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Abstract—A sparse representations, with satisfactory 

approximation accuracy, is usually desirable in any nonlinear 

system identification and signal processing problem. A new 

forward orthogonal regression algorithm, with mutual 

information interference, is proposed for sparse model 

selection and parameter estimation. The new algorithm can be 

used to construct parsimonious linear-in-the-parameters 

regression models. 

 

Index Terms—model selection, mutual information, 

orthogonal least squares, parameter estimation, radial basis 

function networks.  

 

I.   INTRODUCTION 

he central task in learning from data is how to identify a 

suitable model from the observational data set. One solution is 

to construct nonlinear models using some specific types of 

basis functions, aided by various state-of-the-art techniques 

[1]-[5]. Among the existing sparse modeling techniques, 

linear-in-the-parameters regression models, which will be 

considered in the present study, are an important class of 

representations for nonlinear function approximation and 

signal processing. A general routine for linear-in-the- 

parameters modeling often starts by constructing a model term 

dictionaryD , whose elements are the candidate model terms 
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(also called bases) that are formed using some given primary 

basis functions according to some specified rules. A dictionary 

often contains a large or even an infinite number of candidate 

model terms (bases). The task of system identification 

involves two aspects: the selection of the significant model 

terms and the determination of the number of model terms 

involved in the final identified model. The objective is to 

obtain a satisfactory sparse representation that involves only a 

few bases, by making a compromise between the 

approximation accuracy and the model complexity (model 

size). Notice that the objective of dynamical modeling is not 

merely data fitting. In dynamical modeling the resulting sparse 

model should fit the observational data accurately, but at the 

same time the model should be capable of capturing the 

underlying system dynamics carried by the observational data, 

so that the resulting model can be used in simulation, analysis, 

and control studies. 

Many approaches have been proposed to address the 

model structure selection problem, most of these focus on 

which bases are significant and should be thus included in the 

model. The orthogonal least squares (OLS) algorithm 

[2][6][7], which was initiated for nonlinear system 

identification, has become popular and has been widely used 

for sparse data modeling. This type of algorithm is simple to 
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implement and is very efficient at producing parsimonious 

linear-in-the-parameters models with good generalization 

performance [14]. An advantage of the OLS type algorithms is 

that commonly used model selection and regularization 

techniques, for example the AIC, BIC and cross-validation 

(GCV) [8]-[10], can easily be adopted and incorporated into 

the model structure selection algorithms to yield compact 

linear-in-the- parameters regression models with good 

generalization properties [11]-[13]. 

In the OLS type algorithms, the criterion that is used to 

measure the significance of the candidate bases (model terms) 

is the error reduction ratio (ERR), which is equivalent to the 

squared correlation coefficient and is similar to the commonly 

used Pearson correlation function. Experience has shown that 

the OLS algorithms interfered by the ERR criterion can 

usually produce a satisfactory sparse model with good 

generalization performance. The adoption and the domination 

of the ERR criterion in the OLS algorithm, however, does not 

exclude other criteria. It follows from practical experience that 

the selected model subsets are often criterion-dependent 

providing that the given model term dictionary is under-

complete (incomplete).  

In this study, a new criterion, derived from mutual 

information, is adopted into the OLS algorithm to measure the 

significance of candidate bases and to interfere with the model 

subset selection. The motivation of the adoption of a mutual 

information criterion is based on the following considerations. 

It is known that the task of modeling from data is generally 

structure-unknown and the model term dictionary is often pre-

specified and thus fixed. For this case, the selected model 

structures are usually criterion-dependent. This implies that 

the mutual information criterion and the ERR criterion may or 

may not produce exactly the same model structure given the 

same modeling problem. The two criteria can be used in 

parallel, and the performance of the resultant models can then 

be compared. The model with the better performance will be 

chosen as the final model. In this manner, the two criteria will 

complement each other and thus produce a better model that 

may have been achieved using only one signal criterion. 

II.   The Linear-In-The-Parameters Representation 

Consider the identification problem for nonlinear systems 

given N pairs of input-output observations, 

N
ttytu 1)}(),({ = .Under some mild conditions a discrete- time 

nonlinear system can be described by the following NARX 

model [1] 

)())(,),1(),(,),1(()( tentutuntytyfty uy +−−−−=                       

(1) 

where )(tu , )(ty and )(te  are the system input, output and 

noise variables; un and yn  are the maximum lags in the input 

and output, respectively; and f is some unknown nonlinear 

mapping. It is generally assumed that )(te  is an independent 

identical distributed noise sequence.  

The central task of system identification is to find a 

suitable approximatorf̂  for the unknown function f from the 

observational data set. One solution is to construct nonlinear 

models using some specific types of basis functions including 

polynomials, kernel basis functions and multiresolution 

wavelets[3]-[6][15]. Among these existing sparse modeling 

techniques, linear-in-the- parameters regression models, which 



 
 

4 

will be considered in the present study, are an important class 

of representations for nonlinear function approximation and 

signal procession, because compared to nonlinear-in-the- 

parameters models, linear-in-the-parameters models are 

simpler to analyze mathematically and quicker to compute 

numerically. 

Let  uy nnd +=  and T
d txtxt )](,),([)( 1 =x with 







+≤≤+−−

≤≤−
=

uyyy

y

k nnknnktu

nkkty
tx

1   ))((

1               )(
)(           (2)  

A general form of the linear-in-the-parameter regression 

model is given below:  

)())((ˆ)( tetfty += x )())((
1

tet
M

m
mm += ∑

=

xφθ  

)()( tetT += șĳ                                                         (3) 

where M is the total number of candidate regressors, 

))(( tm xφ (m=1,2, …, M) are the model regressors andmθ are 

the model parameters, and T
M ttt ))]((,)),(([)( 1 xxĳ φφ =  

and ș are the associated regressor vector and parameter 

vector, respectively. 

   III.   Mutual Information Interference for Model 
Structure Selection 

In the standard OLS algorithm [2][6][7], the significance 

of candidate model terms are measured using the values of 

ERR, which is defined as the non-centralized squared 

correlation coefficient between two associated vectors. This 

coefficient between two given vectors x and y of size N is 

defined as 

∑∑
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yx               (4) 

Similar to the commonly used standard Pearson correlation 

coefficient in statistics, the function in (4) reflects the linear 

relationship between two vectors x and y. Both the standard 

Pearson correlation coefficient and the squared correlation 

coefficient in (4) have wide application in various fields.  

Another useful criterion, derived from mutual information, 

can be used to measure the relationship of two random 

variables by calculating the amount of information that the 

two variables share with each other. Mutual information based 

algorithms have in recent years been widely applied in various 

areas including feature selection [16]-[19]. In the present 

study, mutual information will be introduced to form a 

complementary criterion to the ERR criterion to interfere with 

the model structure selection procedure. 

A. Mutual Information 

Following [20], mutual information is defined as follows. 

Consider two random discrete variables x and y with alphabet 

X  andY , respectively, and with a joint probability mass 

function p(x, y) and marginal probability mass functions 

)(xp and )(yp . The mutual information ),( yxI  is the 

relative entropy between the joint distribution and the product 

distribution )()( ypxp , given as 


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                  (5) 

The mutual information ),( yxI is the reduction in the 

uncertainty of y due to some knowledge of x, and vice versa. 

Mutual information provides a measure of the amount of 

information that one variable shares with another. If y is 



 
 

5 

chosen to be the system output (the response), and x is one 

regressor in a linear model, ),( yxI can be used to measure the 

coherency of x with y in the model. 

B. Model Structure Selection with Interference of Mutual 
 Information 

Let TNyy )](,),1([ =y be a vector of measured outputs 

at N time instants, and T
mmm N )](,),1([ φφ =ĳ  be a vector 

formed by the mth candidate model term, where m=1,2, …, M. 

Let },,{ 1 Mĳĳ =D be a dictionary composed of the M 

candidate bases. From the viewpoint of practical modeling and 

identification, the finite dimensional set D  is often redundant. 

The model term selection problem is equivalent to finding a 

full dimensional subset },,{},,{
11 niinn ĳĳĮĮ  ==D  of n 

( )Mn ≤ bases, from the libraryD , where
kik ĳĮ = , 

},,2,1{ Mik ∈  and k=1,2, …, n, so that y can be 

satisfactorily approximated using a linear combination of 

nĮĮĮ ,,, 21   as below 

eĮĮy +++= nnθθ 11                                         (6) 

or in a compact matrix form  

eAșy +=                                                             (7) 

where the matrix ],,[ 1 nĮĮA =  is assumed to be of full 

column rank, T
n ],,[ 1 θθ =ș  is a parameter vector, ande  is 

the approximation error.  

The model structure selection procedure starts from 

equation (3). Let yr =0 , and 

)},({maxarg 0
1

1 j
Mj

I ĳr
≤≤

=                                        (8) 

where the function ),( ⋅⋅I is the mutual information defined by 

(5). The first significant basis can thus be selected as 

11 ĳĮ = , and the first associated orthogonal basis can be 

chosen as 
11 ĳq = . Set  

1
11

10
01 q

qq
qr

rr T

T

−=                                                   (9) 

In general, the mth significant model term can be chosen 

as follows. Assume that at the (m-1)th step, a subset 1−mD , 

consisting of (m-1) significant bases, 121 ,,, −mĮĮĮ  , has 

been determined, and the (m-1) selected bases have been 

transformed into a new group of orthogonal bases 

121 ,,, −mqqq  via some orthogonal transformation. Let  

∑
−

=

−=
1

1
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T
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T
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j q

qq
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ĳq                                     (10) 
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                    (11) 

where 1−−∈ mj DDĳ , and 1−mr  is the residual vector obtained 

in the (m-1)th step. The mth significant basis can then be 

chosen as
mm ĳĮ =  and the mth associated orthogonal basis 

can be chosen as )(m
m m

qq = . The residual vector mr  at the 

mth step is given by 

m
m

T
m

m
T
m

mm q
qq
qr

rr 1
1

−
− −=                                       (12) 

Subsequent significant bases can be selected in the same way 

step by step. From (12), the vectors mr and mq  are orthogonal, 

thus  

m
T
m

m
T
m

mm qq
qr

rr
2

12
1

2 )(
|||||||| −

− −=                            (13) 

By respectively summing (12) and (13) for m from 1 to n, 

yields 
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Notice that if the function ),( ⋅⋅I  in (8) and (11) is replaced by 

the squared correlation coefficient defined by (4), the above 

algorithm then belongs to the class of orthogonal least squares 

type algorithms [2][6][7]. The forward orthogonal regression 

algorithm interfered with mutual information will be referred 

to as the FOR-MI algorithm. 

The residual sum of squares, 2|||| nr ,which is also known 

as the sum-squared-error, or its variants including the mean-

square-error (MSE), can be used to form criteria for model 

selection. The model term selection procedure can be 

terminated when some specified termination conditions are 

met. In the present study, the following GCV criterion 

[10][12] is used to determine the model size 

)MSE()GCV(
2

k
kN

N
k 








−
=

NkN

N k
22

||||r








−
=     (16) 

The selection procedure will be terminated at the step where 

the index function GCV(k) is minimized.  

C. Parameter Estimation 

It is easy to verify that the relationship between the 

selected original bases mĮĮĮ ,,, 21  , and the associated 

orthogonal bases mqqq ,,, 21  , is given by 

mmm RQA =                                                     (17) 

where mR  is an mm× unit upper triangular matrix whose 

entries )1( mjiuij ≤≤≤  are calculated during the 

orthogonalization procedure, and mQ  is an mN × matrix 

with orthogonal columns mqqq ,,, 21  . The unknown 

parameter vector, denoted by T
mm ],,,[ 21 θθθ =ș ,  for the 

model with respect to the original bases (similar to (6)), can be 

calculated from the triangular equation mmm gșR =  with 

T
mm ggg ],,,[ 21 =g  , where )/()( 1 k

T
kk

T
kkg qqqr −=  or 

)/()( k
T
kk

T
kg qqqy= . 

Note that some tricks can be used to avoid selecting 

strongly correlated model terms. Assume that at the mth step, 

a subset mD , consisting of m significant bases, mĮĮĮ ,,, 21  , 

has been determined. Also assume that mj DD −∈ĳ is 

strongly correlated with some bases in mD , that is, jĳ  is a 

linear combination of mĮĮĮ ,,, 21  . Thus, 0)( )()( =m
j

Tm
j qq . 

In the implementation of the algorithm, the candidate basis 

mj DD −∈ĳ will be automatically discarded if 

δ<)()( )( m
j

Tm
j qq , where δ is a positive number that is 

sufficiently small. In this way, any severe mullticolinearity or 

ill -conditioning can be avoided. 

V.    Numerical Example 

Example 1.  A nonlinear time series was described by the 

following model 

)1(25.0)( −= tyty  

)()]2(5.02exp[
20

)1(
cos 2 tty

ty ξπ
+−−






 −

+      (18) 

where )025.0,0(~)( 2Ntξ . By setting the initial value to be 

y(0)=0 and y(1)=0, this model was simulated and 1000 data 

points were collected. The first 500 points were used for 

network training and the remaining 500 data points were used 

for model validation. A radial basis function (RBF) network 



 
 

7 

Fig. 2  The first return maps generated from the identified RBF network 
models produced by the FOR-MI algorithm, 1000 data points were used 
to form the return maps. (a) is for the original noise-free time series, 

with )(tξ =0 in (18) and with initial value y(0)=0 and y(1)=0; (b) is for 

the FOR-MI identified model with initial value )0(ŷ =0 and )1(ŷ =0. 

model was used to estimate a model of this system based on 

the noisy observations. The RBF network model adopted the 

Gaussian kernel function of the form 











 −−+−−

−= 2

2
2,

2
1, ])2([])1([

exp)(
σ

φ mm
m

ctycty
t  (19) 

where the candidate centers T
mmm cc ],[ 2,1,=c (m=1,2, …, 

498) were chosen to be all the 498 training data points 

Ttytyt )]2(),1([)( −−=x for t from 3 to 500, and the kernel 

width was chosen to be 5.2=σ . Both the FOR-MI algorithm 

and the OLS-ERR algorithm were applied to the 496 candidate 

basis functions. The associated criterion GCV given by (16) is 

shown in Fig. 1, where the GCV values suggest that the 

number of basis functions (model terms) for the FOR-MI and 

the OLS-ERR identified network models should be chosen as 

30 and 31, respectively. Comparisons of the identified model 

performance on both the training data set and the validation 

data set are shown in Table 1.  

Starting from )0(ŷ =0 and )1(ŷ =0, both the FOR-MI and 

the OLS-ERR identified models were simulated, and the 

model predicted output of 1000 data points generated from the 

two models were compared with the noise-free time series 

produced by (18) where )(tξ was set to be zero. The model 

predicted output (MPO) is defined as 

))2(ˆ),1(ˆ(ˆ)(ˆ −−= tytyfty .  Table 1 shows the accuracy of 

the model predicted output of the two identified network 

models. It can be seen from Table 1 that the FOR-MI 

identified model is slightly superior to the OLS-ERR 

identified model for the noisy time series given by (18). A 

comparison of the first return map produced from the FOR-MI 

identified network model, with the first return map produced 

by the noise-free model (18), where )(tξ was set to be zero, is 

shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  GCV versus the model size for the RBF network models 

identified using both the FOR-MI and the OLS-ERR algorithms, over 

the training data set generated from the model (18). The line with dots 

is for the OLS-ERR identified model and the line with crosses is for the 

FOR-MI identified model. 
 



 
 

8 

Table 1  Comparison of modelling performance 
for the OLS-ERR and the FOR-MI 
identified network models.  

Items OLS-ERR FOR-MI 

Model size 31 30 

Run time (s) 10.916 21.212 

MSE (Train) 4.2278e-04 4.0365e-04 

MSE (Val.) 5.5539e-04 5.4947e-04 

MSE (MPO) 0.8257 0.8066 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

V.  Conclusion 

To construct sparse models for structure-unknown systems 

from observational data, one commonly used approach is to 

seek some sparse bases (regressors or model terms) from a 

specified dictionary, which may consist of a large number of 

candidate bases. Any sparse modeling thus involves the 

determination of significant bases. An efficient criterion is 

thus needed to measure and rank candidate regressors 

according to their significance to the system response. The 

criterion ERR is an efficient index to measure the significance 

of candidate regressors and is widely used in the OLS type 

algorithms for nonlinear model structure selection. The 

dominant adoption of the ERR criterion in the OLS algorithm, 

however, does not exclude other criteria. It is observed that the 

selected model subsets are often criterion-dependent, that is, 

the OLS algorithms interfered with by different criteria may 

select different significant bases and thus produce different 

model subsets. Motivated by this observation, the new FOR-

MI algorithm has been introduced as a complementary 

approach to the commonly used least squares type algorithms. 

Using the two criteria in a modeling problem may or may not 

produce exactly the same model structure. But by inspecting 

and comparing the performance of the resulting models, a 

more accurate sparse representation can often be obtained. In 

this way, the accuracy of the identified sparse model will be 

improved compared with results based on any one single 

criterion.  
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