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Sheffield, S1 3JD, UK
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Abstract

This paper is concerned with the development of a new method for the design of Energy
Transfer Filters (ETFs). ETFs are a new class of nonlinear filters recently proposed by
the authors, which employ nonlinear effects to transfer signal energy from one frequency
band to a different frequency location. The new method uses the powerful Orthogonal Least
Squares (OLS) algorithm to solve the Least Squares problem associated with the design and
compared with previous methods achieves much better filtering performance.

Keywords: Frequency Domain Analysis; Energy Transfer Filters; Orthogonal Least
Squares Algorithm; Parsimonious Models; NARX Model

1. Introduction

Filtering is an operation which is concerned with processing a signal so that a new signal
with improved characteristics can be produced. Conventional linear filter design is based on
the principle that signal energy in unwanted frequency bands is attenuated. The traditional
lowpass and bandpass filters such as Butterworth filters, Chebyshev filters, etc. (Zelniker
and Taylor 1994) are examples of conventional designs, and are widely used in electrical and
electronic, communication and control engineering areas.

There have been many studies which include the term nonlinear filter in the title. However
the majority of these investigations relate to designing low order Volterra series models that
minimize a cost function or which implement channel equalization or other similar time
domain objectives (Mathews 1991, Sicuranza 1992, Zelniker and Taylor 1994, Heredia and
Arce 2000). There appears to have been very few if any attempts to design nonlinear filters
based on frequency domain objectives.
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Recently, a totally new filtering concept known as energy transfer filtering has been
proposed and an algorithm for the design of a class of energy transfer filters (ETFs) has
been developed (Billings and Lang 2002). Energy transfer filtering is based on the principle
that signal energy in one frequency band can be moved or transferred to other frequency
locations by exploiting the properties of nonlinear dynamic effects.

It is well known that, in contrast to the case of linear systems where the possible output
frequencies are exactly the same as the frequencies of the input, the possible output frequen-
cies of nonlinear systems are much richer than the frequencies of the input. Consequently,
a desired frequency domain energy transfer effect can be realized by a proper design of a
nonlinear system. This nonlinear system is referred to as the energy transfer filter (ETF)
by Billings and Lang (2002). By using a ETF, signal energy can be moved or transferred to
higher frequencies or lower frequencies, or it can be focused around one frequency location.
There are many design possibilities, and subject to realizability constraints, these general
principles can be applied in many areas to provide extra degrees of freedom and additional
benefits to filter design. Currently a series of research studies are underway at Sheffield to
investigate the application of the principles of energy transfer filters in different engineering
areas.

In Billings and Lang (2002), the design of energy transfer filters, which can be described
by the NARX (Nonlinear AutoRegressive with eXogenous input) model with input nonlin-
earities, was investigated. The algorithm proposed for the design consists of three steps and
was successfully applied to the design of many energy transfer filters dealing with both one
and two input signals. However, as pointed out in the very original paper on the study of
ETF designs, there is a upper limit to the maximum lag Ku for the input in the NARX
model. If Ku has reached that realistic limit, but the performance of the designed ETF is
still not satisfactory, the design has to stop without a satisfactory solution. Consequently,
an improved design procedure is needed to overcome this problem.

Motivated by the requirement to improve the original ETF design approach in Billings
and Lang (2002), in the present study, a new algorithm is proposed for the design of ETF
filters. The new method uses the Orthogonal Least Squares (OLS) approach to determine
both an optimal structure and the parameters of the nonlinear part of a NARX model for the
design. This novel idea circumvents the difficulties using the original design approach. Com-
pared with the previous designs, energy transfer filters designed using the new approach can
not only have significantly improved performance but also considerably reduced complexity.
This could make the designs easier to implement using DSP chips, dedicated processors, or
in electronic circuits and communication systems for signal processing purposes.

2. Energy Transfer Filters

2.1 The Concept

In conventional linear filtering unwanted energy is attenuated, whereas in energy transfer
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filters the unwanted energy is moved or transferred to new frequency locations which can be
different from the frequency range of the input. This is achieved by exploiting the frequency
domain properties of nonlinear dynamic systems where the possible output frequencies are
normally richer than the frequencies of the corresponding input.

Consider the case of the generation of harmonics and intermodulations in nonlinear sys-
tems. When a nonlinear system is subject to a sinusoidal input of frequency ω, the output
could contain frequencies at the harmonics ω, 2ω, 3ω. Some of the input signal energy is
therefore moved by the system to the second, third, and higher order harmonics. When the
frequency components of the input are ω1, ω2, ω3, the output frequencies of the nonlinear
system could include the original input frequencies ω1, ω2, ω3; harmonics 2ω1, 2ω2, 2ω3;
intermodulation frequencies: ω1 − ω2, ω3 − ω2, ω1 − ω3 and many others. Consequently, a
more complicated frequency domain energy transfer phenomenon could be observed. The
basic idea of energy transfer filters is to exploit these well known nonlinear effects to achieve
a desired frequency domain energy transfer via an appropriate design of a nonlinear dynamic
system in the frequency domain.

2.2 Energy Transfer Filters Of A NARX Model With Input Non-

linearity

The NARX model with input nonlinearity is a specific case of the NARMAX model
(Chen and Billings 1989; Pearson 1999) and is given by:






y(k) =
N∑

n=1

yn(k)

yn(k) =






Knu∑

l1,ln=1

c0n(l1, ..., ln)
n∏

i=1

u(k − li) n ≥ 2

Ky∑

l1=1

c10(l1)y(k − l1) +
K1u∑

l1=1

c01(l1)u(k − l1) n = 1

(1)

where y(k) and u(k) are the output and input of the model at discrete time k, c0n(l1, ..., ln)
and c10(l1) are the model coefficients, Knu, n = 1, ..., N , and Ky are the maximum lags with
respect to the model input and output respectively. Under certain conditions, the NARX
model with input nonlinearity (1) is an equivalent description to the well-known discrete
possibly infinite Volterra systems of the form (Kotsios 1997)

y(k) =
∞∑

n=0

∞∑

i1=0

· · ·
∞∑

in=0

ai1i2,...inu(k − i1) . . . u(k − in) (2)

Compared with a truncated Volterra series approximation to equation (2), the advantage of
the model (1) is obvious. First, stability can be checked, due to the existence of a number
of useful theorems, which is very important in filter design. Second, the finite expression
equation (1) can easily be transformed to a linear-in-the-parameters form.
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More specifically, model (1) can be written in the form

y(k) −
Ky∑

l1=1

c10(l1)y(k − l1) =
N∑

n=N0

Knu∑

l1=1

· · ·
Knu∑

ln=ln−1

c̄0n(l1, ..., ln)
n∏

i=1

u(k − li) (3)

where N0 and N are the minimum and maximum order of system nonlinearity respectively,
and

c̄0n(l1, ..., ln) = |π(l1, ...ln)|¯̄c0n(l1, ..., ln) (4)

where

¯̄c0n =

∑

π(·)

c0n(l1, ..., ln)

|π(l1, ..., ln)| (5)

The summation in equation (5) is over all distinct permutations of the indices l1, ..., ln,
|π(l1, ..., ln)| represents the number of such permutations and is given by

|π(l1, ..., ln)| =
n!

k1!k2! · · · kr!
(6)

where r is the number of distinct values in a specific set of (l1, ..., ln), k1, ...kr denote the
number of times these values appear in (l1, ..., ln).

Generally speaking, the design of an energy transfer filter based on a NARX model
with input nonlinearity involves determining the structure parameters N0, N , Ky, Knu and
the coefficients c10(l1), l1 = 1, ..., Ky, c̄0n(l1, ..., ln), l1 = 1, ..., Knu, ..., ln = ln−1, ..., Knu in
equation (3) to achieve a desired frequency domain energy transfer effect for one or several
given specific input signals. In Billings and Lang (2002), an algorithm was developed for the
ETF design and the effectiveness of the algorithm was demonstrated by several simulation
examples, where both one and two input signal situations were considered. This original
algorithm is the basis of the research studies presented in this paper.

2.3 The Original Design Algorithm

Given a specified input, the relationship between the output spectrum of the ETF model
(3) and the spectrum of the input can be written as (Lang and Billings 1996):

Y (jω) = G(jω)
N∑

n=N0

1/
√

n

(2π)(n−1)

Knu∑

l1=1

· · ·
Knu∑

ln=ln−1

c̄0n(l1, ..., ln)

×
∫

ω1+···ωn=ω
e−j(ω1l1+···ωnln)

n∏

i=1

U(jωi)dσnω (7)

where G(jω) =
1

1 −
Ky∑

l1=1

c10(l1)jω

.
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Based on equation (7) and other theoretical results about the output frequency char-
acteristics of nonlinear systems (Lang and Billings 1997), the ETF design algorithm was
proposed by Billings and Lang (2002). The algorithm consists of three steps and can be
summarized as follows.

Step 1. Determination of N0 and N . Given the frequency band (a, b) of the input signal
to process and the desired output frequency band (c, d), N0 is determined by evaluating the
output frequency range fYn

according to (Lang and Billings 1997)





fYn
=






i∗−1⋃

k=0

Ik when
nb

(a + b)
− ⌊ na

(a + b)
⌋ < 1

i∗⋃

k=0

Ik when
nb

(a + b)
− ⌊ na

(a + b)
⌋ ≥ 1

where i∗ = ⌊ na

(a + b)
⌋ + 1

⌊·⌋ is an operand to take the integer part.
Ik = (na − k(a + b), nb − k(a + b)) for k = 0, ..., i∗ − 1,
Ii∗ = (0, nb − i∗(a + b))

(8)

for n = 1, n = 2,..., until n = n̄ such that at least part of the desired output frequency band
(c, d) falls into fYn

. The value N0 is then taken as N0 = n̄.
N is determined by evaluating fYn

⋃
fYn−1

for n = n̄, n = n̄ + 1,..., until n = ¯̄n such that
(c, d) completely falls into fYn

⋃
fYn−1

. Then N = ¯̄n.
Step 2. Determination of the parameters in the nonlinear part of the model (3) for a

priori given maximum lags Knu, n = N0, ..., N . Given the desired output spectrum Y #(jω),
the parameters c̄0n(l1, ..., ln), l1 = 1, ..., Knu, ..., ln = ln−1, ..., Knu; n = N0, ..., N are evaluated
based on the equations

Y #(jω(p)) =
N∑

n=N0

1/
√

n

(2π)(n−1)

Knu∑

l1=1

· · ·
Knu∑

ln=ln−1

c̄0n(l1, ..., ln)

×
∫

ω1+···ωn=ω(p)
e−j(ω1l1+···ωnln)

n∏

i=1

U(jωi)dσnω

p = 1, ..., M (9)

to make the right-hand side of the equations approach the desired output spectrum as closely
as possible. In the equation, M is an a priori given integer and ω(p) ∈ (c, d), p = 1, ..., M .

This is achieved in the algorithm by using a least squares routine to solve the group
equations






Re[Y #(jω(p))] =
N∑

n=N0

1/
√

n

(2π)(n−1)

Knu∑

l1=1

· · ·
Knu∑

ln=ln−1

c̄0n(l1, ..., ln)Re[gl1,...,ln(jω(p))]

p = 1, ..., M

Im[Y #(jω(p))] =
N∑

n=N0

1/
√

n

(2π)(n−1)

Knu∑

l1=1

· · ·
Knu∑

ln=ln−1

c̄0n(l1, ..., ln)Im[gl1,...,ln(jω(p))]

p = 1, ..., M

(10)
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where

gl1,...,ln(jω(p)) =
∫

ω1+···ωn=ω(p)
e−j(ω1l1+···ωnln)

n∏

i=1

U(jωi)dσnω (11)

is the Fourier transform of the time series u(k− l1)u(k− l2) · · ·u(k− ln), which can be readily
evaluated from the given input.

Step 3. Determination of the parameters in the linear part of the model (3). Denote the
results obtained in Step 2 as

̂̄c0n(l1, ..., ln), l1 = 1, ..., Knu, ..., ln = ln−1, ..., Knu; n = N0, ..., N

This step is to determine a stable linear filter with frequency response function G1(jω)
to minimize the criterion

J(G1) =
M∑

p=1

{Y #[jω(p)] − G1[jω(p)]Ȳ [jω(p)]}∗ × {Y #[jω(p)] − G1[jω(p)]Ȳ [jω(p)]} (12)

where

Ȳ (jω(p)) =
N∑

n=N0

1/
√

n

(2π)(n−1)

Knu∑

l1=1

· · ·
Knu∑

ln=ln−1

̂̄c0n(l1, ..., ln)gl1,...,ln(jω(p))

p = 1, ..., M

(13)

and then design a traditional bandpass filter with frequency response function G2(jω) to
remove any unwanted residual frequency components in G1(jω)Ȳ (jω) which are outside the
output frequency band (c, d) to make G1(jω)G2(jω)Ȳ (jω) approach Y #(jω) as required by
the design. Consequently the linear part of the ETF model (3) is determined as

G(jω) = G1(jω)G2(jω) (14)

In this algorithm, Knu, n = N0, ..., N are important structure parameters to be given a

priori and were all taken as Ku in Billings and Lang (2002) for simplicity. To achieve a final
design, the original algorithm uses an iterative approach to find an appropriate value for Ku.
For example, Ku can initially be set as Ku = 1, the design using this Ku is completed and
the performance of the resulting filter is checked to see if this is satisfactory or not. If the
result is satisfactory, then the design is finished. Otherwise, take Ku = 2 and repeat the
procedure. This process can be continued with Ku = 3, 4, ..., until a satisfactory result is
achieved. However, as indicated by Billings and Lang (2002), for a given M , the maximum
value of Ku which can be taken for the design is limited by the inequality

M ≥ [KN
u + KN−1

u + · · · + KN0

u + (N − N0 + 1)Ku]

4
(15)

If the value of Ku is close to the upper limit but the performance of the filter is still not
satisfactory, the design has to stop without a satisfactory solution.

Therefore, an improved design method needs to be developed to overcome these problems
with the original design algorithm. This requirement is the motivation of the development
of a new method for the design of energy transfer filters in the present study.
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3. The New Design Approach

It can be observed that the problem with the original ETF design algorithm in Section
2.3 is caused by the conventional least squares solution to equation (10) where Knu = Ku is
increased to a limit such that the number of the parameters np

np =
(KN+1

u − KN0

u ) + (Ku − 1)Ku(N − N0 + 1)

2(Ku − 1)
(16)

become close to the number of the equations which is 2M .
Given a particular Knu = Ku, equation (10) actually uses a linear combination of all

the terms gl1,...,ln(jω), l1 = 1, ..., Ku, ..., ln = ln−1, ..., Ku, n = N0, ..., N to approximate the
desired output spectrum Y #(jω) over the frequency set {ω(1), ..., ω(M)}. However, some
of these terms may not be needed and some other terms which are not covered by these
terms such as the terms the form of gl̄1,...,l̄n(jω), l̄1 > Ku, ..., l̄n > Ku, n = N0, ..., N may
provide significant contributions if included. The second step of the original algorithm takes
the effects of all terms into account with Ku up to a limit, and can neither avoid any
unnecessary terms within these choices nor include terms which are outside these choices
but can provide significant contribution to the desired output spectrum. Consequently,
when terms like gl̄1,...,l̄n(jω), l̄1 > K∗

u, ..., l̄n > K∗

u, n = N0, ..., N are needed to achieve a
desired approximation for Y #(jω), where K∗

u happen to be the limit of Ku, the original
algorithm often fails to produce a desired design. In order to circumvent this problem, the
use of the powerful orthogonal least squares method is proposed in the present study to solve
the least squares problem defined by (10) so as to improve the design results at the second
step of the original algorithm. This is the basic idea of the new ETF design approach.

3.1 The Orthogonal Least Squares Algorithm

Consider a linear regression model, that is linear-in-the-parameters

z(k) =
m∑

i=1

φi(k)θi + e(k) k = 1, ..., N̄ (17)

where z(k) represents the k-th measurement, N̄ is the data length, m is the number of
regressors, φi(k) and θi, i = 1, ..., m denote the regressors and parameters respectively, and
e(k) is the modelling error, assumed to be a zero mean white noise sequence.

When using the orthogonal least squares algorithm (Billings et al 1989 a, b), the param-
eters θi are estimated by transforming model (17) to an equivalent auxiliary model

z(k) =
m∑

i=1

giwi(k) + e(k) (18)

where
w1(k) = φ1(k) (19)
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wj(k) = φj(k) −
j−1∑

i=1

αijwi(k) j = 2, ..., m (20)

and

αij =

N̄∑

k=1

wi(k)φj(k)

N̄∑

k=1

w2
i (k)

j = 2, 3, ..., m i < j (21)

Then the parameters gi, i = 1, ..., m of the auxiliary model (18) can be readily obtained as

ĝi =

N̄∑

k=1

wi(k)z(k)

N̄∑

k=1

w2
i (k)

i = 1, ..., m (22)

Finally, the original model parameters can be calculated from ĝi according to

θ̂m = ĝm (23)

θ̂i = ĝi −
m∑

j=i+1

αij θ̂j i = m − 1,m − 2, ..., 1 (24)

Considering
1

N̄

N̄∑

k=1

wi(k)wj(k) = 0, i 6= j (Chen, Billings and Luo 1989), multiplying equation

(18) by itself and taking an average over the data records gives

1

N̄

N̄∑

k=1

z2(k) =
m∑

i=1

g2
i

1

N̄

N̄∑

k=1

w2
i (k) +

1

N̄

N̄∑

k=1

e2(k) (25)

Equation (25) shows that the reduction in the mean squared error by including the i-th

term, giwi(k), in the auxiliary model of equation (18) is g2
i

1

N̄

N̄∑

k=1

w2
i (k). Expressing this as

a fraction of the total model output energy yields the Error Reduction Ratio (ERR) for the
i-th term as

ERRi =

ĝ2
i

N̄∑

k=1

w2
i (k)

N̄∑

k=1

z2(k)

× 100% 1 ≤ i ≤ n (26)

The ERR values can be computed together with the parameter estimates to indicate the
significance of each candidate term in the auxiliary model so as to determine the structure
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and associated parameters of the original model, the corresponding procedure is summarized
as follows:

i) Consider all regressors φi(k), i = 1, 2, ..., m as possible candidates for w1(k), calculating

w
(i)
1 (k) = φi(k) (27)

ĝ
(i)
1 =

∑N̄
k=1 w

(i)
1 (k)z(k)

∑N̄
k=1(w

(i)
1 (k))2

(28)

ERR
(i)
1 =

(ĝ
(i)
1 )2 ∑N̄

k=1(w
(i)
1 (k))2

∑N̄
k=1 z2(k)

(29)

find the maximum of ERR
(i)
1 , such that ERR

(j)
1 = max{ERR

(i)
1 , 1 ≤ i ≤ m}. Then the first

term selected should be the j-th term. i.e. φj(k), and therefore define w1(k) = φj(k).
ii) Consider all the φi(k), i = 1, 2, ..., m, i 6= j as possible candidates for w2(k) calculating

w
(i)
2 (k) = φi(k) − α

(i)
12w1(k) (30)

ĝ
(i)
2 =

∑N̄
k=1 w

(i)
2 (k)z(k)

∑N̄
k=1(w

(i)
2 (k))2

(31)

ERR
(i)
2 =

(ĝ
(i)
2 )2 ∑N̄

k=1(w
(i)
2 (k))2

∑N̄
k=1 z2(k)

(32)

where

α
(i)
12 =

∑N̄
k=1 w1(k)φi(k)
∑N̄

k=1 w2
1(k)

(33)

find the maximum of ERR
(i)
2 , such that ERR

(l)
2 = max{ERR

(i)
2 , 1 ≤ i ≤ m, i 6= j}. Then

the second term selected should be the l-th term. i.e. φl(k), and therefore define w2(k) =

φl(k) − α
(l)
12w1(k).

iii) Continue the process, the term with the maximum error reduction ratio is selected
and the corresponding wi(k) is produced.

iv) Step iii) continues until the summation of the error reduction ratios of the selected
terms

∑
ERRi is larger than a required approximation accuracy or close to 100%.

The OLS algorithm allows the selection of possible regressors from the m candidates
φi(k), i = 1, ..., m and the determination of the coefficients associated with the selected
terms to be implemented at the same time. Consequently, an effective regression model
with the regressors which really have considerable contribution to the model output can be
obtained.
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3.2 The New Method

The new ETF design method also consists of three steps. The first and the last step are
the same as steps 1 and 3 in the original algorithm as described in Section 2.3. In the second
step, however, the OLS replaces the conventional least squares algorithm to solve equation
(10) for the filter parameters c̄0n(l1, ..., ln), l1 = 1, ..., Ku, ..., ln = ln−1, ..., Ku; n = N0, ..., N .
In the application of the OLS method, z(k) and φi(k) in the linear regression model (17)
takes the specific form:

{
z(k) = Re[Y #(jω(k))], k = 1, 2, ..., M
z(k) = Im[Y #(jω(k))], k = M + 1, ..., N̄

(34)

where N̄ = 2M .






φi(k) = Re[g
(i)
l1,...,ln

(jω(k))], k = 1, 2, ..., M

φi(k) = Im[g
(i)
l1,...,ln

(jω(k))], k = M + 1, ..., N̄
i = 1, 2, ..., np

(35)

where np is the number of parameters defined in (16), and g
(i)
l1,...,ln

(jω(k)) is the i-th of
the np terms of gl1,...,ln(jω(k)), l1 = 1, ..., Ku, ..., ln = ln−1, ..., Ku; n = N0, ..., N , arranged

in an arbitrary order. θi is c̄
(i)
0n(l1, ..., ln), which is the i-th of the np filter parameters

c̄0n(l1, ..., ln), l1 = 1, ..., Ku, ..., ln = ln−1, ..., Ku; n = N0, ..., N arranged in the same order

as g
(i)
l1,...,ln

(jω(k)), i = 1, ..., np.
Because of the capability of the OLS algorithm to determine both the most signifi-

cant regressors and associated parameters from all the possible candidates, the lag Ku in
the design can be selected to be large enough to cover the maximum lags needed. OLS
normally only selects a relatively small number of terms from all the candidate regressors
which make a significant contribution to the desired output spectrum Y #(jω) over the M
discrete frequency points {ω(1), ..., ω(M)}. As a result, only a subset of the np regressors
gl1,...,ln(jω(k)), l1 = 1, ..., Ku, ..., ln = ln−1, ..., Ku; n = N0, ..., N may finally be selected. These
selected regressors may include some terms associated with maximum lag Ku but not all the
np regressors corresponding to the maximum Ku have to be used as in the original algorithm.
Consequently, the problem with the original algorithm is overcome.

In Billings and Lang (2002), the ETF design was also considered for the cases of several
specified inputs. By using the OLS method to solve the least squares problem in the second
step of these more complicated ETF designs, the new algorithm can readily be extended
to the several input cases. In the next section, a design example for both one and two
specified input situations will be described to demonstrate the effectiveness of the new design
approach.

4. Case Studies
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Figure 1: Input Signal in Example 1

In this section, design examples will be shown to demonstrate the effectiveness of the
new method for ETF designs. The design in Section 4.1 involves a single input case to
move the signal energy from a lower frequency band to a higher frequency location. The
design in Section 4.2 involves a case where the signal energy from a higher frequency band
is moved to a lower frequency location. The example in Section 4.3 considers a design for
two specific inputs to move the energy of the two signals from a lower frequency band to a
higher frequency location using a single energy transfer filter.

4.1 Example 1

Consider a continuous time signal u(t) generated from a white noise uniformly distributed
over (0, 4) and band-limited within the frequency range (3.4, 6.2)rad/s. The sampling in-
terval was set as Ts = 0.01s. Figure 1(a) shows the signal in the time domain. Figure 1(b)
shows the magnitude of the input signal spectrum. From Figure 1(b) it can be observed that
the frequency range of u(t) is approximately (ā, b̄) = (2.351, 7.054)rad/s.

The objective is to design a frequency domain energy transfer filter to transfer the energy
of u(t) to a higher frequency band (c̄, d̄) = (20.4, 30.2)rad/s and shape the magnitude of the
filter output frequency response as specified by the desired spectrum

Y d(jωc) =






exp(−500ωc) + j(600ω2
c )

100000
ωc ∈ (20.4, 30.2)

0 otherwise
(36)

where ωc denotes the continuous frequency in radians.
The ETF design is performed using the new method as described in Section 3.2 where

(a, b) = Ts(ā, b̄) = (0.02351, 0.07054) (37)
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(c, d) = Ts(c̄, d̄) = (0.204, 0.302) (38)

Y #(jω) =
1

Ts

Y d(j
ω

Ts

) =






exp(−500ω/Ts) + j(600ω2/T 2
s )

100000
ω ∈ Ts(20.4, 30.2)

0 otherwise
(39)

In step 1, the minimum and maximum order of the filter nonlinearity were determined
as N0 = 3 and N = 5 from the frequency range (a, b) of the input signal and the frequency
range (c, d) of the desired filter output.

In step 2, M is taken as
M = id − ic + 1 (40)

where
ic = ⌊cM̄/2π⌋ (41)

id = ⌊dM̄/2π⌋ (42)

M̄ = 4008 is the length of data used to evaluate the input spectrum U(jω) for the design.
ω(1), ..., ω(M) are taken as

ω(p) = 2(p + ic − 1)π/M̄ p = 1, 2, ..., M (43)

With the maximum lag Ku = 8, the OLS method determines eight significant candidate
terms for the nonlinear part of the energy transfer filter, which are given by

N∑

n=N0

Ku∑

l1=1

· · ·
Ku∑

ln=ln−1

̂̄c0n(l1, ..., ln)
n∏

i=1

u(k − li)

=
5∑

n=3

8∑

l1=1

· · ·
8∑

ln=ln−1

̂̄c0n(l1, ..., ln)
n∏

i=1

u(k − li)

= +(2420719.5249)u(k − 8)u(k − 8)u(k − 8)

+(−609236.3234)u(k − 1)u(k − 8)u(k − 8)

+(−818639.6217)u(k − 7)u(k − 7)u(k − 8)

+(2198016.1539)u(k − 3)u(k − 7)u(k − 7)

+(−606899.6399)u(k − 5)u(k − 6)u(k − 8)

+(691317.0953)u(k − 1)u(k − 1)u(k − 1)

+(−2283561.8752)u(k − 7)u(k − 8)u(k − 8)

+(−982692.6294)u(k − 1)u(k − 2)u(k − 2) (44)

and achieves a summation of ERRs as
∑

ERR = 0.99789965595147. The great magnitudes
of the parameter values achieved above are needed to amplify the input signal magnitude.
This is the same for the following examples.
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In step 3, the structure of the first linear filter G1(jω) was chosen as

G1(jω) =
b̄1 + b̄2q

−1 + b̄3q
−2

ā1 + ā2q−1 + ā3q−2

and the parameters were determined as

[b̄1, b̄2, b̄3] = [0.99499719798339,−1.90471481813288, 0.98082626153888]

[ā1, ā2, ā3] = [1.00000000000000,−1.91469651730086, 0.98610235849883]

The structure of the second linear filter G2(jω) was configured as

G2(jω) = G2(jω)1/2G2(jω)1/2 (45)

and G2(jω)1/2 is designed as the required bandpass filter. This is to enhance the filtering
performance of G2(jω) (Zelniker and Taylor 1994). For G2(jω)1/2, the structure was chosen
to be

G2(jω)1/2 =
¯̄b
′

1 + ¯̄b
′

2q
−1 + · · · + ¯̄b

′

9q
−8

¯̄a′

1 + ¯̄a′

2q
−1 + · · · + ¯̄a′

9q
−8

The parameters were determined as

[¯̄b
′

1, ...,
¯̄b
′

9] = 1.0e − 04 ∗





0.05087927202286
0

−0.20351708809145
0

0.30527563213718
0

−0.20351708809145
0

0.05087927202286





T

[¯̄a′

1, ..., ¯̄a
′

9] =





1.00000000000000
−7.50645040549444
24.88123427345764

−47.55491758051167
57.31495456445121

−44.60383853541906
21.88908628895510
−6.19403826217024

0.77398211278076





T

Consequently,

G2(jω) =
¯̄b1 + ¯̄b2q

−1 + · · · + ¯̄b17q
−16

¯̄a1 + ¯̄a2q−1 + · · · + ¯̄a17q−16

13
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Figure 2: Output Signal in Example 1

where
[¯̄b1, ...,

¯̄b17] = Conv{[¯̄b′1, ..., ¯̄b
′

9], [
¯̄b
′

1, ...,
¯̄b
′

9]}
[¯̄a1, ..., ¯̄a17] = Conv{[¯̄a′

1, ..., ¯̄a
′

9], [¯̄a
′

1, ..., ¯̄a
′

9]}
Conv(x, y) denotes the convolution of vectors x and y.

Figures 2(a) and 2(b) show the output response of the filter in the time and frequency
domain respectively. The performance of this design can be assessed from Figure 2(b) where
a comparison between the real output spectrum of the filter and the desired result can be
observed. Clearly, a good result has been achieved by the design and the energy of the
specified input has been moved from (2.351, 7.054)rad/s in Figure 1(b) to the frequency
band (c, d) = (20.4, 30.2)rad/s in Figure 2(b) and the shape of the magnitude matches the
desired spectrum defined by equation (36).

In order to demonstrate the improvement the new method has achieved compared with
the original design method, the original method was used to conduct the same design. The
maximum lag Ku for the original method in this case is 4, and the nonlinear part of the
designed ETF is

5∑

n=3

4∑

l1=1

· · ·
4∑

ln=ln−1

̂̄c0n(l1, ..., ln)
n∏

i=1

u(k − li)

= +(643767104418704)u(k − 1)u(k − 1)u(k − 1)

+(−5.726088e + 15)u(k − 1)u(k − 1)u(k − 2)

+(5.743184e + 15)u(k − 1)u(k − 1)u(k − 3)

+(−1.947908e + 15)u(k − 1)u(k − 1)u(k − 4)

+(1.701482e + 16)u(k − 1)u(k − 2)u(k − 2)
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Figure 3: Output Spectrum of the Original ETF Design for Example 1

... ... ...

+(−9.987e + 17)u(k − 3)u(k − 4)u(k − 4)u(k − 4)u(k − 4)

+(1.914e + 17)u(k − 4)u(k − 4)u(k − 4)u(k − 4)u(k − 4) (46)

with altogether 111 terms, including all candidate terms under the structure parameters
of N0 = 3, N = 5, and Ku = 4. Figure 3 shows the comparison of the output frequency
response of the original ETF design with the desired spectrum. Obviously, the design is not
satisfactory and the newly proposed method is therefore necessary for this case to achieve a
desired energy transfer effect.

4.2 Example 2

Consider a continuous time signal u(t) generated from a white noise uniformly distributed
over (0, 4) and band-limited within the frequency range (13.2, 20.7)rad/s. The sampling
interval was set as Ts = 0.01s. Figure 4(a) shows the signal in the time domain. Figure 4(b)
shows the magnitude of the signal spectrum which indicates that the frequency range of u(t)
is approximately (ā, b̄) = (11.443, 25.553)rad/s.

The objective is to design a frequency domain energy transfer filter to transfer the en-
ergy of the signal u(t) to the lower frequency band (c̄, d̄) = (2.0, 4.2)rad/s and shape the
magnitude of the filter output frequency response as specified by the desired spectrum

Y d(jωc) =






exp(−500ωc) + j(600ω2
c )

100000
ωc ∈ (2.0, 4.2)

0 otherwise
(47)

The ETF design is performed using the procedure described in Section 3.2 where

(a, b) = Ts(ā, b̄) = (0.11443, 0.25553) (48)

(c, d) = Ts(c̄, d̄) = (0.020, 0.042) (49)

and Y #(jω) is given by
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Figure 4: Input Signal in Example 2

Y #(jω) =






exp(−500ω/Ts) + j(600ω2/T 2
s )

100000
ω ∈ Ts(2.0, 4.2)

0 otherwise
(50)

In step 1, The minimum and maximum of system nonlinearity were determined to be
N0 = N = 2.

In step 2, ic, id,M , and ω(p), p = 1, ..., M were again determined using equations (40),
(41), (42) and (43) while employing the c and d specified in this example.

With the maximum lag Ku = 8, OLS determines 18 most significant candidate terms for
the nonlinear part of the energy transfer filter, which are given by

8∑

l1=1

8∑

l2=l1

̂̄c02(l1, l2)u(k − l1)u(k − l2)

= +(43035.0064)u(k − 1)u(k − 1)

+(4185.4581)u(k − 1)u(k − 8)

+(−323033.8063)u(k − 2)u(k − 2)

+(−31390.474)u(k − 1)u(k − 3)

+(367674.7836)u(k − 3)u(k − 3)

+(9460.8378)u(k − 7)u(k − 8)

+(−14282.8008)u(k − 2)u(k − 8)

+(−386047.1)u(k − 3)u(k − 7)

+(−86515.2327)u(k − 8)u(k − 8)
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+(−1873875.0799)u(k − 5)u(k − 7)

+(76953.9026)u(k − 1)u(k − 2)

+(1293789.3935)u(k − 4)u(k − 7)

+(1139147.9369)u(k − 6)u(k − 7)

+(58923.9354)u(k − 6)u(k − 8)

+(20038.3655)u(k − 5)u(k − 8)

+(−193219.719)u(k − 5)u(k − 5)

+(22838.7942)u(k − 1)u(k − 7)

+(−127679.6638)u(k − 7)u(k − 7) (51)

and achieves a summation of ERRs as
∑

ERR = 0.99167205522665.
In step 3, G1(jω) and G2(jω) were chosen to be of the same structure as in Example 1.

The parameters for G1(jω) and G2(jω)1/2 were determined as

[b̄1, b̄2, b̄3] = [0.94295008419603,−1.88366288231094, 0.94178381830524]

[ā1, ā2, ā3] = [1.00000000000000,−1.99737222802043, 0.99852038477311]

and

[¯̄b
′

1, ...,
¯̄b
′

9] = 1.0e − 07 ∗





0.15202442056885
0

−0.60809768227540
0

0.91214652341309
0

−0.60809768227540
0

0.15202442056885





T

[¯̄a′

1, ..., ¯̄a
′

9] =





1.00000000000000
−7.93917603605685
27.57936234906552

−54.75329516067795
67.94720923114389

−53.97197088570229
26.79787040178942
−7.60413110961782

0.94413121005658





T

The output response of the filter for the specified input is shown in figures 5(a) and
5(b) in the time and frequency domain respectively. Figure 5(b) obviously indicates that an
excellent result has been achieved by the new method.

The original method was also used to conduct this design. The maximum lag Ku for this
case is 6. and the nonlinear part of the designed ETF is
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Figure 5: Output Signal in Example 2

6∑

l1=1

6∑

l2=l1

̂̄c02(l1, l2)u(k − l1)u(k − l2)

= +(19101617.0993)u(k − 1)u(k − 1)

+(−9128864.0808)u(k − 1)u(k − 2)

+(4556417.0233)u(k − 1)u(k − 3)

+(−587485.6886)u(k − 1)u(k − 4)

+(1873025.7942)u(k − 1)u(k − 5)

+(−681926.538)u(k − 1)u(k − 6)

+(−80647532.8118)u(k − 2)u(k − 2)

+(14836435.1942)u(k − 2)u(k − 3)

+(−9663476.1744)u(k − 2)u(k − 4)

+(−8572359.2661)u(k − 2)u(k − 5)

+(2413531.4597)u(k − 2)u(k − 6)

+(149146990.6272)u(k − 3)u(k − 3)

+(2740836.1858)u(k − 3)u(k − 4)

+(24699144.0849)u(k − 3)u(k − 5)

+(−1773388.9834)u(k − 3)u(k − 6)

+(−150315202.0674)u(k − 4)u(k − 4)

+(−30147544.1394)u(k − 4)u(k − 5)

+(−5655097.4187)u(k − 4)u(k − 6)
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Figure 6: Output Spectrum of the Original ETF Design for Example 2

+(85813972.9887)u(k − 5)u(k − 5)

+(12812971.7825)u(k − 5)u(k − 6)

+(−20822067.1606)u(k − 6)u(k − 6) (52)

which includes all candidate terms under the structure parameters of N0 = N = 2 and
Ku = 6. Figure 6 shows the comparison of the output frequency response of the original ETF
design with the desired spectrum. It can clearly be seen that the result is not satisfactory.

4.3 Example 3
In this example two continuous time signals u1(t) and u2(t) are produced by the same

method as in previous subsections. Figures 7(a) and 7(b) show the signals in the time and
frequency domain respectively, which indicates their frequency ranges are approximately
(ā, b̄) = (5.173, 8.308)rad/s. The design objective is to move the energy of the two signals to
the higher frequency band (c̄, d̄) = (11.6, 13.6)rad/s and shape the magnitudes of the filter
output frequency responses as specified by the equations

Y d
1 (jωc) =

exp(−500ωc) + j(600ω2
c )

100000
ωc ∈ (11.6, 13.6) (53)

and
Y d

2 (jωc) = 10 ∗ ω−0.9
c ωc ∈ (11.6, 13.6) (54)

respectively.
The ETF design was performed using basically the same procedure as described in Section

3.2. The nonlinear part of the design is

8∑

l1=1

8∑

l2=l1

̂̄c02(l1, l2)u(k − l1)u(k − l2)
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Figure 7: Input Signals in Example 3

= +(−1441924.3292)u(k − 1)u(k − 1)

+(285379.0137)u(k − 8)u(k − 8)

+(18541750.5851)u(k − 1)u(k − 2)

+(−22756229.2545)u(k − 2)u(k − 2)

+(40355664.3173)u(k − 3)u(k − 3)

+(−14514030.8131)u(k − 1)u(k − 3)

+(5411325.3953)u(k − 2)u(k − 8)

+(18274452.7226)u(k − 5)u(k − 6)

+(−5502362.5948)u(k − 1)u(k − 8)

+(−1964489.9017)u(k − 7)u(k − 7)

+(−11651325.7597)u(k − 4)u(k − 7)

+(5536975.2207)u(k − 1)u(k − 7)

+(−30575169.6926)u(k − 4)u(k − 4) (55)

G1(jω) and G2(jω) were chosen to be of the same structure as in Example 1. The
parameters for G1(jω) and G2(jω)1/2 were determined as

[b̄1, b̄2, b̄3] = [0.46296892264257,−0.91831862499173, 0.46279723749927]

[ā1, ā2, ā3] = [1.00000000000000,−1.98314681365700, 0.99927891831368]
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Figure 8: Output Signals in Example 3

and

[¯̄b
′

1, ...,
¯̄b
′

9] = 1.0e − 07 ∗





0.09739595170405
0

−0.38958380681620
0

0.58437571022431
0

−0.38958380681620
0

0.09739595170405





T

[¯̄a′

1, ..., ¯̄a
′

9] =





1.00000000000000
−7.88512643636851
27.26377679465393

−53.98949989228977
66.97190890674408

−53.28866123207621
26.56054905178529
−7.58202584692058

0.94907871450787





T

The output responses of the ETF to the specified inputs are shown in figures 8(a) and
8(b) in the time and frequency domain respectively. Figure 8(b) obviously indicates that an
excellent result is again achieved by the new method for the more complicated design case.

For the same design problem, the original method produced an energy transfer filter with
nonlinear part including 45 terms, which are all candidate terms under the structure parame-
ters N0 = N = 2, Ku = 9. Figure 9 shows the comparison of the output frequency responses
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Figure 9: Output Spectrum of the Original ETF Design for Example 3

of this energy transfer filter with the desired spectra. The result again indicates that the
new design method has to be used to achieve the required energy transfer performance.

5. Conclusions

A new method for the design of energy transfer filters of a NARX model with input
nonlinearity has been developed in the present study. The method uses the orthogonal
least squares approach to determine the nonlinear part of the energy transfer filter. This
overcomes the problem with the original method which may not achieve an expected design
when an upper limit for the maximum lag Ku of the filter input is reached but the filtering
performance is still not satisfactory. Several design examples demonstrate the performances
and advantage of the new method. The new OLS based design should make energy transfer
filters easier to implement applications in electronic and communication systems.
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