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Abstract. Fundamental sensor-motor couplings form the backbone of
most mobile robot control tasks, and often need to be implemented
fast, efficiently and nevertheless reliably. Machine learning techniques
are therefore often used to obtain the desired sensor-motor competences.
In this paper we present an alternative to established machine learn-
ing methods such as artificial neural networks, that is very fast, easy
to implement, and has the distinct advantage that it generates trans-

parent, analysable sensor-motor couplings: system identification through
nonlinear polynomial mapping.
This work, which is part of the RobotMODIC project at the universities
of Essex and Sheffield, aims to develop a theoretical understanding of
the interaction between the robot and its environment. One of the pur-
poses of this research is to enable the principled design of robot control
programs.
As a first step towards this aim we model the behaviour of the robot, as
this emerges from its interaction with the environment, with the NAR-
MAX modelling method (Nonlinear, Auto-Regressive, Moving Average
models with eXogenous inputs). This method produces explicit poly-
nomial functions that can be subsequently analysed using established
mathematical methods.
In this paper we demonstrate the fidelity of the obtained NARMAX
models in the challenging task of robot route learning; we present a set
of experiments in which a Magellan Pro mobile robot was taught to
follow four different routes, always using the same mechanism to obtain
the required control law.

1 Introduction

1.1 Motivation

The production of robot control code is often a difficult and complex task for the
roboticist. Apart from relatively simple behaviours, for example, obstacle avoid-
ance or wall-following, tasks such as route learning involve several days or weeks
of refining code by trial and error until the robot achieves the desired behaviour.
This method of producing code is time consuming and therefore inefficient.

Robot learning techniques make this problem a lot easier. In these cases a
set of sensor-motor examples (the training set) for the particular task are used



to change the parameters of a task model iteratively, until the model performs
within the bounds of an acceptable error. The extent of the training (or model
refinement) is usually determined by comparing the performance of the model
to that of a validation set of sensor-motor data.

Using artificial neural networks (ANN) is one established approach applied
in robot learning. This method speeds up the development of a reactive robot
controller significantly; however, it also produces an opaque model that cannot
be used to investigate the characteristics of the robot’s behaviour further. Such
investigation may include stability analyses, sensitivity of the behaviour to par-
ticular sensors or environmental features, sensor redundancy etc. Furthermore,
the structure of a neural network model does not allow a straightforward com-
parison between models of similar tasks. This is very often necessary in robotic
science.

The aim of the RobotMODIC project therefore is to develop a theoretical
foundation for robotics. We believe that developing an understanding of robot
behaviour will eventually lead to faster, more focused approaches to problem
solving.

In this paper we present how we model route learning tasks using the NAR-
MAX (Nonlinear, Autoregressive Moving Average models with eXogenous in-
puts) system identification process. This process yields explicit polynomial func-
tion to represent the task in hand. It is fast and requires no “guess work” as far
as the structure or size of the polynomial function that would be suitable for
modelling the robot’s task. In addition, there is no need to do any pre-processing
of the input space to assist the modelling process. The most important feature
of this method, however, is that we can analyse the models obtained using estab-
lished mathematical methods in order to understand robot-environment inter-
action. Examples of such analyses on previously obtained models and a further
discussion of the advantages of the NARMAX modelling procedure for robot
tasks such as wall-following and door traversal are presented in [1], [2].

The purpose of this paper is to demonstrate how well the NARMAX models
can represent route learning tasks.

1.2 The NARMAX modelling procedure

The NARMAX modelling approach is a parameter estimation methodology for
identifying the important model terms and associated parameters of unknown
nonlinear dynamic systems. For multiple input, single output noiseless systems
this model takes the form:

y(n) = f(u1(n), u1(n − 1), u1(n − 2), · · · , u1(n − Nu),

u1(n)2, u1(n − 1)2, u1(n − 2)2, · · · , u1(n − Nu)2,

· · · ,

u1(n)l, u1(n − 1)l, u1(n − 2)l, · · · , u1(n − Nu)l,

u2(n), u2(n − 1), u2(n − 2), · · · , u2(n − Nu),



u2(n)2, u2(n − 1)2, u2(n − 2)2, · · · , u2(n − Nu)2,

· · · ,

u2(n)l, u2(n − 1)l, u2(n − 2)l, · · · , u2(n − Nu)l,

· · · ,

· · · ,

ud(n), ud(n − 1), ud(n − 2), · · · , ud(n − Nu),

ud(n)2, ud(n − 1)2, ud(n − 2)2, · · · , ud(n − Nu)2,

· · · ,

ud(n)l, ud(n − 1)l, ud(n − 2)l, · · · , ud(n − Nu)l,

y(n − 1), y(n − 2), · · · , y(n − Ny),

y(n − 1)2, y(n − 2)2, · · · , y(n − Ny)2,

· · · ,

y(n − 1)l, y(n − 2)l, · · · , y(n − Ny)l)

were y(n) and u(n) are the sampled output and input signals at time n
respectively, Ny and Nu are the regression orders of the output and input re-
spectively and d is the input dimension. f() is a non-linear function, this is
typically taken to be a polynomial or wavelet multi-resolution expansion of the
arguments. The degree l of the polynomial is the highest sum of powers in any
of its terms.

Noise is always present in physical systems and can be accommodated as
part of the NARMAX model. In the present study we have initially assumed
that the effects of the noise are small and can be neglected. In later studies the
effects of any noise will be accommodated by fitting noise models as part of the
identification procedure to ensure that unbiased models are obtained.

The NARMAX methodology breaks the modelling problem into the following
steps:

1. Structure detection,
2. Parameter estimation,
3. Model validation,
4. Prediction and
5. Analysis.

These steps form an estimation toolkit that allows the user to build a concise
mathematical description of the system. These procedures are now well estab-
lished and have been used in many modelling domains [3].

A detailed procedure of how structure detection, parameter estimation and
model validation is done is presented in [4]. A brief explanation of these steps is
given below.

Any data set that we intend to model is first split in two sets (usually of equal
size). We call the first the estimation data set and it is used to determine the
model structure and parameters. The remaining data set is called the validation

data set and it is used to validate the model.



The initial structure of the NARMAX polynomial is determined by the inputs
u , the output y, the input and output orders Nu and Ny respectively and the
degree l of the polynomial. The general rule in choosing suitable inputs for
the model is that at least some of them should be causing the output. The
number of initial terms of the NARMAX model polynomial can be very large
depending on these variables, but not all of them are significant contributors
to the computation of the output. In fact most terms, as explained below, are
removed from the model equation in the process of refining the model. The final
structure of the estimated NARMAX model will indicate any insignificant or
redundant inputs.

Before any removal of model terms an equivalent auxiliary model is computed
from the original NARMAX model. The model terms of the auxiliary model are
orthogonal. This allows the computation of their associated parameters to be
done in a sequential manner, which is computationally very efficient.

The calculation of the auxiliary model parameters and the refinement of the
model’s structure is an iterative process. Each iteration involves three steps:

1. Estimation of model parameters (using the estimation data set),
2. Model validation (using the validation data set) and
3. Removal of non-contributing terms.

After the model validation step, if there is no significant error between the
model-predicted output and the actual output, non-contributing model terms
are removed in order to reduce the size of the polynomial as much as possible.
This is primarily done to increase the speed of computation of the model output
during its use and also to avoid overfitting the model to the training data.

To determine the contribution of a model term to the output the Error Re-
duction Ratio (ERR) [4] is computed for each term. The ERR of a term is the
percentage reduction in the total mean-squared error (i.e. the difference between
model-predicted and true system output) as a result of including (in the model
equation) the term under consideration. The bigger the ERR is, the more signifi-
cant the term. Model terms with ERR under a certain threshold (usually around
0.05%) are removed from the model polynomial in the last step of each iteration
during the refinement process.

In the following iteration, if the error is higher as a result of the last removal
of model terms then these are re-inserted back into the model equation and
the model is considered as final. Finally, the NARMAX model parameters are
computed from the auxiliary model.

2 Experimental procedure

The robot used in our experiments is the Magellan Pro autonomous mobile robot
Radix (figure 1). The robot is equipped with 16 sonar, 16 infra-red and 16 tac-
tile sensors distributed uniformly around its circumference. A SICK laser range
finder is also present which scans the front semi-circle of the robot ([0◦, 180◦])
with a radial resolution of 1◦ and a distance resolution of less than 1 centimetre.



The robot also incorporates a video camera. In the work presented in this paper
only the laser, sonar and infra-red sensors were used.

Fig. 1. Left: Radix, the Magellan Pro robot used in our experiments. Right:
Location of each sonar and infrared sensor. The laser sensors have been
averaged in twelve sectors of 15 degrees each (laser bins).

During experiments with Radix, the input from all its sensors (apart from
the video camera), its position, orientation, transitional and rotational velocities
are recorded every 250ms. Position and orientation of the robot are obtained
by placing two point-targets on top of the robot and using an overhead video
camera to track them continuously. After a logging session the sensor data from
the robot and the position/orientation data from the tracking system are aligned
using time as the common reference.

Experimental setups of the robot’s static environment are built in a dedicated
robot arena usually using carton boxes. Examples of such experimental setups
are shown in figures 2, 4, 5 and 6.

For the purposes of this paper we have conducted four separate route learn-
ing experiments. In each case we initially drove the robot manually several times
through the specific route to be learned. The translational velocity of the robot
was kept constant at 0.07m/s while the rotational velocity was controlled by a
human operator using a keyboard. During this time the robot’s sensor values
and rotational velocity were logged. The data collected were then used for the
estimation and validation of the NARMAX model. Once the model was esti-
mated it was put on the robot and executed in order to record a further set of
data that was used to test the model’s performance in each case.



In the sections that follow each of the four experiments is presented individ-
ually.

2.1 Route 1

The first route the robot had to learn is shown in figure 2. Although this route
looks quite simple, it is actually quite difficult to learn because of perceptual
aliasing. I.e. the robot’s sensor readings when it is in the middle of the route
(labelled A in the graph) are very similar but half of the time the robot has to
turn right, while the other half it has to turn left.

Fig. 2. Route 1. Robot trajectory under manual control , used as training
data (left), and trajectory taken under model control (right). The model
is shown in table 1.

After manual control of the robot along the route for 1 hour, we identified the
robot’s movement using a NARMAX process. All the sonar and laser measure-
ments were taken into account (figure 3 (left)). The values delivered by the laser
scanner were averaged in twelve sectors of 15 degrees each (laser bins), to ob-
tain a twelve dimensional vector of laser-distances (figure 1 (right)). These laser
bins, as well as the 16 sonar sensor values, were inverted so that large readings
indicate close-by objects. Finally, as we can see in figure 3 (left), the sonar and
laser readings at each instant were normalised by the minimum sonar and laser
reading, respectively, at that instant. These minimum values are also introduced
as inputs into the model, so that all the available information is provided. The
reason of scaling the inputs is because we saw that the resulting models usually
were more robust to small perturbations in the environment.

The parameters of the NARMAX model we obtained are: Nu = 0, Ny = 0,
Ne = 0, degree = 2. The initial model had 496 terms, but after the removal of
the non-contributing terms, 70 remained (table 1).



Fig. 3. Different ways of providing the laser and sonar information to
the modelling strategy. The option shown on the left was used to model
robot’s behaviour in routes 1 and 2, while the option shown on the right
was used in route 3.

A visual, qualitative inspection of figure 2 is enough to see how closely the
robot’s trajectory under NARMAX model control resembles the trajectory ob-
tained when Radix was manually driven. In order to compare the two trajectories
quantitatively as well, we analysed the space occupancy of the two trajectories
in (x, y) space, using the Mann-Whitney U-test [5] to determine whether the two
trajectories occupy space significantly differently or not. It turns out that the
difference between the distribution of values (x − x), when the robot is under
manual control, and the distribution of the same values under NARMAX model
control, is not significant (p > 0.05). x represents the mean of the x-positions.
Similarly, there is no significant difference between the distribution of values
(y(t) − y) under manual control, and that of the same values under NARMAX
model control, (p > 0.05).

2.2 Route 2

Figure 4 shows the second route learnt by the robot through system identifica-
tion. This time only the laser sensor was used (pre-processed as it is shown in
figure 3 (left) as this produced a better model. The characteristics of the NAR-
MAX model obtained in this case are Nu = 0, Ny = 0, Ne = 0, and degree = 3.
The initial model had 573 terms, but just 94 remained after the removal of
non-contributing terms.

Figure 4 shows how closely the NARMAX model behaviour resembles the
manual control behaviour. Statistical space occupancy tests along the x and y

axes, using the Mann-Whitney U-test also confirm that there is no significant
difference between the two trajectories (p > 0.05).



θ̇(t) = +0.08 − 0.50 ∗ nb[1] − 0.62 ∗ nb[4] + 0.46 ∗ nb[6] + 0.07 ∗ nb[7] − 0.09 ∗ nb[8]+
+0.14 ∗ nb[9] + 0.02 ∗ nb[10] + 0.20 ∗ nb[12] − 0.88 ∗ ns[1] + 0.22 ∗ ns[3] − 0.04 ∗ ns[5]+
+0.004 ∗ ns[6] − 0.04 ∗ ns[7] + 0.20 ∗ ns[10] − 0.02 ∗ ns[14] + 0.11 ∗ ns[16]−
−0.43 ∗ inv min bin + 0.041 ∗ nb[1]2 + 0.02 ∗ nb[2]2 − 0.06 ∗ nb[3]2 + 0.53 ∗ nb[4]2−
−0.44 ∗ nb[6]2 + 0.01 ∗ nb[9]2 − 8.70 ∗ inv min bin

2
− 0.07 ∗ nb[1] ∗ nb[2]+

+0.07 ∗ nb[1] ∗ nb[3] + 0.44 ∗ nb[1] ∗ nb[4] + 0.40 ∗ nb[1] ∗ nb[10] − 0.24 ∗ nb[1] ∗ nb[11]+
+0.83 ∗ nb[1] ∗ ns[1] + 0.09 ∗ nb[1] ∗ ns[4] − 0.79 ∗ nb[1] ∗ ns[11] − 0.04 ∗ nb[1] ∗ ns[13]+
+0.08 ∗ nb[1] ∗ inv min sonar + 3.58 ∗ nb[1] ∗ inv min bin + 0.36 ∗ nb[2] ∗ nb[4]−
−0.73 ∗ nb[2] ∗ nb[9] − 0.05 ∗ nb[2] ∗ nb[12] + 0.04 ∗ nb[2] ∗ ns[13] + 0.63 ∗ nb[3] ∗ nb[8]−
−0.28 ∗ nb[3] ∗ nb[12] + 0.11 ∗ nb[3] ∗ ns[3] − 0.48 ∗ nb[4] ∗ nb[10] − 0.27 ∗ nb[5] ∗ nb[8]+
+0.11 ∗ nb[5] ∗ ns[1] + 0.26 ∗ nb[6] ∗ nb[8] + 0.02 ∗ nb[7] ∗ ns[5] + 0.15 ∗ nb[7] ∗ ns[6]−
−0.18 ∗ nb[7] ∗ ns[12] − 0.17 ∗ nb[8] ∗ nb[10] + 0.03 ∗ nb[8] ∗ ns[5] − 0.10 ∗ nb[10] ∗ ns[10]+
+0.05 ∗ nb[10] ∗ ns[12] + 0.03 ∗ nb[12] ∗ ns[10] + 0.06 ∗ nb[12] ∗ ns[11]+
+0.01 ∗ nb[12] ∗ ns[16] + 2.68 ∗ ns[1] ∗ ns[6] − 0.30 ∗ ns[1] ∗ ns[11] − 1.99 ∗ ns[2] ∗ ns[6]+
+3.91 ∗ ns[2] ∗ inv min bin + 0.13 ∗ ns[3] ∗ ns[5] − 1.27 ∗ ns[3] ∗ ns[6]−
−1.85 ∗ ns[3] ∗ inv min bin + 0.05 ∗ ns[4] ∗ ns[11] − 0.13 ∗ ns[4] ∗ inv min sonar−

−0.23 ∗ ns[6] ∗ ns[10] + 0.89 ∗ ns[6] ∗ ns[11] + 0.08 ∗ ns[15] ∗ ns[16]+
+5.06 ∗ ns[16] ∗ inv min sonar

Table 1. NARMAX model of the angular velocity θ̇ for the route follow-
ing behaviour shown in figure 2. nb, ns, inv min sonar, and inv min laser, are
the normalised bins, normalised sonar, inverted minimum sonar and laser
readings, respectively, shown in figure 3 (left).

Fig. 4. Route 2. Robot trajectory under manual control (left), and, for
comparison, under NARMAX model control (right).

2.3 Route 3

Figure 5 shows the third route the robot had to learn. There are many symme-
tries and two narrow passes the robot had to go through. To model the behaviour
of the robot along this new route we used the NARMAX strategy once again.
To obtain the model, the inverted and normalised laser bins were used (figure 3
(right)).

The best NARMAX model we found does not use past information at all
(Nu = 0, Ny = 0), and the degree of the polynomial function is two. The initial



Fig. 5. Route 3. Robot trajectory under manual control (left), and,
for comparison, trajectory of the robot under NARMAX model control
(right).

model had 91 terms, but after the removal of the non-contributing ones just 73
remained.

Figure 5 shows the trajectory of the robot during 1 hour when the NAR-
MAX model was used to control it. Once again the model was able to properly
learn the route in this environment. Apart from the qualitative assessment, this
was confirmed using the Mann-Whitney U-test which indicated no significant
difference in the space occupancy of the robot (p > 0.05) between the trajectory
of the robot during manual control and during NARMAX model control.

2.4 Route 4

Figure 6 shows a fourth route the robot had to learn. This is an episodic route,
which means that the operation of the robot is naturally divided into indepen-
dent episodes, each beginning with the robot at position labelled as A in figure
6 and ending in position labelled B.

To model the robot’s behaviour along this episodic route the ARMAX mod-
elling procedure was used. This is the linear polynomial equivalent of NARMAX.
I.e. the degree of the polynomial is 1. In order to avoid making assumptions about
the relevance of specific sensor signals, all sensor modalities (sonar, infra-red and
laser sensors) were presented as possible inputs to the modelling procedure. The
values delivered by the laser scanner were averaged in 9 sectors of 20 degree each
(i.e. 9 laser bins). No other pre-processing was done on the inputs. The reason
why the pre-processing is a bit different from the one used in the previous routes,
is just because the person who carried out the experiment was different. This can
be interpreted as a blind test which proves that the modelling process presented
here does not depend on any clever pre-processing the input space. This was



Fig. 6. Route 4. Left: Robot trajectories under manual control (22 runs,
training data), this is an episodic route where each episode comprises the
movement of the robot from A to B. Right: Trajectories taken under
ARMAX model control (22 runs, test data).

merely done in the previous experiments in order to assist the readability of the
model.

In this experiment the regression order of the output (Ny) was 0 and that
of the inputs (Nu) was 8. This means that the model uses a two-second history
of sensor inputs.

As shown in figure 6, this model has successfully learned the route from A
to B. This is again confirmed using statistical analysis.

3 Conclusions and Future Work

This paper introduces a novel mechanism to program a route following reactive
controller through system identification. To obtain the controller, the robot is
first operated under human supervision, making it follow a desired route in
a specific environment. Once the training data are acquired in this way, we
use the NARMAX modelling approach to obtain a model which identifies the
coupling between sensory perceptions and motor responses as a non-linear or
linear polynomial, respectively. This model is then used to control the robot
when it moves autonomously.

Our results confirm that there are cases where the methodology described
in this paper is viable. In particular the models we obtained were able to make
the robot move properly along the desired routes regardless of the significant
perceptual aliasing present in most situations.

An interesting feature of this modelling methodology is the fact that it is able
to determine automatically which of the inputs (or combinations of these) are
significant contributors to the output. Also, past input and output values can
be easily incorporated in the model with very little effort from the roboticist’s
side. This fact makes the design process much simpler than using other learning



paradigms. In the case of artificial neural networks, for example, the nature of
the problem would require the use of recurrent architectures.

Finally, it is also very important to consider that a control program obtained
through the procedure we propose, is not just an “existence proof”, in the sense
that it shows that the robot can achieve a particular behaviour under specific
environmental conditions, but it also allows the mathematical analysis of the
main factors involved in the robot’s operation in the environment. Thus, the
sensitivity analysis of the models obtained, for example, would allow to answer
questions related with the importance of every sensor with respect to the robot’s
global behaviour, or even to analyse the effect of small perturbations in the
environment upon the robot’s operation [6, 1]. The mathematical analysis of
these models, and how it can be used to formulate new and testable hypotheses
that might lead to a new stage in the experimentation and design of a robot
controller, is part of the ongoing research at the universities of Sheffield and
Essex.
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