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(also called bases) that are formed using some given primary
Abstract—A sparse representations, witlsatisfactory
S . . . . __hasis functionse@ording to some specified rules. A dictionary
approximation accuracy, is usually desirable in any nonlinear
system identification and signal processing problem. A neeften contains a large or even an infinite number of candidate
forward orthogonal - regression  algorithm, - with mutua}nodel terms (bases). The task of system identification
information interference, is proposed for sparse model
selection angbarameter estimation. The new algorithm can bIQVOIVeS two aspects: the selection of the significant model
used to construct parsimonious lingathe-parameters terms and the determination tife number of model terms
regression models. involved in the final identified model. The objective is to
Index Terms—model selection, mutual information,
L . . obtain a satisfactory sparse representation that involves only a
orthogonal least squareparameter estimation, radial basis

function networks. few bases, by making a compromise between the
approximation accuracy and the model complexity (model

. INTRODUCTION size). Notice that the objective of dynamical modeling is not

The central task in learning from data is how to identify a

merely data fitting. In dynamical modeling the resulting sparse
suitable model from the observational data set. One solution is

model should fit the observational data accurately, but at the

to construct nonlinear models using some specific types of
same time the model should be capable of capturing the

basis functions, aided by various stafghe-art techiques

underlying sysgm dynamics carried by the observational data,
[1]-[5]. Among the existing sparse modeling techniques,

so that the resulting model can be used in simulation, analysis,
linearin-the-parameters regression models, which will be

and control studies.
considered in the present study, are an important class of

Many approaches have been proposed to address the

representations for nonlinear function approximation and

model structure selection problem, most of these focus on

signal processing. Ageneral routine for linean-the
which bases arsignificant and should be thus included in the

parameters modeling often starts by constructing a model term
model. The orthogonal least squares (OLS) algorithm

dictionary? , whose elements are the candidate model terms ) o ]
[2][6][7], which was initiated for nonlinear system

identification, has become popular and has been widely used

(1)(2) Department of Automatic Control and Systems Engineeringpr sparse data modeling. This type of aitjon is simple to
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implement and is very efficient at producing parsimonioustructures are usually criterigtependent. This inlies that
linearin-the-parameters models with good generalizatiothe mutual information criterion and the ERR criterion may or
performance [14]An advantagef the OLS type algorithms is may not produce exactly the same model structure given the
that commonly used model selection and regularizatidame modeling problem. The two criteria can be used in
techniques, for examplehie AIC, BIC and crossalidation parallel, and the performance of the resultant models can then
(GCV) [8][10], can easily be adopted and incorporated intbe compared. The model with the better performance will be
the model structure selection algorithms to yield compachosen as the final model. In this manner, the two criteria will
linearin-the parameters regression models with goodomplement each other and thus produce a better model that
generalization properties [1:113]. may have been achieved using only one signal criterion.

In the OLS type algorithms, the criterion that is used to
[I. TheLinear-In-The-Parameter s Representation
measure the significance of the candidate bases (model terms)

Consider the identification problem for nonlinear systems
is the error reduction ratio (ERR), which is equivalent to the
given N pairs of  inpwoutput  observations,

squared correlation coefficient and is similar to the commonly

{u(t), y(t)} &, .Under some mild conditions a discretame
used Pearson correlation function. Experience has shown that

nonlinear system can be described by the following NARX

the OLS algorithms interfered by the ERR criterion can
modéd [1]

usually produce a satisfactory sparse model with good
y(t) = f (y(t _1)1“' ) y(t - ny)vu(t _1)1.”1u(t - nu)) + e(t)

generalization performance. The adoption and the domination
1
of the ERR criterion in the OLSgorithm, however, does not @)
whereu(t) , y(t) and e(t) are the system input, output and
exclude other criteria. It follows from practical experience that

- noise variablesn and N, are the maximum lags in the input
the selected model subsets are often critediependent My y g P

providing that the given model term dictionary is underanOI output, respectively; arfdis some unknown nonlinear

mapping. It is generally assumed tleft) is an independent
complete (incomplete). pping g y feft) p

: . ) identical distributed noise sequence.
In this study, a new cefion, derived from mutual

information, is adopted into the OLS algorithm to measure the 1€ central task of system identification is to find a

significance of candidate bases and to interfere with the modwiitable approximatof for the unknown functiori from the

subset selection. The motivation of the adoption of a mutughservational data set. One solution is to construct nonlinear
information criterion is based on the foNing considerations. models using some specific types of basis functions including
It is known that the task of modeling from data is generallyolynomials, kernel basis functions and multiresolution
structureunknown and the model term dictionary is oftenpreyavelets[3}[6][15]. Among these existing sparse modeling

specified and thus fixed. For this case, the selected mog&thniques, lineain-the- parameters regression models, which
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will be considered in the present study, are an important clé&isnilar to the commonly used standard Pearson correlation

. . . relationship between two vectoxsandy. Both the standard
signal procession, becausengpared to nonlineéan-the-

o Pearson correlation coefficient and the squared correlation
parameters models, lineer-the-parameters models are

coefficient in (4) have wide application in various fields.

simpler to analyze mathematically and quicker to compute o ) ) .
Another useful cterion, derived from mutual information,

numerically. ) _
can be used to measure the relationship of two random

— — T wi
Let d=n, +n, and X(t) =[x (t),--, %4 ()] with variables by calculating the amount of information that the

® {y(t -k) 1<k<n, two variables share with each other. Mutual information based

2)
u(t—(k- ny)) ny +1<k< ny +n, algorithms have in recent years beedely applied in various

A general form of the linean-the-parameter regression areas including feature selection [46P]. In the present

model is given below: study, mutual information will be introduced to form a

M
y(t) = f(x(t)) +e(t) = ng¢m(x(t)) +e(t) complementary criterion to the ERR criterion to interfere with
m=1

the model structure selection procedure.
=" (t)0 +e(t) 3) P

where M is the total number of candidate regressors,A. Mutual Information

¢, (X(t)) (M=1,2, ...,M) are the model regressors alyhre Following [20], mutual information is defined as follows.

;  Consider two random discrete variableandy with alphabet
the model parameters, angi(t) =[¢ (X(t)),---, oy (X(t))]

X and? , respectively, and with a joint probability mass
and 0 are the associated regressor vector aadarpeter

) function p(x, y) and margink probability mass functions
vector, respectively.

p(x) and p(y) . The mutual informationl (x,y) is the

[11. Mutual Information I nterference for Model
Structure Selection relative entropy between the joint distribution and the product

In the standard OLS algorithm [2][6][7], the Slgnmcancedistribution 0(x) p(y) . given as

of candidate model terms are measured using the values of

X,
ERR, which is defined as the neantalized squared I(x,y)=E |OQ(MJ
P(X) p(y)

correlation coefficient between two associated vectors. This

_ (X, y)
coefficient between two given vectoxsandy of size N is —ZZ p(x, y)Iog[ (X) J (%)

XeX yeY p p(y)

defined as

The mutual informationl (X,y) is the reduction in the
N 2
(XTy)2 _ (lelxlyl) (4)

T T - N N
X' X 2 2
(>)07y) zi:lx' Zi:ly' Mutual information providesa measure of the amount of

uncertainty ofy due to some knowledge &f and vice versa.
oY) = y oy ge ol

information hat one variable shares with another.ylfis
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where the functioh(-,)is the mutual information defined by

regressor in a linear modékX,y) can be used to measure thg5). The first significant basis can thus be selected as

coherency ok with y in the model.

B. Model Structure Selection with Interference of Mutual
Information

Lety =[y(), -, y(N)]" be a vector of measured outputs

atN time instants, ana, =[¢,,@),---,¢,,(N)]" be a vector
formed by thenth candidate model term, whare1,2, ...,M.

Let D={o,,---,¢,} be a dictionary cmposed of theM

candidate baseBrom the viewpoint of practical modeling and

identification, the finite dimensional sét is often redundant.

The model term selection problem is equivalent to finding 81,02,

full dimensional subsed, ={a,--,a.} ={@; ,---,9; } of n
( N<M) bases, from the librard , wherea, =¢; ,

I, €{12,---,M} and k=1,2, ..., n, so thaty can be
satisfactorily approximated using a linear combinatioi

0,,d,, -0, as below

y=60,+--+6.0,+e€ (6)
or in a compact matrix form
y=A0+e @)

where the matriA =[a,,---,a,] is assumed to be of full

column rank,0 =[é, ,~~,9n]T is a parameter vector, aads

the approximation error.

The model structure selection procedure starts from

equation (3). Letr; =y, and

£, =argmax{1 (.0 )} ®)

a,=¢, , and the first associated orthogormsiscan be

chosen ag); =¢, . Set

rolh
QIQ1

9)

r=ro—

q,

In general, thanth significant model term can be chosen

as follows. Assume that at then(l)th step, a subse&} ,,

consisting of if+1) significant bases a,,a,,---,0,,_,, has
been determined, and then() selectedbaseshave been
transformed into a new group of orthogonddases

-+,0,,1 Via some orthogonal transformatidret

m-1,T
m ¢iq
q(j):(pj_ T] qu (10)
k=1 Akl
tn=arg  max {I(r_,,q'™)} (11)

j#£0 A<k<sm-1

wherep; € D—D,;, andr,, , is the residual vector obtained

in the m-1)th step. Themth significant basis can then be

chosen ae,,=¢, and themth associated orthogonhksis

(m)

can be chosen ag,=q, ’. The residual vector, at the

mth step is given by

.
IO q
m

r
Ul

m= 'm-1 (12)

Subsequent sigfitant basescan be selected in the same way

step by stepFrom (12), the vectors, and ¢, areorthogonal,

thus

T 2
16 Bl o | —Tmetim)” (13)

m=m
By respectively summing (12) and (13) for from 1 ton,
yields
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y:Zn:rnTﬁT—l m o, (14) parameter vector, denoted By, =[6,,6,,--,6,]", for the
m1 A model with respect to the original bases (similar to (6)), can be
& (o i calculated from thetriangular equationR 0. = with
e, 1P=lly [ = Tmsdn)” (15) gular equationR 0, =g,
m=1 m-im

_ _ _ _ _ On=[01,95,9ul" . where g, =(r{,qy)/(aKdy) or
Notice that if the functiorl () in (8) and (11) is replaced by

. . _ g = (') /(aay) -
the squared correlation coefficient defined by (4), the above
Note that some tricks can be used to avoid selecting
algorithm then belongs to tldass of orthogonal least squares
strongly correlated model terms. Assume that amnitestep,
type algorithms [2][6][7]. Thdorward orthogonalregression

] . ] ] ) ] a subsed,,, consisting oim significantbases a,,a,,--,a,,,
algorithm interfered withmutual information will be referred

to as the FORMI algorithm. has been determined. Also assume tiggte D—D,, is

The residuakum of squareg]r,, | ,which is also known strongly correlated with some basesdp, that is,@; is a

as the sumrsquareeerror, or its variants including the mean linear combination of, @, -, d,,. Thus (q(_m))Tq(_m) -0
1 ) L m-* ) J J .

squareerror (MSE), can be used to form criteria for model ) ) ) ) )
In the implementation of the algorithm, the candidate basis

selection. The model term selection procedure can be
Q;€D-D, will be automatically discarded if

terminated when some egfied termination conditions are

. . (MNT ~(m) ; P ;
met. In the present study, the following GCV criterion(dj ) dj <& , where 6 is a posive number that is

[10][12] is used to determine the model size sufficiently small. In this way, any severe mullticolinearity or

GCV(K) = (ﬁj MSE(K) = [ﬁj

2 7 ill -conditioning can be avoided.
I If
N (16)

. . . V. Numerical Example
The selection procedure will be terminated at the step where P

the index function GC\K) is minimized. Example 1. A nonlinear time series was described by the

C. Parameter Estimation following model

It is easy to verify that the relationship between the y(t) = 025y(t -1)

selected original bases;,a,,---,a,, , and the associated

+ co{%j expl2— 05y%(t—2)]+ &(t)  (18)
orthogonal bases;,q,, -+, is given by

where& (t) ~ N (0,0.025) . By setting the initial value to be
Am:QmRm (17) é() ( ) y g

where R, is an mxmunit upper triangular matrix whose ¥(0)=0 andy(1)=0, this model was simulated and 1000 data
m

. L _ points were collectedThe first 500 points were used for
entries U; (1<i<j<m) are calculated during the

network training and the remaining 500 data points were used
orthogonalization procedureand Q., is an Nxm matrix

for model validation. Aradial basis function (RBF) network
with orthogonal columnsq,,q,,---,d,, . The unknown
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model was used to estimate a model of this system basedidentified network model, with the first return map produced

the noisy observations. The RBF network model adopted thg thenoisefree model (18), wheré(t) was set to beexo, is

Gaussian kernel function of the form

2 2
¢m(t)=exp{—[y(t_l)_cm'l] +HIY(t-2) -G } 19

shown in Fig. 2.

2
O

where the candidate centec$n:[cr,Ll,Cm,z]T (m=1,2,

498) were chosen to be all the 498 training data poin ‘U-;é

X(t) =[y(t 1), y(t = 2)]" for t from 3 to 500, and the kernel §

width was chosen to be = 25. Both theFOR-MI algorithm

and the OLSERR dgorithm were applied to the 496 candidate

basis functions. The associated criterion GCV given by (16) 10 15 20 25 30 3
Model size

shown in Fig. 1, where the GCV values suggest that tf..

Fig. 1 GCV versus the model size for the RBF network moc
identified using both the FORIl and the OLSERR algorithms, over

. - the training data set generated from the model (18). Tieewith dots
the OLSERR identified network modelshould be chosen as is for the OLSERR identified model and the line with crosses is for the
FORMI identified model.

number of basis functions (model terms) for the H@®Rand

30 and 31, respectivelComparisons of the identified model
performance on both the training data set and the validation

data set are shown in Table 1.

Starting fromy(0) =0 andy (1) =0, both the BR-MI and - | .

the OLSERR identified models were simulated, and the ©f 1 61

model predicted output of 1000 data points generated from the A

two models were compared with the nefsse time series 3t 1 3t

produced by (18) wheré(t) was set to be zerdhe model

o
T
0
—
o
=g
I

- N
)
a0 N
- - -
[ csectss oo
N ;
.
\ o
L]
/..
,.ou-""
. ; L

predicted output (MPO) is defined as ol (@ |

o
N
EN
oL
e}
o

J(t) = f (J(t-1),§(t—2)). Table 1 shows the accuracy of o yo

the model predicted output of the two identified network Fig. 2 The first return maps generated fromitieatified RBF network

models produced by the FERI algorithm, 1000 data points were used
models. It can be seen from Table 1 that the AOR to form the return maps. (a) is for the original ndiee time series,

with £(t) =0 in (18) andwith initial valuey(0)=0 andy(1)=0; (b) is for

identified model is slightly superior to the OERR the FORMI identified model with initial valué/ (O) =0 andy (1) =0.

identified model for the noisy time series given by (18). A

comparison of the first return map produced from the f0OR
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more accurate sparse representation can often be obtained. In
Table 1 Comparison of modelling performance
for the OLSERR and the FORMI

. - this way, the accuracy of the identified sparse model will be
identified network models.

Items OLSERR| FORMI improved compared with results based on any one single
Model size 31 30

Runtime (s) | 10.916 21.212 criterion.

MSE (Train) 4.2278e04 | 4.0365e04

MSE (Val.) 5.5539€04 | 5.4947e€04 REFERENCES
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