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Abstract 
    Model validation is an important and essential final step in system identification. 

Although model validation for nonlinear temporal systems has been extensively studied, 

model validation for spatiotemporal systems is still an open question. In this paper,  

correlation based methods, which have been successfully applied in nonlinear temporal 

systems are extended and enhanced to validate models of spatiotemporal systems. 

Examples are included to demonstrate the application of the tests. 

 

1. Introduction 
 

    Spatiotemporal dynamic systems have become an increasingly important research area 

for a large range of scientific subjects including chemistry, biology, ecology, 

meteorology and finance. Spatiotemporal systems have traditionally been described using 

nonlinear Partial Differential Equations (PDE) or in discrete time form as Lattice 

Dynamical Systems (LDS) or a subset of LDS called Coupled Map Lattices (CML). A 

CML model is defined over a d-dimensional lattice where each site evolves in time 

through a discrete map which describes the influence of past states and neighbouring sites. 

CML were initially introduced in the1980s by Kaneko (1985, 1986). The CML model is 

discrete in both the time and space domain but has a continuous state value. PDE’s can be 

finitely approximated by CML, provided that certain conditions of spatial and temporal 

resolution have been met. Due to the computational efficiency and richness of dynamical 

behaviors, the analysis and identification of CML has been studied by several authors. 

    A fundamental feature of CML is that the local state-space variables associated to each 

lattice node are the same over the whole lattice. In other words, these variables represent 

the same set of physical quantities at each node of the given lattice. The CML model can 

be shown to be composed of two parts: a local term involving only the local input and 

output variables and a spatial coupling term which describes the interactions with the 

neighboring lattice sites. 

    The purpose of model validation is to validate the correctness of the model structure 

and the unbiasedness of the estimated model parameters and usually involves testing the 

identified model on another independent set of data. It is a final and essential stage in 

most system identification procedures. Model validation methods can also be used to 

check if an identified model is under or over fitted. 

    Model validation for linear temporal systems is now well established. If the model 

structure is correct and the estimated parameters are unbiased, the model residuals or the 
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one-step-ahead prediction errors should be a random time sequence with zero mean and 

finite variance. The auto-correlation function (ACF) and the cross-correlation function 

(CCF) have been widely used in linear temporal model validation (Bohlin, 1971, 1978, 

Soderstrom and Stoica, 1990). It is well known that the ACF of the residuals and the CCF 

between the residuals and input should fall within preset confidence intervals if the 

identified model is correct and the residual sequence is white. 

    Simple auto and cross correlation tests for linear models cannot be applied directly to 

the model validation of nonlinear temporal systems since they cannot detect all possible 

missing nonlinear terms in the residuals (Billings and Voon, 1983). Model validation 

methods for nonlinear temporal systems based on higher order correlation tests between 

the input and the residuals were first introduced by Billings and Voon (1983, 1986) to 

detect the missing nonlinear terms in the residuals. In order to achieve more 

discriminatory power with less computational cost, improved correlation tests based on 

correlation functions between the input, output and residuals were introduced in later 

studies (Billings and Zhu 1994, 1995; Mao and Billings 2000).  

   But all these methods are for purely temporal systems and unfortunately model 

validation tests for spatiotemporal systems are more complex. Given a derived or 

identified model of a spatiotemporal system in the form of a PDE, CML or LDS, model 

validation tests are required to determine whether the model can adequately describe the 

underlying dynamics of the spatiotemporal system. The only model validation methods 

which are available for spatiotemporal systems are based on subjectively judging the 

quality of the one-step-ahead prediction errors or the model predicted output (Partilz and 

Merkwirth 2000, Coca and Billings 2001, 2003; Timer et al. 2000; Muller and Timmer 

2002. An alternative method is to compare specific dynamical characteristics like the 

bifurcation diagram between the modeled system and the real system (Aguirre and 

Billings 1994, 1995a, 1995b, Guo and Billings 2004). But a disadvantage of the latter 

method is that a priori information about the dynamical characteristics of the 

spatiotemporal system under study must be available.  

    In this paper, model validation methods based on higher order correlation function 

tests are introduced for a wide class of spatiotemporal systems and examples are included 

to demonstrate the performance of the new methods. This paper is arranged as follows. 

Section 2 formulates the problem of model validation for spatiotemporal systems. Section 

3 reviews the correlation test methods for nonlinear temporal systems, while section 4 

introduces the new model validation methods for spatiotemporal systems based on a set 

of correlation test functions. Three numerical examples are included in section 4 to 

illustrate the application of the new model methods and to demonstrate how the new tests 

can be used to detect missing or over-fitted model terms. 

 

2. Problem Statement 
    

Consider the general form of the stochastic input-output CML model for spatially 

invariant lattice dynamical systems (Billings and Coca, 2002, Coca and Billings, 2003)  
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where, spatial invariance means that the underlying dynamics in each lattice node are the 

same for all lattice nodes. Here, dIi ∈  is the spatial index of a d-dimensional space and t 

is the temporal index; )(tyi  and )(tui  are the output and input variables respectively at 

lattice i and time t, and )(tiε  is an independent zero mean random sequence. nq  is a 

temporal backward shift operator  
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where yn , un and εn denote the maximum temporal lags corresponding to output y , 

input u  and the residual sequence ε . 

In (2-1), ms  is a multi-valued spatial shift operator 
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where dj Ip ∈ is the spatial translation multi-index, such that 
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The parameters ym , um and εm denote the maximum temporal lags corresponding to the 

output y input u and the residual sequence ε . The model YUYf →×: is composed of 

the local map )(⋅lf  and the coupling map )(⋅cf , which can both take the form of a very 

wide class of linear or nonlinear models, including polynomial or wavelet expansions. 

    The main object of model validation is to check the goodness of fit of any given model 

by using model validation tests. A model validation test can be formulated as a statistical 

hypothesis testing problem. For instance, the identified model f is set as the 

hypothesis oH . Then, in the first step, a parameter-free statistic is formed, which is a 

statistical function of the available data. Therefore, the distribution of the statistic 

variable is known if the hypothesis oH is true. In this paper, the residual sequence or the 

one-step-ahead prediction error )(tiε  associated with model (2-1) is used as a statistic 

variable. So if the hypothesis oH for the identified model is true, the residual 

sequence )(tiε  at lattice i should be completely random and unpredicted from all past 

inputs and outputs at all other spatial sites, so that 

                                       )()( teti =ε ,         dIi ∈                                                            (2-6) 
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where )(te is an independent random sequence with zero mean and finite variance. In 

order to validate the accuracy of (2-6) using sample means, 95% confidence limits are 

often used. 

    Before the new correlation tests can be developed for spatiotemporal systems existing 

results for purely temporal nonlinear models will be reviewed in the next section. 

 

3. Correlation Tests for Temporal Models 
 

    Consider the nonlinear but purely temporal model 

                     )(),,()( 111 tuyfty ttt εε += −−−                                                                     (3-1) 

where ,...)2,1( =tt is a discrete time index and  
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are the delayed output, input and residual vectors respectively with maximum time lag d. 

Higher order correlation tests for nonlinear systems involving the output, input and 

residual are defined as follows (Billings and Zhu, 1994). 

� �

�

� �

�

= =

−

=

= =

−

=

−−

−−−

=

−−

−−−

=

N

t

N

t

N

t

u

N

t

N

t

N

t

utut

utut

tt

tt

1 1

2/12222

1

22

1 1

2/12222

1

22

]))(()))(([(

))()()((

)(

]))(()))(([(

))()()((

)(

2

2

αα

ταα

τφ

εεαα

ετεαα

τφ

τ

α

τ

αε

                                              (3-3) 

 

where   

                                                        )()()( ttyt εα =                                                       (3-4)  

and • denotes the time average. 

The output )(ty  in (3-1) can be represented by the one-step-ahead predicted output and 

the residual as 
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When the model structure is correct and the estimated parameters are unbiased, the 

residual sequence )(tε should be a totally random sequence with zero mean and finite 

variance. These conditions will hold when 
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and Equation (3-6) consequently becomes 
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    According to the Central Limit Theorem, for sufficiently large N the correlation 

function estimates given in (3-3) are asymptotically normal with zero mean and finite 

variance, and the 95% confidence interval is approximately equal to N/95.1± , where N 

is the data length. 

    This set of higher order correlation test functions can detect almost all possible missing 

linear and nonlinear terms in the residuals, even if the variances of the input and residual 

are small. The discriminatory power of this method is greatly enhanced compared with 

the correlation tests only involving the residual and input (Billings and Zhu, 1994).  

    However, these correlation test functions may also have a disadvantage in some 

practical situations. For example in (3-6), )(2 τφ
αε

 is composed of two parts, 

)(2)ˆ(1 τφ
εεy

k and )(222 τφ
εε

k with 1k , 2k determined by (3-7). In an ideal situation, the 

residual will not correlate with the predicted output and input and Equation (3-6) can be 

converted into (3-8). But if the variances of the one-step-ahead predicted output and the 

residual are significantly different, 1k and 2k  may take quite different values in those 

conditions. For example if 1k  is ten times larger than 2k , 2/)(2 kτφ
αε

may not be an 

approximate Dirac delta function even though the residual is a totally random sequence 

with zero mean value and finite variance. 

 

4. Correlation Tests for Spatiotemporal Systems 
 

It will be assumed throughout that the spatiotemporal systems under study are spatially 

invariant lattice dynamical systems. That is to say, the dynamics in each lattice can be 

described by the same parameter-invariant model, for example the model in (2-1). 

Another assumption is that all the signals from the stochastic spatiotemporal system 

under study are ergodic processes over both the time and space domains. Based on the 

first assumption, we do not need to study the dynamics of variables at every site of a 

spatiotemporal system. The overhead of computing correlation functions of the inputs, 

outputs and residuals from all lattice sites can be avoided by randomly selecting N 

sufficiently large data at different locations to calculate the correlation functions. From 

the latter assumption, it can easily be seen that this characteristic has two implications for 

the model residuals )(tiε , )(tjε at the sites dIji ∈,  

 

[ ] ZttE iiii
∈=−= ττδτεετφ εε ),()()()(                                                         (4-1a) 
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[ ] jiZttE jiji
≠∈∀=−= ,,0)()()( ττεετφ εε                                                 (4-1b) 

where, )(τδ  is a Dirac function and Z is the set of positive integers. From (4-1a), it can 

be seen that the residuals at a spatial location at different times are independent to each 

other while (4-1b) means that the residual variable at different sites are independent. 

These assumptions generally hold for a wide class of spatiotemporal systems. 

    New correlation tests can now be introduced for spatiotemporal systems based on cross 

correlation functions between the inputs, one-step-ahead predicted outputs and the 

residuals. From (2-1) 
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where )(ˆ tyi is the one-step-ahead predicted output and )(tiε is the residual. The model 

predicted output of the CML model is defined as 

))(),(),(),(()( tusqtysqtuqtyqfty i

mnmpo

i

mn

i

nmpo

i

nmpo

i
uuyyuy=                               (4-3) 

Two new tests )(2 τφ
βε

and )(2 τφ
βu

are defined below, where N data samples of the input, 

one-step-ahead predicted output and residual sequences are randomly selected without 

repetitions from the space and time domains to compute the normalized correlation 

functions. 
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In (4-4) the vector S indicates the selection of the random locations ),( kk ti  in both the 

time domain and space domains. 

1,...,0,,)),,(),...,,(),,(( 111100 −=∈∈= −− NkTtIitititiS k

d

kNN                   (4-5) 

The normalized variables )(0 tiβ , )(
02 tiε  and )(

02 tui in (4-4) are defined as follows 
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where, )(tiε and )(tui are the residual and input at lattice i and time t respectively. 

)(tiβ is a normalized compound variable which is a function of the residual )(tiε and 

one-step-ahead predicted output )(ˆ tyi . 
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In (4-6) and (4-7), • denotes the time average over the specific domain defined by the 

vector S. For example, 2ε and 2

τu  are defined as follows 
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Note that the mean value of the input variable 2

τu is defined as dependent on the value 

ofτ . This is because in most practical spatiotemporal systems, the length of time T will 

not be large enough compared with the temporal system case. The value ofτ  in the 

correlation functions will therefore affect the mean values and variances of the selected 

data from variables of the spatiotemporal system. Actually, these statistical characteristics 

of the variables from spatiotemporal systems will have a significant difference in some 

situations. This will be illustrated in Example 3. Also in the proposed correlation tests (4-

4), the compound variable )()( tty ii ε used in the correlation method (3-3), is substituted 

by the combination of two normalized variables )(ˆ 0 ty iε and )(0 tiεε . An evident advantage 

for this improvement is that the new method can be practically feasible for 

spatiotemporal systems where the variances of the output and residual are quite different. 

    From the above definitions, (4-4) can be converted into 
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From the definition in (4-7), it can be easily seen that 1k ′ is equal to 2k ′ which is close to 

the value of 2/1 when the model under study is correct. In the ideal situation, the 

residual should be unpredictable from all inputs and outputs, to give 
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Equation (4-10) can now be written as 
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    According to the Central Limit Theorem, for sufficiently large N, the estimates of the 

correlation function estimates given in (4-4) will be asymptotically normal with zero 

mean and finite variance, and the 95% confidence intervals, for )(2 τφ
βε

 and )(2 τφ
βu

, will 

be approximately N/95.1± . 

    When these new correlation functions are applied to validate a spatiotemporal system, 

the inputs and outputs from neighbouring sites, for example the terms )(),( tustys i

m

i

m
uy , 

should be treated as inputs in the correlation functions (4-4). 

 

5. Numerical Examples 
 

Three simulated spatiotemporal systems will be used to illustrate the new model 

validation method using the correlation tests. In the Example 1, a linear spatiotemporal 

system is studied and the new correlation method is illustrated by using the exact solution 

of the PDE. In Example 2, the model validation method is applied to a spatiotemporal 

system described by a CML model. Finally, an identified CML model of the Lokta-

Volterra system is validated in Example 3. 

 

5.1 Example 1 - A Linear Spatiotemporal System 

    The first example is based on the following linear diffusion equation 
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where x is the spatial coordinate, with initial conditions 
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and 

).1.2cos()5.0exp(32.9)5.1cos()exp(13),( txtxxtu −−−−=                             (5-3) 

 For 0.1=C  the exact solution ),( xty  of the above diffusion equation with the input as 

(5-3) is  

)5.05.0exp(2)exp(4)1.2cos()5.0exp(2)5.1cos()exp(4),( txtxtxtxxty −−−−−−−+−=                                

(5-4) 

In order to discretize the continuous system, the input and output were equally and 

spatially sampled on the spatial domain ]1,0[=Ω  at a grid size of 0.05, so 

that )1,95.0,...,05.0,0(),...,,( 2121 == xxxx . In the time domain )10,0( π , the input and 

output variables were evenly sampled at the rate 100/π=∆t  so 

that )10,...,1*,0(),...,,( 100121 πttttt ∆== . The sampling functions at the location i and 

time t can be consequently written as 
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where )(kiε is the residual in the corresponding location.  

    In this example, the data for the correlation tests comprised of 900 input and output 

data randomly selected from different locations in both the space and the time domains. 

The input and output data from the neighboring locations were treated as inputs in the 

correlation function. The spatially coupled terms were combined together as 

)()( 11 tutu ii −+ +  and )()( 11 tyty ii −+ +  due to the symmetry of the diffusive coefficients. 

Thus there are three inputs in the correlation functions, which are given in (5-6). 
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                                                                                            (5-6) 

The residual )(kiε was initially set as a purely random sequence )(kei with the 

standard deviation was 3258.0=σ . The correlation functions )(2 τφ
βε

and )(2 τφ
βu

given in 

(4-3) were then calculated and the corresponding results are showed in Figure (5-1), 

where the input in the correlation function )(2 τφ
βu

represents the combination of the 

normalized inputs in (5-6), which is given as. 
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In order to demonstrate the capability of detecting the wrong terms in the residual, the 

residual )(kiε was deliberately set to be correlated with the input and the output of the 

neighboring site. 

)2()1(003.0)()( −−+= kykykek iiiiε                                                 (5-8) 

From Figure (5-1) and Figure (5-2), it can be seen that the estimates of the correlation 

functions )(2 τφ
βε

and )(2 τφ
βu

for this example are located within the 95% confidence 
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intervals when the residual is random, but the estimates exceed the confidence intervals 

when the residual is correlated with the nonlinear term in Equation (5-8). 

 
(a) 

 
(b) 

Figure (5-1) Correlation tests for Example 1 with a random residual, (a) )(2 τφ
βε

 test, 

(b) )(2 τφ
βu

 test.  

 

 
(a) 

 
(b)

Figure (5-2) Correlation tests for Example 1 with the correlated residual defined 

in Equation (5-8), (a) )(2 τφ
βε

 test, (b) )(2 τφ
βu

 test.  

5.2 Example 2 - A Nonlinear Spatiotemporal System Described by a CML Model 

   Consider the following diffusively coupled map model in a 2-dimensional LL ×  lattice 

(Kaneko, 1989) 

)))1(())1(())1(())1(((*
4

))1((*)1()( 1,1,,1,1,, −+−+−+−+−−= +−+− txftxftxftxftxftx jijijijijiji

θ
θ

                                                     (5-9) 

where Ljitx ji ,...,1,),(, = is the state at the discrete time t and the location of the 

lattice ),( ji . Here L is chosen to be 50 and θ  is the parameter defining the coupling 

length. The dynamics of the CML at the lattice sites are governed by θ  and the local 

map f . In this example, the mapping function f is chosen as the logistic map 
21)( axxf −=                                                                         (5-10) 
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    This model has been extensively studied and it is known that a rich set of bifurcations 

will occur as the bifurcation parameter a is changed when 3.0>θ  (Kaneko, 1989, Guo 

and Billings, 2004). In this example, the parameters in (5-9) were set as 5.1=a  

and 4.0=θ . 

    The CML model (5-9) was simulated with the parameters set above for 100 steps over 

the 5050× lattice 2
I starting from a randomly generated initial population and periodic 

boundary conditions. Snapshots of the spatiotemporal patterns at different times are 

shown in Figure (5-3). Here, the measurement function at the location of the lattice ),( ji  

is given as 

)()()( ,,, ttxty jijiji ε+=                                                                 (5-11) 

where the residual )(, tjiε denotes the measurement noise at the specific location ),( ji and 

time t.  

 
Figure (5-3) Snapshots of )(, tx ji taken at the times 100,70,40,1 ==== tttt  

The new model validation methods were implemented with N is set to be 2500. The 

outputs in (5-9) from four neighbouring sites were treated as inputs, and the input in 

)(2 τφ
βu

 was selected to be a combination of four normalized inputs (similar to (5-7)).  
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                                                                                                       (5-12) 

Figure (5-3) shows the results of the correlation tests for the CML model (5-9) 

)(2 τφ
βε

and )(2 τφ
βu

 for the case where )(, tjiε was a totally random spatiotemporal 

sequence. Figures (5-4), (5-5) show the correlation tests )(2 τφ
βε

and )(2 τφ
βu

 under the two 

conditions where the residual )(, tjiε  is random and correlated with the nonlinear terms 

defined in Equation (5-13) and Equation (5-14).  

)2()1(03.0)()( ,1,1,, −−+= −− tytytet jijijijiε                                                        (5-13) 

)1()1(02.0)()( ,,,, −−+= tytytet jijijijiε                                                             (5-14) 

It can be seen that the results of the correlation tests are within the 95% confidence 

limits for the random residuals case and are outside the confidence bounds and therefore 

correctly determine the model deficiency in Figure (5-5), (5-6). 
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(a) 

 
(b)

Figure (5-4) Correlation tests for Example 2 with )()( ,, tet jiji =ε , where )(, te ji is a 

random spatiotemporal sequence, (a) )(2 τφ
βε

 test, (b) )(2 τφ
βu

 test. 

 
(a) 

 
(b)

Figure (5-5) Correlation tests for Example 2 when the residuals are correlated 

with the nonlinear term defined in Equation (5-13), (a) )(2 τφ
βε

 test, (b) )(2 τφ
βu

test. 

       
(a)                                                                        (b) 

Figure (5-6) Correlation tests for Example 2 when the residuals are correlated 

with the nonlinear term defined in Equation (5-14), (a) )(2 τφ
βε

 test, (b) )(2 τφ
βu

 test. 

 

5.3  Example 3 – An Identified Nonlinear Spatiotemporal  System 



 13 

In this example, the new correlation tests are used to validate an identified CML model 

of a nonlinear spatiotemporal system described by a partial differential equation.  

Consider the Lotka-Volterra predator-prey model in two dimensions (Wilson etc, 1993) 

described by the following parabolic PDE as 

uvrvavcvcv

uvruaucucu

222221

111211

+−⋅∇+⋅∇=

−+⋅∇+⋅∇=
•

•

                                                             (5-15) 

where ),,( yxtuu = and ),,( yxtvv = present the prey population density and the predator 

population density at time t and location ),( yx respectively. The corresponding 

coefficients in the above PDE were set as 76.0,024.0,47.0 211 === ara and 023.02 =r . 

The diffusive coefficients were set as 1.01211 == cc  and 01.02221 == cc  which signify 

that the prey diffuses faster than the predators through the space domain. 

The Lotka-Volterra equation (5-15) was numerically simulated on the space domain 

)1,0()1,0( ×  with the Neumann boundary conditions and initial conditions set as 
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=

otherwise
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                                    (5-16) 

The discrete observation for the identification are given by 

15,...2,1;50,...,2,1,),(),,()(

)(),,()(

,,

,,

==+∆∆∆=

+∆∆∆=

kjikyjxitkvkv

kyjxitkuku

jiji

jiji

β

α
                         (5-17)                     

The numerical solution for (5-15) was sampled on the spatial grid 02.0,02.0 =∆=∆ yx  

with a time step 06.0=∆t . 

In (5-17), )(, kjiα  and )(, kjiβ are random sequences with standard deviations 

01.0,0058.0 == βα σσ respectively. A CML model was identified by using an 

Orthogonal Forward Regression algorithm (Billings etc 1988, Guo and Billings 2004), 

and the results are shown in Table (5-1). In this example, for simplicity of illustration, 

only the model of subsystem u is investigated. 

 

Table (5-1) Terms and parameters of the identified CML model for Example 3 and 

Subsystem u 

Model Terms Estimated Parameters  

)1(, −ku ji  0.3161 

Constant 0.0316 

)1(, −∗ ku ji ¶ 0.1681 

2)^1(, −ku ji  -0.3485 

   ¶: )1()1()1()1()1( 1,1,,1,1, −+−+−+−=− +−+−
∗ kukukukuku jijijijiji
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The identified CML model in Table (5-1) can be expressed as. 

   )()1(3485.0)1(1681.00316.0)1(3161.0)( ,

2

,,,, kekukukuku jijijijiji +−−−++−= ∗  

(5-18) 

where )(, ke ji  is the residual sequence. Figure (5-7), (5-8) (5-9) show some snapshots of 

the measured output, model predicted output (4-3) and the residuals at different times. As 

noted in Section 4, it can be seen from Figure (5-7) that the variance of )(, ku ji changes 

with the time k. 

 

 
Figure (5-7) Snapshots of the measured output of the identified CML model 

Equation (5-18) taken at different times   

 
Figure (5-8) Snapshots of the model predicted output of the identified CML model 

Equation (5-18) taken at different times  

 
Figure (5-9) Snapshots of the residuals of the identified CML model Equation (5-18) 

taken at different times  

 

The system output, one-step-ahead predicted output and the residuals generated from the 

CML model (5-18) were used to test the validity of the identified model. The correlation 

test results are given in the Figure (5-10). It can be seen that the estimates of correlation 

functions   )(2 τφ
βε

and )(2 τφ
βu

 in Figure (5-10) are located within the 95% confidence 

bounds, indicating that the identified model is an adequate representation of the system. 

In order to test the identified model with missing or over-fitted terms, the estimated 

coefficient of the term )1(2

, −ku ji  in (5-18) was assumed to be biased so that the 

corresponding residual )(, ke ji
′  would therefore be correlated with )1(2

, −ku ji . The 
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coefficient of )1(2

, −ku ji was therefore changed from the correct value of 3485.0− in 

Equation (5-18) to the incorrect or biased value of 3000.0− in Equation (5-19). 

)()1(3000.0)1(1681.00316.0)1(3161.0)( ,

2

,,,, kekukukuku jijijijiji
′+−−−++−= ∗

     

       (5-19) 

The correlation tests for (5-19) are given in Figure (5-11) and the incorrect estimate can 

clearly be detected in the model from the correlation functions )(2 τφ
βε

and )(2 τφ
βu

 which 

are now located outside the 95% confidence limit. 

 

 
                              (a)                                                                           (b)   

Figure (5-10) Correlation tests for identified model (5-18) in Example 3, (a) )(2 τφ
βε

 

test, (b) )(2 τφ
βu

 test.  

 
                                    (a)                                                                        (b) 

Figure (5-11) Correlation tests for identified model (5-19) in Example 3 with a 

biased estimate, (a) )(2 τφ
βε

 test, (b) )(2 τφ
βu

 test. 

 

6 Conclusions 
 

    The problem of validating spatiotemporal systems has been investigated and new 

correlation-based tests have been proposed by extending the correlation test methods 

used for nonlinear temporal systems. New correlation functions have been constructed 

based on the inputs, one-step-ahead predicted outputs and the residuals. The overhead of 
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computing all the states over the whole lattice has been avoided by randomly selecting 

the data from both the time and space domain.  Replacing the compound variable 

)()( tty ii ε  by the combination of two normalized variables )(ˆ 0 ty iε and )(0 tiεε  was shown 

to make the new correlation tests more practically feasible and robust for the 

spatiotemporal systems case where variances of the output and residual can be quite 

different. The new model validation methods have been developed for SISO and SIMO 

spatiotemporal systems, but the application to MIMO spatiotemporal systems is 

straightforward by introducing the ideas from MIMO temporal systems (Billings and Zhu, 

1995). 
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