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Abstract

Many complex and interesting spatiotemporal patterns have been ob-
served in a wide range of scientific areas. In this paper, two kinds of
spatiotemporal patterns including spot replication and Turing systems
are investigated and new identification methods are proposed to obtain
Coupled Map Lattice (CML) models for this class of systems. Initially, a
new correlation analysis method is introduced to determine an appropriate
temporal and spatial data sampling step procedure for the identification
of spatiotemporal systems. A new combined Orthogonal Forward Regres-
sion and Bayesian Learning algorithm with Laplace priors is introduced
to identify sparse and robust CML models for complex spatiotemporal
patterns. The final identified CML models are validated using correlation
based model validation tests for spatiotemporal systems. Numerical re-
sults illustrate the identification procedure and demonstrate the validity
of the identified models.

1 Introduction

Spatiotemporal systems can give rise to many complex and interesting phe-
nomena such as self-organized, oscillatory and chaotic patterns. Initially, spa-
tiotemporal phenomena were observed and studied in chemical reactions which
can display periodic or chaotic temporal oscillations and pattern formation. By
the early 1920s, Lotka had developed a simple model in terms of partial dif-
ferential equations, based on two sequential autocatalytic reactions, which can
produce sustained oscillations.

The Belousov-Zhabotinsky (BZ Model) reaction was demostrated experi-
mentally in the early 1950’s by the Russian biochemist Boris Belousov and
later confirmed by Zhabotinsky with similar findings showing travelling waves
[49]. Prigogine and his colleagues in Brussels developed a simple model, named
the Brusselator model, which was more chemically realistic than Lotka’s simple
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model and can show a variety of interesting spatial and temporal phenomena.
Over the past decade, some scientists discovered that by changing one or two
critical parameters nonlinear chemical dynamics can also exhibit fascinating
self-organized patterns such as spiral waves, spatial chaos, crystal lattices and
Turing structures [24] [32] [46] [48].

Recently, a lot of attention had been focused on the study of spatiotemporal
models of interacting populations in nature [3] [25]. Maron and Harrison [35]
investigated extensively a host-parasitoid system relating to the dynamics of
the western tussock moth and its natural enemies. The low mobility of tussock
moths, their high parasitism rates and the high mobility of the parasitoids
altogether can form a self-organized pattern as predicted by Turing theory [37].

Turing patterns are a kind of spatiotemporal system that can produce steady
state heterogeneous spatial patterns under certain initial and boundary condi-
tions. This type of phenomena, termed diffusion-driven instability, was first
investigated by Turing in 1952 in the field of chemistry. In his seminal pa-
per, Turing demonstrated theoretically that a system of reacting and diffusing
chemicals could spontaneously evolve to spatially heterogeneous patterns from
an initially uniform state in response to infinitesimal perturbations. Turing pat-
terns were first observed in chemical experiments as late as 1990 [7] [10] [40] by
using the Lengyel-Epstein model [29]. Turing systems have also been shown to
be able to at least qualitatively imitate many biological patterns such as the
stripes of a zebra or spots of a cheetah and even more irregular patterns such as
those on leopards and giraffes. Also the skin of exotic fish, butterflies or beetles
can be imitated by using the Turing model [2] [41].

Another interesting spatiotemporal behavior of spot self-replication was first
observed by Pearson [44] during his intensive investigation of the numerical
simulation of the diffusive Gray-Scott system. This pattern is composed of
a population of chemical spots that divide into daughter spots upon growth
and decay with over-population. The pattern formation of self-replicating spots
was experimentally confirmed by Lee et al. [27] [28] in chemical systems. It
can also be seen that the dynamics of spots are similar to living cells that are
undergoing mitosis. The dynamics of spot self-replicatiion has been theoretically
studied in the one, two and three dimensional cases [36]. In addition, Nishiura
and Ueyama [38] proposed a theoretical mechanism that drives the replication
dynamics from a global bifurcation point of view. The study of the dynamics
of spot self-replication was extended in the noise-controlled Gray-Scott model
[30].

However, most studies of complex spatiotemporal patterns have focused on
the analysis of the complex behaviors using given or analytical derived partial
differential equation models. Given the complexity and wide applications of
spatiotemporal patterns in many scientific subjects, it is of great importance to
be able to model the underlying dynamics of spatially extended systems. In this
paper, Coupled Map Lattice (CML) models are used to identify spatiotemporal
patterns. The Coupled Map Lattice model was initially introduced in the 1980s
by Kaneko [21][22]. The CML model is discrete in time and space and, unlike
Cellular Automata (CA), has a continuous state value. CML is a d-dimension
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lattice where each site evolves in time through a discrete map which describes
the influence of the past state and neighboring sites. A CML can be used to
model dynamical behaviors that are normally described by partial differential
equations. But the computational efficiency is greatly enhanced when using
CML models compared with PDEs. It has been shown that CML models can
exhibit complex spatiotemporal behaviors, including chaos, intermittency, trav-
eling waves and Turing patterns [23]. Consequently, CML models have been
used to study spatiotemporal systems in a wide class of scientific subjects.

The identification and forecasting of CML models from observed spatiotem-
poral data has recently been studied using various methods [8] [9] [15] [19] [34]
[33] [43] [39]. There are two main methods in studying the identification and
forecasting problem for spatiotemporal systems. One approach uses embed-
ding to reconstruct the local model describing the underlying dynamics. The
other approach uses the orthogonal least square algorithms to identify the CML
model. However, most of these methods have only been applied to relatively
simple classes of spatiotemporal systems. In this paper, a new and effective
approach for the identification of CML models for complex spatiotemporal pat-
terns is proposed. The new identification method is composed of two parts.
First, a new correlation analysis method is introduced to select appropriate
sampling intervals of the identification data in the time and space domains.
This method is based on the nonlinear auto-correlation functions of the output
variables of spatiotemporal systems. The identification of CML models from
noisy observed data is achieved using a new Orthogonal Forward Regression
algorithm with Bayesian learning theory to provide a sparse model to fit the
complex spatiotemporal dynamics with good generalization error.

The paper is arranged as follows. Section 2 gives a general description of the
CML model and the identification procedure for spatiotemporal systems using
regression methods. Section 3 introduces the new correlation based method to
determine accurate sampling values of spatiotemporal data for identification.
A new identification method using the OFR algorithm and Bayesian Learning
theory with Laplace priors is then proposed to obtain CML models for com-
plex spatiotemporal patterns. Section 4 introduces the correlation based model
validation tests for spatiotemporal systems to validate the final identified CML
models. Finally, numerical examples using spot-replicating patterns and Turing
patterns are included in section 5 to illustrate the application of the new identi-
fication methods and to demonstrate the accuracy and effectiveness of identified
models for complex spatiotemporal patterns.

2 Problem Formulation

Consider the general form of the stochastic input-output CML model for time
and spatially invariant lattice dynamical systems[8] [9]

yi(t) = f(qnyyi(t), q
nuui(t), q

nysmyyi(t), q
nusmuui(t)) + εi(t) (1)
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where i ∈ Id is the spatial index of a d-dimensional space and t ∈ T is the
temporal index; yi(t) and ui(t) are the output and input variables respectively
at lattice i and time t, and εi(t) is an independent zero mean random sequence.
qn(t) is a temporal backward shift operator

qn = (q−1, q−2, ..., q−n) (2)

so that

qnyyi(t) = (yi(t − 1), yi(t − 2), ..., yi(t − ny))
qnuui(t) = (ui(t − 1), ui(t − 2), ..., ui(t − nu))
qnεεi(t) = (εi(t − 1), εi(t − 2), ..., εi(t − nε))

(3)

where ny, nu, nε denote the maximum temporal lags corresponding to output
y, input u and the residual sequence ε.
In (1), sm is a multi valued spatial shift operator

sm = (sp1

, sp2

, ..., spm

) (4)

where pj ∈ Id is the spatial translation multi index, such that

smyyi = (yi−p1 , yi−p2 , ..., yi−pmy )
smuui = (ui−p1 , ui−p2 , ..., ui−pmu )
smεεi = (εi−p1 , εi−p2 , ..., εi−pmε )

(5)

The parameters my, mu and mε denote the maximum spatial radius correspond-
ing to the output y, input u and the residual sequence ε. The task of system
identification for spatiotemporal systems is to obtain the unknown CML model
f(·) from observed data.

In practice, the underlying spatiotemporal system for identification evolves
continuously in time over a specific spatial domain. Therefore, it is essential to
choose an appropriate sampling time Tt and space grid Ts before the spatiotem-
poral data for identification is collected. There seem to be virtually no results
in the literature relating to this important problem. In many situations, the
form of the CML model f(·) is unknown, so it is necessary to expand f using a
known set of possible candidate model terms. Equation(1) can also be written
in the regression format which is constructed as a linear combination of a finite
number of model terms.

yi(t) =
∑

k

θi,kϕi,k(t) + εi(t) (6)

Here, model terms ϕi,k(t) are composed of qnyyi(t), q
nuui(t), q

nysmyyi(t), q
nusmuui(t)

which represent the influence of past inputs and outputs from both the local
and neighboring lattices. Therefore, there are two aspects to the problem of
model identification from observed data. The first is to select a proper model
structure and the second is to determine the parameters that are associated
with the model.
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Therefore, the identification task for spatiotemporal systems involves the
following steps.
(a) Choose an appropriate sampling time Ts and spatial grid Ss according to
the inherent characteristics of the spatiotemporal data.
(b) Determine the regressor set. This step involves choosing the nonlinear de-
gree, values of maximum temporal lags for inputs and outputs nu and ny and
maximum spatial radius mu and my.
(c) Select the proper model terms that can adequately represents the underlying
spatiotemporal system.
(d) Estimate the parameters associated with the model terms.
Each step in the identification procedure will be discussed in detail in the fol-
lowing sections.

3 The Identification of CML models for Com-

plex Pattern Formation

In this section, a practical approach for selecting appropriate sampling intervals
of spatiotemporal data in both the space and time domains is investigated. An
Orthogonal Forward Regression algorithm and Bayesian learning theory with
Laplace priors is then introduced to select appropriate model terms and to give
unbiased estimates of the model parameters.

3.1 The Selection of Sampling intervals in the space-time

domain

It is well known that the sampling interval of continuously observed purely tem-
poral data for identification can influence the selection of the model structure
and parameter estimation during nonlinear temporal system identification [4].
The maximum lags nu and ny also vary as the sampling time Ts changes. Fur-
thermore, if the data are over-sampled, the design matrix can become ill-posed
due to the high correlation between successive measurements. On the other
hand, if the data for identification are under-sampled, important information
will be lost. In this situation, the final derived model is likely to be sensitive to
new training data or the noise and consequently cannot generalize well.

Similar problems also arise when identifying spatiotemporal systems but the
sampling interval in both the time and space domains need to be considered.
There are various methods of determining the sampling time for nonlinear tem-
poral system identification. Most of these methods are based on using mutual
information to calculate the correlation of adjacent sampling points. The disad-
vantages of this approach have been reviewed in [45]. Another typical method
which has been applied in this area is to use nonlinear correlation functions to
select the sampling time by following a simple procedure [4] [6], where both
the linear and nonlinear correlation in the data is taken into account. The
main idea behind these methods is that although adjacent points in the data
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should not be uncorrelated, the sampling time should be long enough so as to
avoid over-correlation. Actually, the selection of the sampling time is often a
compromise between the over-correlation and the uncorrelated situations. In
this paper, the correlation method based on the linear and nonlinear correlation
functions applied in the nonlinear temporal system identification is extended to
determine the sampling intervals of data in both the time and space domains of
spatiotemporal data.

The correlation functions for spatiotemporal systems are composed of two
parts with respect to the sampling intervals in the time and space domain re-
spectively. In this method, Ns samples of the original spatiotemporal data from
outputs are randomly selected over both the space and time domain. The cor-
relation functions for the sampling time of spatiotemporal data are defined as
follows

Φ
(t)
yy (τt) =

PS(Ns−1)

(i,t)=S(0)
(yi(t)−y)(yi(t−τt)−y)PS(Ns−1)

(i,t)=S(0)
(yi(t)−y)2

Φ
(t)
y2y2(τt) =

PS(Ns−1)

(i,t)=S(0)
(y2

i (t)−y2)(y2
i (t−τt)−y2)PS(Ns−1)

(i,t)=S(0)
(y2

i (t)−y2)2

(7)

The correlation functions for the space domain are defined as

Φ
(s)
yy (τs) =

PS(Ns−1)

(i,t)=S(0)
(yi(t)−y)(yi−τs (t)−y)PS(Ns−1)

(i,t)=S(0)
(yi(t)−y)2

Φ
(s)
y2y2(τs) =

PS(Ns−1)

(i,t)=S(0)
(y2

i (t)−y2)(y2
i−τs

(t)−y2)PS(Ns−1)

(i,t)=S(0)
(y2

i (t)−y2)2

(8)

These are extensions to the temporal results in [4]. In (7)and (8), the vector Ss

indicates the selection of the random locations (ik, tk) in both the time and the
space domain, where

Ss = ((i0, t0), (i1, t1), ..., (iN−1, tN−1)), ik ∈ Id, tk ∈ T, k = 0, 1, ..., N − 1 (9)

and • denotes averaging operation over the specific domain defined by the vector
Ss. The quantities τt and τs denote the sampling shift in the time and space
domain respectively. Hence, both the linear and nonlinear correlation between
adjacent sampling points in the time and space domains can be measured using
the correlation functions (7)and (8). On the basis of the correlation functions
(7)and (8), the procedure of determining the sampling intervals in the time
and space domains for spatiotemporal systems identification can be carried out
based on the following two steps.
(a) Define the following quantities with respect to the time and space domains

τm,t = min{τt,y, τt,y2} (10)

τm,s = min{τs,y, τs,y2} (11)

where τt,y and τt,y2 are time values of the first minimum of φ
(t)
yy (τ) and φ

(t)
y2y2(τ)

respectively and τs,y and τs,y2 are space values. In practice, the 95% confidence
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limits which are equal to ±1.96/
√

Ns are usually used to replace the minimum
values of the above correlation functions
(b) Determine the sampling intervals for the spatiotemporal data in both the
time [1] and the space domain following the procedure:

τm,t

20
≤ Tt ≤

τm,t

10
(12)

τm,s

20
≤ Ts ≤ τm,s

10
(13)

It should be pointed out that although the justification of (12) and (13) is
unavailable at present, this simple but effective empirical method does work
very well and provides useful information for systems identification, which will
be shown in the following numerical simulations.

3.2 Model Selection and Identification Algorithm

Consider a set of possible candidate regressors for CML models. The aim of the
identification algorithm is to first select the significant terms from this set and
then to estimate the corresponding coefficients so that the identified model can
explain the underlying spatiotemporal dynamics. In this paper, the Orthogonal
Forward Regression (OFR) algorithm [5] is applied to a set of candidate regres-
sors {ϕi}M

i=1 which are defined in (6). The OFR algorithm involves a stepwise
orthogonalization of the regressors and a forward selection of the significant
terms based on the Error Reduction Ratio (ERR) criterion [5]. Hence, the sig-
nificant model terms are selected step by step by comparing the ERRs of all
possible model terms. This algorithm also computes the optimal least squares
estimates of the term coefficients Θ = {θk}.
Equation(6) can be written in the compact format

Y = ΦΘ + ε (14)

where Φ is the regression matrix or the design matrix, Θ is the coefficient vector
and ε is the residual sequence. After orthogonalization, (14) is converted into

Y = Wg + ε (15)

where

A =













1 a1,2 . . . a1,Ms

0 1
... a2,Ms

...
...

. . .
...

0 0 . . . 1













(16)

and
Φ = WA,AΘ = g (17)

In (15), W is the corresponding orthogonal matrix and Ms denotes the number
of terms in the final model. Detail of the OFR algorithm for iteratively selecting
the model terms and computing the estimates of coefficients using the Error
Reduction Ratio (ERR) criterion is given in the Appendix.1.
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3.3 The Bayesian Learning Method with Laplace Priors

A basic principle in practical system identification is the parsimonious principle
of selecting the simplest possible model that explains the underlying dynamics.
The OFR algorithm is an effective and practical learning procedure for identify-
ing nonlinear regression models. An important feature of the OFR algorithm is
the capability of selecting model terms according to the contribution each term
makes to the overall model accuracy and the elimination of redundant terms.

It is well known that under certain conditions the least squares algorithm is
theoretically equivalent to the maximum likelihood and prediction error meth-
ods and that finding the maximum likelihood parameters may be an ill-posed
problem. For example, if the data is noisy, the final model may fit to the noise.
If the data is not properly sampled, the design matrix may be ill-conditioned
and the identified model can be over-fit. Over-fitting can become more severe
for complex models involving high-dimensional real world data such as images,
speech and spatiotemporal patterns. A useful technique for solving the problem
of over-fitting and improving the robustness of the final model is to exploit reg-
ularization methods to reduce the effects due to intrinsic ill-conditioning of the
problem or due to noise on the data. Two kinds of regularization methods have
been used, one is the L2 regularization and the other L1 regularization. In the
framework of Bayesian regularization methods, these two kinds of regularisers
are also referred to as the Gaussian priors the and Laplace Priors methods.

Almost all regularization algorithms proposed so far for regression model
include some hyper parameters associated with the model parameters. Appro-
priately determining the values of these hyper parameters is crucial for good
approximation. The problem of how to determine the optimal values of the
hyper parameters has been extensively studied [26]. These techniques include
the Discrepancy Principle [13], generalized cross-validation [14] and the L-curve
methods [20]. But all these methods are computationally costly. The Bayesian
method provides an alternative solution to these problems. The hyper param-
eters used in the Bayesian method are defined in terms of the noise variance
and the measurement of the smoothness of the model fit. The Bayesian method
allows the user to objectively assign values to the tuning parameters which
are commonly unknown a priori. A typical advantage of the Bayesian learning
method is that it can quantitatively rank a whole class of models by evaluating
the corresponding evidence, the hyper parameters are consequently tuned to
maximize the evidence.

There are two kinds of regularisers in the Bayesian method, the Gaussian
prior and the Laplace prior. The main disadvantage of Gaussian priors is that
they do not control the structural complexity of the learned function by setting
coefficients of irrelevant terms to zero [12] [47]. In this paper, the Bayesian
learning method with Laplace priors is adapted with the OFR algorithm for
nonlinear system identification. This new method has two main advantages,
one is that the important model term selection procedure of the OFR algorithm
is maintained and the contribution of the individual regularisers to evidence of
the regression model can be evaluated by orthogonalizing the candidate regres-
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sors. The other advantage is that the optimal regularisers can be inferred by
maximizing the evidence in the Bayesian learning framework.

In the Bayesian framework, the optimal estimates of parameters for the
regression model (15) are obtained by maximizing the posterior probability of
the parameters g = (g1, ..., gMs) which is given by

P (g|Y,Λ, ǫ) =
P (Y|g,Λ, ǫ)P (g|Λ, ǫ)

P (Y|Λ, ǫ)
(18)

where P (Y|g,Λ, ǫ) is the ikelihood function, P (g|Λ, ǫ) is the priori density with
regularisers Λ = (λ1, ..., λMs) and ǫ = 1/σ2

e
which denotes the smoothness of the

fitted regression model and the noise model of the data respectively, P (Y|λ, ǫ)
is the density representing evidence of the regression model associated with the
regularisers Λ and ǫ.

Here, it is assumed that the residual sequence e is zero mean gaussian noise
with standard deviation σe. Following [31],the likelihood can be therefore de-
scribed as

P (Y|g,Λ, ǫ) =
( ǫ

2π

)N/2

exp

(

−ǫeT e

2

)

(19)

The Laplace prior adopted on the parameters g can be written as the following
function

P (g|Λ, ǫ) =

Ms
∏

i=1

λi

2
exp(−λi|gi|) (20)

maximizing the log posterior probability with Laplace priors with respect to g

is equivalent to minimizing the following cost function.

JBL(g,Λ, ǫ) = ǫeT e + 2Λ|g| (21)

The optimal values of gi to maximize the log posterior probability is obtained by
setting ∂ log(P (Y|g,Λ, ǫ)P (g|Λ, ǫ)/∂gi = 0,which yields (refer to Appendix.2)

gi = sgn(wT
i Y)

(

|wT
i Y| − λi

ǫ‖wi‖2

)

+

(22)

where ‖v‖ =
∑

i v2
i denotes the squared Euclidean norm, (·)+ is the positive

part operator (defined as (a)+ = a, if a ≥ 0, and (a)+ = 0, if a < 0), and sgn(·)
is the sign function. Note that when the absolute value of wT

i Y is below a
threshold, the estimate of gi is exactly zero; otherwise, the estimate is obtained
by subtracting a threshold. This rule is also called a soft threshold.

Using the Gaussian approximation method, the log evidence of the model
with the Laplace regularisers Λ and ǫ can be approximated as

log(P (Y|Λ, ǫ)) ≈
Ms
∑

i=1

log (λi/2) − Ms

2
log(π) − N

2
log(2π) +

N

2
log(ǫ)

−
Ms
∑

i=1

(λi|gi|) −
1

2
ǫeT e − 1

2
log(det(B)) +

Ms

2
log(2π) (23)
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where g is set to be the optimal value of a posterior probability solution, and
the Hessian matrix B is diagonal due to the orthogonalization of the design
matrix and is given by

B = ǫWT W = diag{ǫwT
1 w1, ..., ǫw

T
Ms

wMs} (24)

Setting ∂ log(P (Y|Λ, ǫ))/∂ε = 0 yields the computation formula for the optimal
ε

ε = (N − Ms)/e
T e (25)

Setting ∂ log(P (Y|Λ, ǫ))/∂λi = 0 yields the computation formula for the opti-
mal λi

λi =
1

|gi|
(26)

For a large sample of data, the variance of the optimal estimate of the residual
usually changes slightly, so the influence of the noise prior on the parameter
g can be ignored. The optimal estimate of the parameter gi with the optimal
Laplace prior λi can be therefore written as

g
(BL)
i = sgn(wT

i Y)

(

|wT
i Y| − 1

ǫ‖wi‖2|gi|

)

+

(27)

The procedure for the OFR algorithm combined with the Bayesian learning
method and Laplace priors can be briefly summarized as follows.
(a) Use the OFR algorithm described in Appendix.1 to select the significant
model terms from the candidate terms and give an initial maximum likelihood
estimate of the parameter g.
(b) Calculate the value of the Laplace priors Λ and the noise prior ǫ using (26)
and (25) using the paramter g.
(c) Calculate the optimal estimate of the parameter g(BL) using (27) with the
optimal value of the Laplace priors.

3.4 Identification Procedure for Spatiotemporal Patterns

In summary, the new identification approach for identifying CML models of
complex spatiotemporal patterns described in the previous sections can be sum-
marized in the following steps.
(a) Using the new data sampling method for imaged or observed spatiotemporal
patterns, the continuously evolving spatiotemporal data should be discretized
in both the space and time domains to avoid possible ill-posed identification
problems.
(b) A subset of the spatiotemporal data for identification are randomly chosen
over the space and time domains in order to make sure that the selected data
fully represent the underlying spatiotemporal dynamics.
(c) When the data for identification are ready and the candidate terms which
include the time lagged input and output variables from both the local lattice
and neighboring lattices are determined, the identification of the CML models
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for spatiotemporal systems can be converted into the problem of nonlinear sys-
tem identification.
(d)Using the OFR algorithm with the Bayesian learning method, the significant
terms of the final model are selected and their corresponding coefficients can be
regulated to approach their optimal values to achieve a best model performance.

4 Model Validation

The purpose of model validation is to validate the correctness of the model
structure and the unbiasedness of the estimated model parameters. In this pa-
per, a model validation method for spatiotemporal systems recently proposed in
[42] will be used to check the final identified CML models. This model valida-
tion approach for spatiotemporal systems is based on the assumption that the
model residuals at different spatial sites and/or at different times are randomly
distributed with finite variances and are independent of each other. Therefore,
when the identified model is correct, the model residuals should not be depen-
dent on past inputs and outputs from both the local site and neighbouring sites.
Two higher order correlation functions are introduced to detect possible linear
and nonlinear terms in the model residuals. In the context of spatiotemporal
systems, the inputs for the correlation tests do not only include the input vari-
ables but also the input and output variables from neighbouring sites.
Consider the CML (1) model for spatiotemporal systems, the one step ahead
predicted output ŷi(t) is defined as

yi(t) = f(qnyyi(t), q
nuui(t), q

nysmyyi(t), q
nusmuui(t)) + εi(t)

= ŷi(t) + εi(t)
(28)

According to [42], validity tests based on correlation functions about the inputs,
one-step-ahead predicted outputs and residuals of a spatiotemporal system can
be defined as follows.

φβε2(τ) =
PSv(Nv−1)

(i,t)=Sv(0)
β0

i (t)ε2
i
0
(t−τ)h�PSv(Nv−1)

(i,t)=Sv(0)
(β0

i (t))2
��PSv(Nv−1)

(i,t)=Sv(0)
(ε2

i
0(t))2

�i1/2

φβu2(τ) =
PSv(Nv−1)

(i,t)=Sv(0)
β0

i (t)u20
(t−τ)h�PSv(Nv−1)

(i,t)=Sv(0)
(β0

i (t))2
��PSv(Nv−1)

(i,t)=Sv(0)
(u2

i
0(t))2

�i1/2

(29)

In (29), Nv is the number of data that are randomly sampled for model valida-
tion and the vector Sv indicates the selection of the random locations (ik, tk) of
the data used for model validation in both the time and space domains. β0

i (t),

ε2
i
0
(t) and u2

i
0

are the normalized variables defined as follows

β0
i (t) = βi(t)h

1
Nv

PSv(Nv−1)

(i,t′)=Sv(0)
β2

i (t′)
i1/2

ε2
i
0
(t) =

ε2
i (t)−ε2h

1
Nv

PSv(Nv−1)

(i,t′)=Sv(0)
(ε2

i (t′)−ε2)
i1/2

u2
i
0
(t) =

u2
i (t)−u2h

1
Nv

PSv(Nv−1)

(i,t′)=Sv(0)
(u2

i (t′)−u2)
i1/2

(30)
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where βi(t) is a normalized compound variable which is a function of the residual
εi(t) and one-step-ahead predicted output ŷi(t).

βi(t) =
ŷi(t)εi(t) − ŷε

[

1
N

∑S(Nv−1)
(i,t′)=Sv(0)(ŷi(t′)εi(t′) − ŷε)2

]1/2
+

εi(t)εi(t) − ε2

[

1
Nv

∑S(Nv−1)
(i,t′)=Sv(0)(εi(t′)εi(t′) − ε2)2

]1/2

(31)
According to the Central Limit Theorem, if the identified model for a spa-
tiotemporal system is correct which means that the model residual εi(t) is un-
predictable from all past inputs and outputs, for sufficiently large Nv, the esti-
mates of the correlation functions in (29) should fall within the 95% confidence
intervals which are approximately ±1.96/

√
Nv.

5 Numerical Examples

5.1 Spot Replicating Patterns

Consider the Gray-Scott equation which describes a cubic autocatalytic chemical
reaction in an open spatial reactor [16] [17] [18].

u̇ = Du ▽2 u − uv2 + F (1 − u)
v̇ = Dv ▽2 v + uv2 − (F + k)v

(32)

In (32), u and v represent the dimensionless concentrations of the reactant and
autocatalysts, the parameter F denotes the dimensionless feed rate and k the
dimensionless rate constant of the second reaction. ▽2(·) is the 2nd order spatial
Laplace operator and Du,Dv are the diffusive coefficients for the fast and slow
variables respectively. This Gray-Scott model was numerically simulated and
studied within a two dimensional spatial lattice by Pearson [44]. It was shown
that under finite-amplitude perturbations the Gray-Scott model can show a
variety of complex behaviors by changing two critical parameters F and k. In
this example, the system size of the Gray-Scott model is 0.5 × 0.5 with a mesh
size 50 × 50 and other parameters for the spot replicating patterns to appear
are set as F = 0.02 k = 0.059, Du = 2 × 10−5 and Dv = 1 × 10−5.
The Gray-Scott was simulated with the initial trivial state (u = 1 and v = 0),
with the central mesh points initialized (u = 1/2 and v = 1/4 corrupted by
random noise) as the perturbation. The boundary conditions are zero flux
(Neumann) boundary conditions. The system was then numerically integrated
for 9000 steps with the time step set to be 0.1 using a 4th order Runge-Kutta
method and the spatial derivatives were approximated by the central difference
equation. The spatiotemporal data was then down sampled to the order of 10
in the time domain to reduce the data size so the time step was regulated to be
1.
For the reason of simplicity, in this and the following example, only the first
subsystem will be investigated. The correlation analysis method introduced in
Section 2.1 was first applied to choose the sampling interval in the time and

12



space domains. The correlation functions defined in (7) and (8) were computed
and the numerical results are shown in Fig.(1) and Fig.(2).
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Figure 1: Correlation functions φ
(t)
yy (τt) (left) and φ

(t)
y2y2(τt) (right) in (7) cal-

culated from Ns = 2000 random data samples of the u-subsystem of the spot
replicating system in Example 1
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Figure 2: Correlation functions φ
(s)
yy (τs) (left) and φ

(s)
y2y2(τs) (right) in (8) cal-

culated from Ns = 2000 random data samples of the u-subsystem of the spot
replicating system in Example 1

From the Figs.(1) and (2), the time values when the correlation functions

φ
(t)
yy (τt) and φ

(t)
y2y2(τt) first cut the 95% confidence boundary are 550 and 560

time steps. So we can set τm,t = 550. Similarly, we get τm,s = 14. According to
the selection rule (12) and (13) proposed in Section 2.1, the sampling intervals
for the spot replicating system in the time and space domains can be chosen
between τm,t/20 and τm,t/10. Therefore,Tt is chosen to be 30 which is equal
to τm,t/18.3. Similarly, Ts is chosen to be 1 which is equal to τm,s/14. So the
size of the spot replicating system for identification is regulated as 50× 50× 30,
where 50× 50 is the spatial size that is kept invariant from the original size and
30 is the time which is equivalent to 90/Tt.

To consider a more realistic situation, the spatiotemporal data of the spot
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replicating system were corrupted with normally distributed noise with a stan-
dard deviation σu = 0.0581 and σv = 0.0058. The identification method pro-
posed in the previous Section was then applied. The maximum temporal lags
and spatial radius were set as nu = 1, nv = 1 and mu = 1, mv = 1. There are
three inputs in the regression model (6), ui,j(t), vi,j(t) and u∗

i,j(t), where the
variable u∗

i,j(t) = ui−1,j(t) + ui+1,j(t) + ui,j−1(t) + ui,j+1(t) is a combination of
the outputs of neighbouring sites to ensure a symmetric topology and a simpler
set of candidate model terms. The initial nonlinearity degree of the candidate
model terms for identification was set to be 3. The identification results are
shown in Table(1). Snap shots of the system output at different times and the
model predicted output of the u-subsystem are displayed in the Fig.(3). Note
that in this example only the u-subsystem was investigated, so the output of the
v-subsystem is treated as an input during the calculation of the model predicted
output of the u-subsystem. The model predicted output of the u-subsystem is
defined as

u
(mpo)
i,j (t) = f̂(u

(mpo)
i,j (t − 1), u∗

i,j
(mpo)(t − 1), vi,j(t − 1), v∗

i,j(t − 1)) (33)

where f̂(·) is the identified CML model. From Fig.(3), it can be seen that
the identified CML model predicts very well and the spot replicating process
is closely repeated. The model validation tests were applied to validate the
final CML model, where Nv = 1600 samples of data were randomly selected.
The results are shown in the Fig.(4). It can be seen that both the correlation
functions of model validation tests φβε2(τ) and φβu2(τ) fall within the 95%
confidence intervals.

Table 1: Terms and parameters of the identified CML model for u-subsystem
in Example 1

Model terms Estimated parame-

ters without regular-

isation

Estimated parame-

ters with regularisa-

tion

ERR

u∗

i,j(t − 1) 0.0809 0.0830 0.9903

ui,j(t − 1) 2.0083 1.9907 0.0003

u2
i,j(t − 1)vi,j(t − 1) -3.6401 -3.6048 0.0002

u2
i,j(t − 1) -2.4171 -2.3997 0.0016

u3
i,j(t − 1) 1.0525 1.0439 0.0002

ui,j(t − 1)v2
i,j(t − 1) -2.0638 -2.0862 0.0003

v3
i,j(t − 1) -1.1913 -1.1671 0.00004
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Figure 3: Snap shots of the noisy system output (top) and model predicted
output (bottom) at different times for the u-subsystem in Example 1
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Figure 4: Correlation functions of the validation tests using the final identified
model of the u-subsystem of the spot replicating systems in Example 1, (top
left) φβε2(τ), (top right) φβu2(τ) and (bottom) some snap shots of the OSA
prediction error at different times.

5.2 Turing Patterns

Consider the two-dimensional BVAM (Barrio-Varea-Aragon-Maini) model that
is described by the following coupling partial differential equations[2]

u̇ = Du ▽2 u − η(u + av − Cuv − uv2)
v̇ = Dv ▽2 v + η(bv + hu + Cuv + uv2)

(34)
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The BVAM model was devised as a formal or phenomenological Turing model
and it is not based on any real chemical reactions. The terms uv and uv2

describe the nonlinear inhibition of the activator chemical u by the inhibitor
chemical v while the nonlinear term uv2 is not included since it would describe
the reverse behavior. The parameters defining the reaction kinetics were set as
a = 1.112, b = −1.01, η = 0.450, h = −1 and C = 1.57. In this example, the
diffusion coefficients were set as Du = 0.516, Dv = 1 so that Du/Dv < 1 for
Turing instability to occur.

The initial concentration distribution corresponds to random perturbations
around the trivial stationary state (u0, v0) = (0, 0) in the BVAM model with
a variance significantly lower than the amplitude of the final patterns. The
boundary conditions for (34) were chosen to be zero-flux in this example. The
system size of the BVAM model is 32×32 with a mesh size 64×64. The system
was numerically simulated for 192000 steps with the time step set to be 0.05
using the Euler method and the 2nd order spatial derivatives were approximated
by the center difference equation. The original data was then down sampled
in the time domain from 192000 to 2400 in order to reduce the overhead of
computations.

To determine appropriate sampling intervals of the spatiotemporal data for
identification, the correlation functions defined in (7) and (8) were calculated.
It should be pointed out that the data for the correlation analysis are randomly
sampled within the period from t = 0 to t = 1000 in the time domain since
the data in this period are used for identification and the remainder is used for
prediction tests. The numerical results are shown in Fig.(5.2) and Fig.(5.2).
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Figure 5: Correlation functions φ
(t)
yy τt) (left) and φ

(t)
y2y2(τt) (right) in (5.1) calcu-

lated from Ns = 2000 random data samples of the u-subsystem for the Turing
system in Example 2

From the Figs.(5) and (6), the time values when the correlation functions

φ
(t)
yy (τt) and φ

(t)
y2y2(τt) cut the 95% confidence boundary are 700 and 595 time

steps. Therefore τm,t = 595. Similarly, τm,s = 14. According to the selection
rule (12) and (13) proposed in Section 2.1, the sampling intervals for the Tur-
ing system in the time and space domains can be chosen between τm,t/20 and
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Figure 6: Correlation functions φ
(s)
yy (τs) (left) and φ

(s)
y2y2(τs) (right) in

(5.1)calculated from Ns = 2000 random data samples of the u-subsystem for
the Turing system in Example 2

τm,t/10. Therefore, Tt is chosen to be 32 which is equal to τm,t/18.6. Similarly,
the sampling interval in the space domain can be chosen between τm,s/20 and
τm,s/10. And Ts is chosen to be 1 which is equal to τm,s/14. So the size of the
Turing system for identification is regulated to be 64× 64× 70, where 64× 64 is
the spatial size which is kept invariant from the original size and 70 is the time
scale which is equivalent to 2240/Tt.

The data from the Turing system were corrupted with normally distributed
noise with standard deviations σu = 0.0403 and σv = 0.0058. The maximum
temporal lags and spatial radius of the candidate model terms were set as nu =
1, nv = 1 and mu = 1, mv = 1. Similar to the first example, there are three
inputs in the regression model (6), ui,j(t), vi,j(t) and u∗

i,j(t), where the variable
u∗

i,j(t) = ui−1,j(t) + ui+1,j(t) + ui,j−1(t) + ui,j+1(t) is a combination of the
outputs of neighbouring sites. The nonlinearity degree of the candidate model
terms is set to be 3. The final identified CML model for the u-subsystem is
shown in Table(1). Fig.(7) shows some snap shots of the system output and
model predicted output of the u-subsystem at different times, while the model
predicted output of the u-subsystem is calculated in the same way as (33) where
the v-subsystem is treated as an input.

The identification data of the Turing system (N = 1600) were sampled from
t = 0 to t = 30 in the time domain and the data after t = 30 were used as the
new data to test the prediction of the identified model. The identification results
are shown in Table(2). Fig.(7) shows some snap shots at different times of the
system output and model predicted output of the identified model in Table(2).
In this example, only the u-subsystem was investigated, so the output of the v-
subsystem was treated as an input during the calculation of the model predicted
output of the u-subsystem as defined in (33). From Fig.(7), it can be seen that
the identified CML model predicts very well even for the new data after t = 30.
The model validation tests were applied to validate the final CML model of the
Turing system by randomly selecting Nv = 2500 samples of data from the whole
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time and space domain.. The validation test results are shown in the Fig.(9). It
can be seen that both the correlation functions φβε2(τ) and φβu2(τ) fall within
the 95% confidence intervals. It can also be seen that the correlation tests of
the final CML model that was identified with Bayesian regularisation are almost
the same as the identified CML using the normal method in this example.

Table 2: Terms and parameters of the identified CML model for the u-subsystem
of the Turing system in Example 2

Model terms Estimated parame-

ters without regular-

ization

Estimated parame-

ters with regulariza-

tion

ERR

u∗

i,j(t − 1) 0.1229 0.1206 0.9090

vi,j(t − 1) -0.6401 -0.6412 0.0081

ui,j(t − 1) 0.1231 0.1350 0.0014

v3
i,j(t − 1) 1.8342 1.9426 0.0003

ui,j(t − 1)vi,j(t − 1) -0.2958 1.0439 0.0001

u2
i,j(t − 1) -0.0415 -0.1403 0.00002
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Figure 7: Snap shots of the Turing system noisy output (top) and model pre-
dicted output (bottom) at different times for the u-subsystem in Example 2

6 Conclusions

The identification and analysis of complex spatiotemporal patterns has been
briefly reviewed and a new approach for identifying CML models of these pat-
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Figure 8: Correlation functions for the model validation using the final identi-
fied model for the u-subsystem of the Turing systems in Example 2, (top left)
φβε2(τ), (top right) φβu2(τ) and (bottom) some snap shots of the OSA predic-
tion error at different times.

terns has been proposed. Generally, the difficulties associated with the iden-
tification of complex spatiotemporal systems depend on the size of the system
dimension and the complexities of the underlying dynamics. All of these effects
can result in a ill-posed identification problem.

In this paper, two aspects of the identification problem have been considered
to improve the performance of the final models. First, the importance of select-
ing the sampling interval of spatiotemporal data for identification was stressed
and a novel method based on correlation analysis of the observed data has been
introduced to choose the sampling intervals in the time and space domains. A
combined OFR algorithm and a Bayesian learning method with Laplace priors
has also been introduced to select the model terms and to obtain the estimates
of the parameters. There are two main advantages of the Bayesian method
compared with other traditional methods. One is that in the Bayesian method
the noise model is included during the process of inferring the optimal values
of the model parameters by setting the inverse of the variance of the residual
sequence as a regulariser to avoid the final model fitting to the noise. The other
advantage of the Bayesian method is an improvement in the smoothness of the
final fitted model and the ability to suppress some irrelevant model terms by
introducing the Laplace regularisers with respect to the model parameters.
The new algorithms have been applied to two complex patterns including spot
self-replication patterns and Turing patterns. The simulation results demon-
strate that the new identification procedure performs very well for these complex
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spatiotemporal systems.

7 Appendix

7.1 The OFR Algorithm

For a given candidate set of regressors G = {ϕi}M
i=1 where M is the number of

the candidate regressors, the OFR algorithm can be briefly outlined as follows.
Step1: Select the first model term with highest ERR

I1 = IM = {1, 2, ...,M} (35)

wi(t) = ϕi(t), b̂i =
[wi, Y ]

[wi, wi]
(36)

l1 = arg max
i∈I1

b̂2
i

[wi, Y ]

[Y, Y ]
= arg max

i∈I1

(ERRi) (37)

w0
1 = wl1 , c

0
1 =

[w0
1, Y ]

[w0
1, w

0
1]

, a1,1 = 1 (38)

Step j, j = 2, 3, ...: Iteratively orthogonalise the remaining regressors one by one
to select the next model term with highest ERR among the remaining candidate
terms.

Ij = Ij−1 \ lj − 1 (39)

wi(t) = ϕi(t) −
j−1
∑

k=1

[w0
k, Y ]

[w0
k, w0

k]
, b̂i =

[wi, Y ]

[wi, wi]
(40)

lj = arg max
i∈Ij

b̂2
i

[wi, Y ]

[Y, Y ]
= arg max

i∈Ij

(ERRi) (41)

w0
j = wlj , c

0
j =

[w0
j , Y ]

[w0
j , w0

j ]
, ak,j =

[w0
k, ϕlj ]

[w0
k, w0

k]
, k = 1, 2, ..., j − 1 (42)

This procedure is terminated at the Ms-th step when a required number of terms
in the final model has been selected. The estimated coefficients Θ = {θk}k=Ms

k=1

associated with the selected terms{ϕlk}k=Ms

k=1 are computed using

Θ = A−1C, (43)

where A is upper-triangular matrix which is defined in (16)and C = (c0
1, c

0
2, ..., c

0
Ms

)

is the coefficient vector associated with the orthogonalised terms{w0
k}Ms

k=1.
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7.2 Maximizing the posterior probability with Laplace pri-

ors

Following [12] [11], when W0 is an orthogonal matrix and (W 0)T (W 0) = I,
the solution of the parameter g0

i maximizing the the posterior probability with
Laplace priors should be

g0
i = sgn(w0

i
T
Y)

(

|w0
i

T
Y| − λi

ǫ

)

+

(44)

Let wi = w0
i ‖wi‖, so that g0

i = gi‖wi‖. Replace the w0
i and g0

i in (44), gives

gi = sgn(wi
T Y)

(

|wi
T Y| − λi

ǫ‖wi‖

)

+

(45)
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