdriaticSea, where interactions of several astronomical and
meteorological phenomena often occur. The end results are thee\leoids due to a combination of
astronomical and meteorological effects: the tides induced by tiom rand the tides caused by
stormy weather arise from low atomospheric pressure combined with winds. Bmntpdésastrous
floods, measures have been taken since 1966, and perhaps the most famous project is the recently
endorsed MoSEModulo SherimentaleElettromeccanice-Experimental Electromechanical Module)
project although the feasibility of this project is still in public debate [3][10][14]parallel and
complementary approach to engineering constructions, for example the besteen as involved in

the MoSE, $ to build an operational flood warning systemhich is used to forecast the main surge,
for some time ahead ideally many hours or even several days. The objective of such a flood warning
system is to support some necessary actions such as the remgwadsffrom ground floors, the
redirection of the city boat traffic, and the installation of elevatstegtrian walkways [13]. The flood
warning system is modélased: it utilises both statistical and hydrodynamic models to obtain short
term as well as kg term forecasts [13]. The hydrodynamic modelling usually starts wgh fir
principles that require a comprehensive physical insight into thelvimdedynamics of the system,
whereas the statistical modelling and similar methods often start with dfimeavalata, based on
which mathematical models that support forecasts of the main surge areddeduce

Several authors have discussed the-dated modelling problem relating to high tide forecasts at
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the lagoon, by treating the regularly measured water level as a nonlinear time seriefiewith t
assumption that no information on the hydrodynamics of the lagoon is involved, but otesetved
water level data are available [18]. Many approaches have been proposed to model the associated
nonlinear time series including nonlinear regression models, chaos and ergbheddnhods, neural
networks, evolutionary algorithms, and other methods, see [2][18] and thencefeitherein.

This study aims to present a novel and efficient-dated modelling approach fareglicting high
tides at the Venice lagoon. In the new modelling approach, it is assumenb thairiori knowledge
about the hydrodynamics of the lagoon is available, but merely observed water level data are used.
Motivated by the successful applications of wavelet modelling frameworks, especially wavelet
multiresolution decompositions, in nonlinear time series analysis ancheanbystem identification
[1][5][6][14]-[17], cardinal Bspline multiresolution analysis (MRA) is employed in the present study
to construct parsimonious nonlinear models that can be used for high tide foredestinigjbe seen,
the resultedBS models provide not only accurate short term forecasts, but also provide good long
term predictions for the variation of the water levrlthe lagoon. Compared with existing datsed
methods, the proposed ddtasedCBS modelling approach can produce more accurate predictions for
high tides at the Venice lagoon.

2. Time Series Forecasting Problem

Let{y(t)}tT:tO be a known bserved sequence for the underlying dynamical time series. The goal of
multi-stepahead forecasts is to predict the valuey(®f+ s), withs>1, using the information carried
by the observed sequer{q@t)}?zto. To achieve such a goal, a commonly used approach is to learn a

model, or a predictor, from the availatilata To obtain multistepahead predictions of nonlinear
time series, both iterative and direct methods can be employed [17]. In, tleerterm predictions
can be obtained from a shaoerm predictor, for example a osgepahead predictor, simply by
applying the short predictor many times in an iterative way. This is cadledivie prediction. Direct
prediction, however, provides a orpempleed predictor and multistep forecasts can be obtained
directly from the established predictor in a way that is similaptoputing one step predictions.
Following [17], a direct approach will be considered. Take the case s&tepahead forecasting
problem as an example. The task festepahead forecasts is to find a model that can predict the

value ofy(t + s) using a set of selected variableg{), y(t-1),---, y(t—d +1)}, in the sense that

y(t+9) = fO(y(t), -, ylt—d +1) +e(t) @

where f® with s>1 are some nonlinear functiors() is an unpredictable zero mean noise

sequenced is the model order (the maximum lag). For a real system, the nonlineaofufictis

generally unknown and might be very complex. A class of models that are botheflexiti



excellent approximation capabilities, and which can esgmnt a broad class of highly complex

systems are therefore required to ensure accurate gistgp predictions. The model class that uses
cardinal Bsplines as the basis functions to approximatestep predictorf (¥ () satisfies althese

conditions and will therefore be investigated in the present study as a new hppir@ahieving

accurate direcd-step predictions.
3. Cardinal B-spline Models

3.1 Cardinal B-splines

Themth order cardinal Bpline function is defined by the foWing recursive formula [8]:

N (9 = Ny (0 + Ny, (x-1), m> 2 @
where
) (1 if xe [0
N, (x) = X0y (x) = {O otherwise 3) (

It can easily be shown that the support of thia order Bspline function issuppN,,=[0,m] .

Compared with other basis functions, the most attractive and distinabiperpyr of Bsplines are that

they are compactly supported and can be awcallgi formulated in an explicit form. Most
importantly, they form a multiresloution analysis (MRA) [8]:sBlines are unique, among many
commonly used basis functions, because they simultaneously possess the three remarkable properties,
namely compactly fported, analytically formulated and multiresolution analysis oriented, among
many popular basis functions. These splendid properties makdirgs remarkably appropriate for
nonlinear dynamical system modelling. The most commonly usggliBes are thosef orders 1 to 4,

which are shown in Table 1.

For the mth order Bspline function N, eLl*R) , let N\ () =2""2N,(2'x-k) ,
DJT" ={N}T‘k:keZ}, wherej,keZ are called the scale (or dilation) and position (translation)
paraneters respectively. Following [8], for eagh Z, let ij denote the closure of the linear span

of D", namely,V" =clos, ,, < D" >. The following properties possessed D§ andV;" form the

R)
foundations of the cardinal -8pline multiresolution analysis modelling framework for nonlinear

dynamical systems.



Table 1
Cardinal Bsplines of order 1 to 4

N, (X) N, (X) 2 N3(x) 6 N, (X)
0<x<1 1 X X2 x3
1< x<2 0 2-X —2x% +6x-3 —33+12¢x% —12x+ 4
2<x<3 0 0 (x—3)? 3x® - 24x* + 60x— 44
3<x<4 0 0 0 —x3+12x% - 48x+ 64
elsewhere 0 0 0

i) For any pair of integens andj, with m>2, the family D" ={N{ (X):k € Z} is a Riesz basis
of V{" with Riesz boundA= A (A, is a constant related ta) andB=1. Furthermore, these
bounds are optimal [8].

i) The mth order Bspline functiorN,,is a scaling function anq”‘ forms a multiresolution
analysis (MRA) [8].

From the above discussions, for every funcfianV.", there exists a unique sequence

{6 oy, € *(Z) such that

f(x)=> 622N, (2' x-k) @)

keZ

For convenience of description, the sympulill be introduced to represent tineth order Bspline

functionN,, and the symbolm’ will be omitted in associated formulas.

3.2 TheCardinal B-spline M odel for High Dimensional Problems

The result for the -D case described above can be extended to high dimensions and several
approaches have been proposed for suaxtnsion. Tensor product and radial construction are two
commonly used methods [5][15][16]. In the present study, a lineanadd@BS model structure will

be employed to represent a high dimensional nonlinear function.

For ad-dimensional functiorf € L?(R?), the linear additive representation is given below

F OG0, %) = F100) + F,06) +-+ T (%g) (®)

wheref e L*(R) (r=1,2, ...,d) are univariate functions, which can be expressed usinggiamsion

(4) as below

fr(Xr)=ZCE,k¢j,k(Xr) (6)

keZ

where g, , (x)=2'"?¢(2'x—k) , andj, k € Z are the scale and gition parameters, respectively.



Now consider the model given by (1) and jeft) = y(t—r +1)for r=1,2, ...,d. Using (5) and

(6), model (1) can be expressed as

d d
yt+9=3 190, 0) =Y 3¢50, (x (1) +e) @

r=1keZ

The remaining task is how to deduce, from (7), a parsimonious model that candbnssstep

ahead forecasts for a given prediction horigohhe following problem needs to be solved:

¢ How to choose the scale and position paramégtenglk ?

e In practical modelling problems, the variabbegt) (r=1,2, ...,d), as the lagged versions of
y(K) , are usually sparsely distributed ire thssociated space and therefore the problem may be
ill-posed. The representation (7) is thus often redundant in the sense that most asthe bas

functions (or model termsy; , () in (7), can be removed from the model, and experience shows

that only a small number of significant model terms are required for most nonlinearichinam
modelling problems. The question is: how to select the potential seymifivodel terms from a

large number of candidate basis functions?

The scale and positiothetermination problem will be discussed in the following section. The model
term selection problem has been systematically investigated in [4][7]. In the present study, th
orthogonal forward regression (OFR) algorithm [4], coupled with a Bayesiaimigifon criterion

(BIC) [9][12], will be used to select significant model terms &mdietermine the model size (the

number of model terms included in the final model).

3.3 Determination of the scale and position parameters

Assume that d-variate functiorf of interest is defined in the unit hypercii@g® . Consider the scale
parameter determination problem first. Experience on numerous simulatiors seldteng to wavelet
multiresolution modelling for dynamical nonlinear systems, seeexample, [5][15][16] and the

references therein, has shown that the scale pargnet®odel (7) should not be chosen too large. A

value that is between zero and two or threejfar often adequate for most nonlinear dynamical

modelling problems.
For cardinal Bspline functions, the position parametelis dependent on the corresponding

resolution scalg. Indeed, for each fixed poiri [0]1], sinceN,, has compact support, all except a

finite number of terms in thexpansion (4) are zero. Takiee 4thorder Bspline function as an

example. At a given scalg the norzero terms are determined by the position paramniefer

k=-3-2-1---,2) =1. In generalfor the Bspline function of ordem, whose support if0, m], the



support for the associated functiah, (x)=2'"2(2'x-k) is [2'k, 27/ (m+K)] , therefore, the

position parametek at a resolution scajeshould be chosen as(m-1)<k<2! -1.

4. Water Level Modelling and High Tide Forecasting
4.1 TheData

The data set used here is formed by the hourly recorded observations of water levels at Bunta dell
Salute, Venice Lagoon, for the period from January 1990 to December 1994. Only 2208 data points,
corresponding to the watkavels of the period from October to December 1990, were used for model
training, and the remaining data were used to test the penfioe of the identified model. The
associated Fourier spectrum, estimated via fast Fourier transform, and the powet dpesity

(PSD), estimated via the Welch method, are shown in figures 1 and 2, whdkeotli®minant

frequencies are calculated to #g=0.0417 Hz and,=0.0808 Hz, which correspond to the two main
oscillation cycles off, =1/ f, = 24hrs andT, =1/ f, = 12hrs, respectively.

Using the information given by figures 1 and 2, the maximum lag for the inpables in the
initial modelling procedure was chosen to be 24, to cover the range of theumaainuillation cycle.
Thus, the variabley(t), y(t-1),---, y(t— 23 were used as inputs to form a predictor, whose output
was the future behaviour, denotedyfy+s) (s>1).

Note that the original data were initially nornzaldl to [0,1] via a transform
y(t) =(y(t)-a)/(b—a), wherey(t) indicate the initial observations, aag -100and b=150. The

identification procedure was therefore performed using normalized vgi)eShe outputs of an
identified model were then recovered to the original measurement space by taking the associated
inverse transform.
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Fig. 1 The Fourier spectrum estimated using 2208 data points hc
measured during October to December 1990.
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Fig. 2 The power spectrakdsity function estimated using 2208 data poil
hourly measured during October to December 1990.

4.2 TheModels

Let x (t)=y(t-r+1),r=1, 2,..., 24. The structure of the initial CBS model was chosen to be

24 0 24 1
Yt+9) =D D e, (% ©) + D D afi Ny (% 1) 8)
r=1k=-3 r=1k=-3

whereg, , (X) =2'"?¢(2' x-k) ,with j,keZ, are the 4tiorder Bspline functions. Notice that model

(8), which involves two scale levels fgrO andj=1, is in structure different from model (7), where

the model terng; , (-) only involves a single scale level. The reason that the initial model (8) was

chosen to be such a structure was to enttiehpool of the model term dictionary, so that basis
functions with different scale parameters can be sufficientligedi. Although a total number of 216
model terms (basis functions) were involved in the initial model BpMy givens, only a small
number of basis functions were required to describe the relationship ebetwe
{y@),y(t-2),---,y(t—23} andy(t+s), and significant model terms were efficiently selected by
performing a model term detection algorithm,. Also, different valoresusually led to different final
models. For each a Bayesian information criterion (BIC) [9][12] was used to determine the number
of model terms, and the parameters of the final CBS model was testimated by introducing a

linear moving averag@viA) model of order 10 [5][17].
4.3 Prediction Results

For convenience of comparison with other resulf®]jfi8], eightcases, corresponding $a1, 4, 12
24, 28, 48, 72, and 96, were considered, and eight different CBS models were identifiexduTdr



eight models were applied respectively over four test data sethefgears from 1991 to 1994, to
calculates-stepahead forecasts of the water levels. Prediction performance, measured by -the root
meansquareerrors (RMSE) as used in [2][18]over the four test data sets, obtained from the
identified CBS models, are shown in Table 2, where some results producech@tayer neural
networks [18] and evolutionary algorithms [@le also listed to facilitate the comparison. Clearly,
compared withthe results produced by multilayer neural networks [18] and evolutionarythigsr
[2], where over 45,000 observations were involved in the training data set, thepesdlised by the
proposed CBS models are better, both for short and long termdtingca

To visually illustrate the CBS models’ performance for highe tirecasting, short term
predictions for some abnormal high tides, and medium and long term predictios@me normal
high tides, were calculated using the identified CBS modelsrd-igupresents the ostepahead
(one-hourahead) prediction for typical abnormal high tides, figures 4 and 5 presents 4-siegh 12
ahead predictions for typical high tides, while figures 6 and 7 presenn@44@stepahead

predictions for typical normatater level at the Venice lagoon.

Table 2
Prediction errors for the water level of the years 1991, 1992, 1993, and 1898760, 8760,
8784, and 8760 records, respectively.

Prediction| Model RMSE
horizon size Evolutionary Neural
1991 | 1992 | 1993 | 1994 | Average algorithm networks
25 157 | 1.60 | 1.59 | 1.55 1.58 3.37 3.30

4 26 562 | 5.60 | 553 | 5.35 5.53 8.26 9.55
12 16 7.88 | 821 | 749 | 7.31 7.72 8.46 11.38
24 15 8.08 | 8.10 | 7.68 | 7.42 7.82 8.70 11.64
28 16 9.88 | 9.69 | 9.27 | 9.12 9.49 11.62 15.74
48 15 11.22| 11.30| 10.54| 10.35 10.86 11.28 _
72 16 13.52| 13.91| 12.74| 12.46 13.16 14.45 _
(oY~ 12 1E 21 1 70 11 AR 14 10 11 01 12 NA

5. Conclusions

The CBS models are a class of nonlinear representation, where dilated and translated ofersions
cardinal Bspline functions were chosen to be the basis functions (regressors or model Asrms).
special class of linedn-theparameters representation, the CBS models are easy to train using some
standard model term selection algorithms, and the final identified mosleddly only include a small
number of significant model terms. The proped<CBS models provide an efficient representation for
tide forecasts at the Venice lagoon: the resulting models can produce accurate short terwngredicti
for typical abnormal high tides; can produce good predictions foralypigh tides; and can prodeic

good long term predictions for typical normal water levels.
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