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Abstract 

Background 

Analysts often need to estimate health state utility values as a function of other outcome 

measures. Utility values like EQ-5D have several unusual characteristics that make standard 

statistical methods inappropriate. We have developed a bespoke approach based on mixture 

models to directly estimate EQ-5D. An indirect method, “response mapping”, first estimates 

the level on each of the five dimensions of the EQ-5D descriptive system and then calculates 

the expected tariff score. These methods have never previously been compared.   

Methods 

We use a large observational database of patients diagnosed with Rheumatoid Arthritis 

(n=100,398 observations). Direct estimation of UK EQ-5D scores as a function of Health 

Assessment Questionnaire (HAQ), pain and age was performed using a limited dependent 

variable mixture model. Indirect modelling was undertaken using a set of generalized ordered 

probit models with expected tariff scores calculated mathematically. Linear regression was 

reported for comparison purposes. 

Results 

The linear model fits poorly, particularly at the extremes of the distribution. Both the bespoke 

mixture model and the generalized ordered probit approach offer improvements in fit over the 

entire range of EQ-5D. Mean average error is 10% and 5% lower compared to the linear 

model respectively. Root mean squared error is 3% and 2% lower. The mixture model 

demonstrates superior performance to the indirect method across almost the entire range of 

pain and HAQ.  

Limitations 

There is limited data from patients in the most extreme HAQ health states.  

Conclusions 
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Modelling of EQ-5D from clinical measures is best performed directly using the bespoke 

mixture model. This substantially outperforms the indirect method in this example. Linear 

models are inappropriate, suffer from systematic bias and generate values outside the feasible 

range. 
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Introduction 

In economic evaluation, it is typical for analysts to estimate quality adjusted life years 

(QALYs) by administering a preference based health utility instrument to patients as part of a 

clinical study. Where no such instrument has been included in the clinical study, analysts 

regularly attempt to estimate the relationship between health utilities and some measure of 

outcome that has been included in the clinical studies by making use of other datasets. If 

other studies exist where patients have completed both a health utility instrument and the 

clinical outcome measure, then there exists the possibility of statistically estimating the 

relationship between the two. This process bridges the gap between the evidence required for 

the economic analysis and that available from the studies of clinical effectiveness and has 

variously been referred to as “mapping”, “cross walking” and “transfer to utility”(
1
). This is 

widely undertaken in economic evaluation. In a recent review of economic analyses 

submitted to the National Institute for Health and Clinical Excellence (NICE) in the UK, 22% 

were found to incorporate such approaches (
2
).  

 

There are of course other reasons why analysts may wish to estimate health state utility 

values as a function of a range of different explanatory variables. For example, health utility 

instruments are increasingly accepted as performance measures in their own right and can be 

used to make comparisons between providers, interventions and conditions. There has 

therefore been a corresponding increase in such analyses. 

 

However, health state utility data have several features that raise statistical challenges. They 

are right limited at 1 (full health), left limited at the worst health state and, in some cases, 

have gaps and multimodal distributions. Linear regression, whilst in widespread use (
3
), is not 

appropriate in this situation and leads to biased results. We have previously developed a 



6 
 

bespoke approach to direct modelling of EQ-5D data (
4
,
5
) which reflects all of these 

characteristics and does not suffer from the systematically poor fit associated with other 

simple methods.  

 

An alternative approach is an indirect method that has been referred to as “response 

mapping” (
6
). This approach has again been tested using the EQ-5D as the outcome of 

interest. Five separate equations are used to estimate the probability of being in each of the 

three levels for the different domains of health covered by EQ-5D. Expected tariff score 

values are then derived from these regressions as a separate second step. Whilst there is 

mixed evidence regarding the performance of this approach compared to linear regression, it 

does have intuitive appeal since it is more closely related to the actual data generation process 

for EQ-5D. 

 

The direct approach based on bespoke mixture models and the indirect approaches have 

never previously been compared to each other. This paper provides that comparison utilising 

a very large dataset from patients with rheumatoid arthritis (RA) that includes the EQ-5D as a 

dependent variable. Section 2 describes the dataset and statistical methods. Section 3 provides 

results, followed by conclusions. 

 

Methods 

 

Statistical models 

Direct models for EQ-5D tariff scores  

We estimated two types of direct models. First, a simple linear regression with random effect 

(Model 1): 
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   =      +   +     

where     represents the EQ-5D tariff score for individual i at time t.   is a (K×1) vector of 

coefficients,       is a row vector of the within- and between-level covariates,     is the within 

subject random variation assumed Independent and Identically Distributed (IID) N(0,    ),    

is an individual random error which is N(0,    ) and     is independent of   . The linear model 

thus assumes conditional normality and it is this assumption that is unlikely to be appropriate 

given the distribution of EQ-5D. 

 

The second approach is a modified version of the model described by Hernandez et al.(
4
) 

(Model 2). The general approach is based on two innovations to reflect key features of the 

typical EQ-5D tariff distribution. First, EQ-5D is a limited dependent variable: values cannot 

exceed 1 (full health) or be lower than -0.594 (the “pits” state valuation) and there tends to be 

a mass of observations, at least at the upper extreme. Tobit type models were originally 

intended to deal with such limited dependent variables
7
, though they are often used in a 

manner more applicable to censored dependent variables which is clearly not the case in 

relation to health state utilities. However, in the case of EQ-5D there is the additional feature 

that any health state less than full health scores a maximum of 0.883, that is, there is a 

substantial gap between full health and all other health states. Therefore, the following 

adaptation was made to the limited dependent variable distribution.     is assumed to be 

equal to 1 if the latent variable    ∗  is greater than 0.883 and equal to    ∗  otherwise. The 

distribution can be expressed as follows: 

   =  1       ∗ > 0.883
max{   ∗ ,−0.594}    ℎ       

   ∗ =      +     
 

  =     +    
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where     represents the EQ-5D tariff score for individual i at time t,   is a vector of 

coefficients, which includes a random intercept    which varies with individual 

characteristics   . The    ’s are the within-subject random variations, each assumed IID 

N(0,    ),    is an individual random error N(0,    ) and the    ’s are independent of   . 

This demonstrates that the EQ-5D value is a composite of the latent variable    
∗  and the 

probability of being either in excess of 0.883 or less than -0.594. Strictly speaking, the EQ-

5D generates 243 discrete values across its range. However, all the gaps except for that 

between full health and 0.883 are relatively small. Therefore, our approach treats the 

remainder of the distribution as continuous.  

 

The second innovation is to use the adjusted, limited dependent variable distribution in a 

mixture model. Such models combine a number of different component distributions to form 

a new density. Mixtures are an extremely flexible and convenient manner in which complex 

distributions (such as EQ-5D) can be analysed in a semi-parametric manner. 

 

Classification of an observation into a particular component is modelled using a multinomial 

logit. Thus, the conditional probability of any observation belonging to class c can be written 

as: 

 (   =  |   ) =
exp (   

   )

∑ exp (   
   )

 
   

 

where    
  is a vector of variables that affect the probability of component membership,    is 

the vector of corresponding coefficients.  

Indirect model for EQ-5D: response mapping 
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The third model (Model 3) that we estimate is derived from a set of five random effects 

generalised ordered probits, one for each dimension of EQ-5D. Each of these models predict 

for each observation the probability of selecting each level in that dimension. It has been 

found in the literature (
6
) that the standard ordered models (probits or logits) are not flexible 

enough as they assume the same coefficients for the explanatory variables across the different 

categories (parallel line assumption). This has lead researchers in this area to use a 

multinomial logit model instead (
6,8,9,10

). This relaxes the parallel line assumption but at the 

expense of ignoring the ordinal nature of the dependent variable. However, there exists a 

generalisation of the standard ordered probit model which relaxes the parallel line assumption 

while still taking into account the natural ordering in the dependent variable (see for example, 

Maddala, 1983)
11

. Let q   
  denote a 3 point ordered discrete dependent variable for each of the 

five dimensions of EQ-5D, s={mobility, self care, usual activities, pain, anxiety and 

depression}. The conditional probabilities of observing the three outcomes, q   
 , for each of 

the five s dimensions of EQ-5D can be written as: 

P(   
 = 1|   ,  

 ) = 1 −Φ(     
 +   

 )
P(   

 = 2|   ,  
 ) = Φ(     

 +   
 ) −Φ(     

 +   
 )

P(   
 = 3|   ,  

 ) = Φ(     
 +   

 )
 

where x   includes all variables and an intercept term and u 
  is an IID normally distributed 

mean zero, variance σ  
  individual error term. 

Conditional on all q   
  for each individual, EQ-5D, y   , can be calculated by using the 

standard tariff values for the relevant question, in this case the UK tariff. 

 

These models predict the individual probabilities for each of the dimension scores(q   
 ).  The 

expected EQ-5D tariff score is calculated as the average of all the 243 possible combinations 

of the five EQ-5D dimensions, weighted by their corresponding estimated probabilities. Note 

that in this paper we calculate the expected values mathematically.  
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All models were estimated using maximum likelihood methods. The random effects 

regression and the random effects generalised ordered probits were estimated using STATA 

v11. The random effects generalised ordered probit was estimated using the REGOPROB 

module for STATA
12

. We programmed the rest of the analyses and data simulations using 

GAUSS v11 (Aptech systems Inc.) and used both local and global optimisation methods to 

ensure identification of the true maximum of the likelihood function of the direct model. 

 

Models were refined and compared using a variety of different tools. Penalised likelihood 

measures (AIC and BIC) were used as a guide to the optimal model selection within each 

class of models. BIC in particular was used to guide the optimal number of components in the 

mixture model since there is considerable support for its use in this setting (
13,14

). 

Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) are simple summary 

measures of fit used to compare across models, including by subsections of the data 

distribution. Both are relatively insensitive but have been widely used in the “mapping” 

literature and are therefore also reported here.  

 

Monte Carlo simulation was also used to generate data from each of the three model types. 

This provides a further method for model comparison. It generates data values that can be 

used to assess the face validity of the data generating process implied by the model and 

allows comparisons with the observed data. Importantly, these simulated values are those that 

would be used in a patient level cost-effectiveness model and in RA many models do adopt 

this level of analysis(
15,16,17

). The generation of non-feasible values, for example, is an 

important issue for analysts to consider, in addition to those of general model fit for the 

average. A thousand simulated values were produced for each model. 
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Dataset 

Data were provided by the US National Data Bank for Rheumatic Diseases (NDB). The NDB 

is a not-for-profit rheumatic disease research databank in which patients complete detailed 

self-report questionnaires at 6 month intervals (
18

). Eligible patients in this study were those 

with RA who had completed a biannual survey for events occurring between July 1, 2002 and 

November 22, 2010.  

At each assessment, demographic variables were recorded including sex, age, ethnic origin, 

education level, current marital status, medical history and total family income. Patients also 

completed the Health Assessment Questionnaire Disability Index (HAQ), including pain on a 

visual analogue scale (VAS) scored from 0-100 and EQ-5D, amongst other items. The HAQ 

is scored between 0 and 3 with higher scores representing greater degrees of functional 

disability. There is a de facto mandatory requirement for its inclusion in RA clinical trials and 

it is also widely used as the driver for many economic models (
15,16,17

). UK EQ-5D tariff 

values (or “index scores”) were applied for this analysis to aid comparison with results from 

previous studies.  

A total of 103,867 observations were included in the total dataset from 16,011 patients. 

Missing data occurred in 3,469 observations and were excluded in the statistical models. The 

size of the dataset dwarfs that which is typical of most “mapping” studies and provides a 

good exemplar in which to test competing methods because patients spanned the full range of 

HAQ, pain and EQ-5D values. Still, very few patients were observed in the most extreme 

severity HAQ health state; only 1244 observations (1.2%) from 528 patients had a HAQ 

exceeding 2.5, and just 152 observations (0.15%) from 64 patients had a HAQ of 3. 

  

Figure 1a displays the distribution of the EQ-5D summary score, which demonstrates features 

typical of data from numerous different disease areas, that is, there is a mass of observations 
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at full health with two further distinct elements below. Figure 1b shows the distribution of 

responses within each of the five domains of the EQ-5D descriptive system. Only a small 

proportion of the respondents are at level three on any of the dimensions, though the greatest 

proportion is in the domain of pain and discomfort.  

 

Results 

The optimal linear regression specification included HAQ and HAQ
2
, pain, gender, age and 

age
2
 as explanatory variables. Age entered the model as the difference in age from the mean 

of the sample (62.82) divided by 10. Table 1 provides details.  

 

A four component mixture model was selected as the optimal model(
5
). Each of the 

components includes HAQ and HAQ
2
, pain, age and age

2
 as explanatory variables, though it 

can be seen that these are not always statistically significant and the magnitude of effect 

differs greatly between the components. Table 2 provides the coefficient values for each of 

the classes.  

 

The first component of the mixture has HAQ and pain negatively related to EQ-5D 

(p<0.000). HAQ
2
 is not significant. A positive relationship with age and age

2
 is demonstrated 

but in the case of age
2
 this is not statistically significant (p=0.23). For the second component, 

the coefficients for HAQ and HAQ
2
 indicate that EQ-5D decreases, by increasing amounts, 

as HAQ worsens. The impact of pain on EQ-5D in this group is the most pronounced of all 

the classes. In component 3 HAQ is negatively associated with EQ-5D and is much greater in 

magnitude than the positive coefficient on HAQ
2
. Pain is also negatively associated with EQ-

5D. The final, 4th component shows no statistically significant relationship between EQ-5D 
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and either age or pain. HAQ is negatively related to EQ-5D (p<0.05). HAQ
2
 is not 

statistically significant.   

 

Results for the generalized ordered probit models are shown in Table 3. It is not possible to 

interpret the coefficients of these type of models directly as the effect differs across 

individuals and in general, the sign of the coefficient does not even determine the direction of 

the effect. We can however make some general statements about the effects on some of the 

probabilities. The conditional probability of being at level one, “no problems”, decreases for 

variables with positive coefficients and the probability of being at level three, “severe 

problems”, increases. Thus, for all five dimensions of EQ-5D, as pain increases, the 

probability of being at level one decreases and the probability of being at level three 

increases, ceteris paribus. The interpretation for HAQ is more complex due to the inclusion 

of the squared term. The probability of being at level 1 decreases as HAQ increases (greater 

functional disability) for all dimensions except the dimension of pain/discomfort. Here, once 

HAQ exceeds 1.875 the probability of being in level 1 begins to increase. The probability of 

being at level 3 increases was HAQ rises for the EQ-5D dimensions of “usual activities”, 

“pain” and “depression/anxiety”. This relationship also holds for “mobility” and “self-care” 

across most of the range of HAQ. However, the direction of the relationship reverses when 

HAQ is very low: below 0.5 for “mobility” and below 0.75 for “self-care”. Note that the 

magnitude of these changes may be negligible. 

 

Table 4 provides details of summary fit measures and this is supplemented by Figures 2a and 

2b that show how the mean of the predicted EQ-5D values by HAQ and pain contrast with 

the mean of the observed data. Overall, model fit is substantially better using both the 

adjusted mixture model and the generalized probit models compared to a simple random 
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effects linear regression. MAE improves from 0.131 to 0.118 with the mixture model (a 10% 

improvement) and to 0.124 with the indirect modelling (5% improvement). RMSE is also 

improved and is lowest for the mixture model approach. Table 3 shows that there are 

substantial improvements in model fit relative to the linear model across the entire 0-3 range 

of HAQ. Improvements in MAE exceeding 11% are observed at both the highest and lowest 

ranges of functional disability when using the mixture model. There is also substantial 

improvement in the intermediate HAQ range. RMSE improves but since this is a less 

sensitive measure the proportional improvement is lower. At pain scores of zero the MAE 

reduces from 0.13 to 0.08, a 35% improvement. At pain scores exceeding 95, the MAE 

reduces from 0.23 to 0.18, a 22% improvement. 

 

The response mapping approach also generates improvements over the linear model across 

the entire spectrum of functional disability, but the improvement is less than that observed for 

the mixture model method in the subsections presented in Table 3. The mixture model 

outperforms the generalised ordered probit model approach in all sections of the data as 

divided in Table 3 both in terms of MAE and RMSE. The improvement is greatest at low 

levels of disability, where the bulk of the data are observed.  

 

Figure 2a shows that there is one section of the HAQ scale where this is not the case. When 

HAQ exceeds a value of approximately 2.5, the mean expected values from the generalised 

ordered probit model approach are closer to the observed data than the mixture approach. 

Figure 2b illustrates the mean fitted values as a function of pain. This provides a clearer 

demonstration of the very close fitting of the mixture model to the observed data and this is 

consistent across the entire pain range. The generalised ordered probit model flattens the 

function and as such does not fit well across large parts of the range, and is particularly poor 
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at the extremes. Where pain is zero, the MAE for the response mapping approach is 0.11 

compared to 0.08 for the mixture model. For pain exceeding 95, the MAE for the response 

mapping approach is 0.20 versus 0.18 for the mixture model.    

 

Simulated values 

Figure 3 compares the distribution of the observed data from the NDB with that generated 

from the three different types of statistical models estimated. These simulations reflect 

individual level variability, as is obviously present in observed data. Figure 3b clearly 

demonstrates that the data generating process for EQ-5D is fundamentally different from the 

assumption of conditional normality which underpins the linear regression model. Here 

values are generated that fall outside the feasible range. This problem is particularly acute at 

the higher range of values but there are also a smaller number of values generated that fall 

below the minimum value of -0.594. Neither the mixture model nor the response mapping 

approaches can generate values outside the feasible range.  

 

The key features of the EQ-5D are present in the simulated values from the mixture model 

approach. A mass of values at full health can be observed with a clear gap to the next set of 

values. A tri-modal distribution is evident with values for the remaining two elements of the 

distribution centred around 0.7 and 0.0. Simulated values from the response mapping 

approach reflect that this treats EQ-5D as fully discrete rather than continuous. Thus, the tri-

modal distribution generated by the mixture model approach contrasts is repeated here but 

with “lumps” within the different sections of the distribution compared to the smooth results 

from the mixture model. The only substantial difference between the original data and the 

response mapping simulated results is that the latter obtains a lower proportion of the 

distribution at full health.    
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Conclusions 

The EQ-5D is an instrument that demonstrates a number of statistical challenges that make 

simple off-the-shelf approaches to multivariate regression inappropriate. The poor 

performance of the linear regression has been observed in numerous other studies, including 

in RA
4
 and is confirmed again here using a very large dataset. We have previously developed 

an approach to direct modelling of EQ-5D values that is based on a mixture of models 

derived from a bespoke distribution that reflects the fact that EQ-5D values are limited, in the 

statistical sense. This approach has been compared to linear and tobit models previously 

using a dataset comprising approximately 500 patients with RA. We have developed the 

approach and applied it to a very large dataset with more than 100,000 observations(
5
).  

 

In this paper, we have developed methods for response mapping by applying an approach that 

recognises the ordered nature of responses within each EQ-5D dimension. The generalised 

ordered probit has not previously been applied in the “mapping” field as far as we are aware. 

Our primary aim however is to compare the bespoke mixture model and the response 

mapping approaches. These direct and indirect methods are two fundamentally different 

approaches that have never previously been directly compared. Whilst the former directly 

estimates EQ-5D tariff scores, the latter uses a two stage approach:  first estimating the 

probability of being on each level of the 5 separate dimensions of EQ-5D, and then 

estimating the expected value from each of the 243 possible combinations. Both of these 

approaches have merit because they have been designed to generate values that reflect the 

principal characteristics of the process by which EQ-5D data are generated. This ought to be 

an important consideration in the selection of any statistical model.  
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Most previous applications of the response mapping approach have used multinomial logit 

models, treating the data as nominal, and have used a simulation method to estimate these 

expected values. Here we demonstrate that the true ordered nature of the data can be reflected 

using generalized ordered probits. This modelling approach relaxes the parallel line 

assumption inherent in the ordered logit and probit models. There is not a requirement for 

simulation methods to estimate the expectations as these can be derived mathematically as we 

have done here.  

 

The response mapping approach using this specification of generalised ordered probit models 

substantially outperforms the linear regression in this example. Previous evidence using 

multinomial logit models has been equivocal
6,8,9,10

.  

 

However, we also demonstrate that in this example dataset the better performing model is the 

bespoke mixture. Fit is vastly better than the linear model and substantially better than the 

response mapping approach across the entire range of pain, EQ-5D and HAQ with one 

exception: where HAQ exceeds 2.5 the response mapping approach is closer to the mean 

observed values. However, there are only 1% of patient observations at this extreme level of 

functional disability. Improvement in fit in the mixture model could be obtained by adding a 

greater number of components. However, this could potentially be a large increase due to the 

relatively small amount of data here. Adding more components will initially be more efficient 

where these are at other levels of functional disability. Furthermore, the credibility of data at 

this extreme is questionable. Certainly, patients would not be able to self-complete the forms 

if they were unable to do any of their daily activities of living, though the NDB does allow 

forms to be completed over the phone by interviewers or by the patient’s assistance-provider. 
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Whilst this dataset was selected because it offers typical features of EQ-5D in which to 

compare methods, it may be warranted to complete further comparisons of the mixture 

modelling and response mapping approaches before definitive conclusions are reached. No 

such caution is required in the case of the linear model as there is now a wealth of evidence 

against its use. 

 

Despite this caution, we provide some reasons why the response mapping approach may not 

perform as well as the bespoke mixture model. First, there are just three levels in each 

question in the EQ-5D. Therefore, the crudeness of the instrument means that it is quite 

possible that quite large errors can occur in the estimated values. Second, the correlations 

between the models for each of the five levels has not been investigated here. This, together 

with the potential gains from using more flexible functional forms for response mapping 

models are areas worthy of further investigation.  

  

The response mapping approach does offer the potential advantage that weights from any 

country can be applied in the second stage rather than requiring the estimation of a new 

function as would be the case with all direct methods. The danger with that approach is that 

even where a good fit may be achieved with one set of weights, there is no guarantee that the 

method will perform well with a different set. 

 

References

                                                           
1 Mortimer D, Segal L, Sturm J. Can we derive an 'exchange rate' between descriptive and 

preference-based outcome measures for stroke? Results from the transfer to utility (TTU) 

technique. Health Qual Life Outcomes 2009; 7:33. 



19 
 

                                                                                                                                                                                     
2 Kearns B, Ara R, Wailoo AJ. A review of the use of statistical regression models to inform 

cost effectiveness analyses within the NICE technology appraisals programme, Report by the 

NICE Decision Support Unit 

3
 Brazier J, Yang Y, Tsuchiya A, Rowen, D. A review of studies mapping (or cross walking) 

non-preference based measures of health to generic preference-based measures. Eur J Health 

Econ 2010; 11: 215–225. 

4
 Hernández Alava M, Wailoo AJ, Ara R. Tails from the Peak District: Adjusted Limited 

Dependent Variable Mixture Models of EQ-5D Health State Utility Values. Value Health 

2012; 15: 550-561. 

5
 Hernández Alava, M., Wailoo, A., Wolfe, F., and Michaud, K.(2012) The relationship 

between EQ-5D, HAQ and pain in patients with rheumatoid arthritis: further validation and 

development of the limited dependent variable, mixture model approach, HEDS Discussion 

Paper 12/10.Available at: http://www.shef.ac.uk/polopoly_fs/1.199216!/file/hedsdp1210.pdf 

6 Gray A, Rivero-Arias O, Clarke P. Estimating the association between SF-12 responses and 

EQ-5D utility values by response mapping. Medical Decision Making 2006; 26(1):18-29. 

7 Tobin J. Estimation of relationships for limited dependent variables. Econometrica 

1958;26:24-36. 

8
 Dakin, H, Gray, A., and Murray, D. (2012) Mapping analyses to estimate EQ-5D utilities 

and responses based on Oxford Knee Score, Quality of Life research, DOI 10.1007/s11136-

012-0189-4 

9
 Rivero Arias, O., Ouellet, M., Gray, A. et al. (2010) Mapping the Modified Rankin Scale 

(mRS) Measurement into the Generic EuroQol (EQ-5D) Health Outcome, Medical Decision 

Making, Vol. 30: 341–354) 

http://www.shef.ac.uk/polopoly_fs/1.199216!/file/hedsdp1210.pdf


20 
 

                                                                                                                                                                                     
10

 Pinedo Villanueva, R.A., Turner, D., Judge, A., et al. (2012) “Mapping the Oxford Hip 

Score onto the EQ-5D utility index”, Quality of Life Research, DOI 10.1007/s11136-012-

0174-y 

11
 Maddala, G.S. (1983). Limited Dependent and Qualitative Variables in Econometrics, 

Cambridge. 

12
 Boes, S., (2006). REGOPROB: Stata module to estimate random effects generalized 

ordered probit models, Statistical Software Components S456604, Boston College 

Department of Economics, revised 06 Sep 2006. 

13
 McLachlan, G.J., and Peel, D. (2000) Finite Mixture Models, New York: Wiley. 

14
 Muthén, B. and Muthén, L. (2008) Mplus. Statistical Analysis with Latent Variables. Users 

Guide. Los Angeles: Muthén and Muthén. 

15
 Wailoo, A.J., Bansback, N., Brennan, A., et al. (2008) Biologic Drugs for Rheumatoid 

Arthritis in the Medicare Program: A Cost Effectiveness Analysis. Arthritis and Rheumatism, 

Vol.58:939-946. 

16 Tosh J, Brennan A, Wailoo A, Bansback N. (2011) “The Sheffield rheumatoid arthritis 

health economic model”, Rheumatology, Vol.50 Suppl 4:iv26-iv31 

17
 Chen, Y-F., Jobanputra, P., Barton, P., et al. (2006) A systematic review of the 

effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid 

arthritis in adults and an economic evaluation of their cost-effectiveness. Health Technology 

Assessment, Vol.10. 

18
 Wolfe F, Michaud K. The National Data Bank for rheumatic diseases: a multi-registry 

rheumatic disease data bank. Rheumatology 2011; 50: 16-24.  



21 
 

Tables  

Table 1: Results from linear regression model (Model 1) 

parameter se p-value 

    

HAQ -0.0790 0.0034 0.0000 

HAQ
2
 -0.0409 0.0014 0.0000 

Pain/100 -0.0671 0.0086 0.0000 

Pain/100
2
 -0.3109 0.0090 0.0000 

AgeM/10 0.0130 0.0008 0.0000 

(AgeM/10)
2
 0.0006 0.0004 0.1570 

Male -0.0422 0.0027 0.0000 

Intercept 0.8879 0.0023 0.0000 

   0.1100 0.0009 

   0.1414 0.0003 
Note: AgeM = age-age   
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Table 2: Results from adjusted limited dependent variable mixture model (Model 2) 

  Parameter robust se t-value p-value 

Explanatory variables within 

component 1 

HAQ -0.0898 0.0027 -32.9151 0.0000 

HAQ
2
 0.0005 0.0009 0.5892 0.5557 

Pain/100 -0.0580 0.0023 -25.4275 0.0000 
2
AgeM/10 0.0049 0.0005 10.1656 0.0000 

(AgeM/10)
2
 0.0003 0.0002 1.2111 0.2258 

Explanatory variables within 

component 2  

HAQ 0.0544 0.0301 1.8043 0.0712 

HAQ
2
 -0.0509 0.0100 -5.1027 0.0000 

Pain/100 -0.3841 0.0225 -17.0781 0.0000 

AgeM/10 0.0291 0.0035 8.2411 0.0000 

(AgeM/10)
2
 0.0023 0.0017 1.3532 0.1760 

Explanatory variables within 

component 3 

HAQ -0.1415 0.0076 -18.5781 0.0000 

HAQ
2
 0.0155 0.0027 5.7871 0.0000 

Pain/100 -0.0839 0.0089 -9.3978 0.0000 

AgeM/10 0.0037 0.0012 3.2078 0.0013 

(AgeM/10)
2
 0.0007 0.0006 1.1702 0.2419 

Explanatory variables within 

component 4 

HAQ -0.1958 0.0811 -2.4137 0.0158 

HAQ
2
 0.0347 0.0246 1.4097 0.1586 

Pain/100 -0.0127 0.0693 -0.1839 0.8541 

AgeM/10 -0.0043 0.0058 -0.7417 0.4583 

(AgeM/10)
2
 0.0002 0.0021 0.1106 0.9119 

Random effects terms 

Intercept1 0.8141 0.0013 629.4830 0.0000 

Intercept2 0.4266 0.0164 25.9934 0.0000 

Intercept3 0.3297 0.0081 40.6365 0.0000 

Intercept4 1.0220 0.0327 31.2430 0.0000 

Male -0.0265 0.0013 -20.9092 0.0000 

Variances for each component  

Variance1 0.0025 0.0001 48.7842 0.0000 

Variance2 0.0240 0.0016 14.8595 0.0000 

Variance3 0.0022 0.0002 10.2405 0.0000 

Variance4 0.0044 0.0042 1.0374 0.2995 

Random effects  Variance 0.0026 0.0001 46.2489 0.0000 

Explanatory variables explaining the 

probability of component membership
1
 

Intercept 1 -1.2746 0.0637 -20.0245 0.0000 

HAQ 0.2420 0.4424 0.5471 0.5843 

Pain/100 23.4673 0.5897 39.7970 0.0000 

Pain/100
2
 -21.5513 0.6707 -32.1307 0.0000 

Intercept2 -6.6310 0.2597 -25.5366 0.0000 

HAQ 2.1936 0.4234 5.1808 0.0000 

Pain/100 18.3719 1.2220 15.0337 0.0000 

Pain/100
2
 -13.8001 0.8071 -17.0981 0.0000 

Intercept3 -7.4768 0.2988 -25.0242 0.0000 

HAQ 1.0517      0.4344      2.4209      0.0155 

Pain/100 25.3396    1.1359     22.3075    0.0000 

Pain/100
2
 -16.9622 0.7624    -22.2473 0.0000 

1 These probabilities are computed using component 4 as the reference. 2 AgeM = age-age 
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Table 3: Generalized Ordered Probit models for each EQ-5D Question (Model 3) 

 

Mobility Self-care Usual activities Pain Depression/Anxiety 

Beta p Beta p Beta p Beta p Beta p 

Level 1 

HAQ 2.034 0.000 2.812 0.000 2.593 0.000 1.591 0.000 0.890 0.000 

HAQ2 -0.151 0.000 -0.160 0.000 -0.346 0.000 -0.424 0.000 -0.080 0.000 

Pain/100 1.503 0.000 0.738 0.000 1.672 0.000 5.363 0.000 1.069 0.000 
2
AgeM/10 0.010 0.320 -0.118 0.000 -0.074 0.000 0.017 0.083 -0.209 0.000 

(AgeM/10)
2
 0.005 0.286 -0.004 0.571 0.002 0.641 -0.022 0.000 -0.002 0.682 

Sex 0.631 0.000 0.971 0.000 0.480 0.000 0.267 0.000 -0.023 0.497 

constant -2.521 0.000 -4.810 0.000 -2.698 0.000 -0.607 0.000 -1.854 0.000 

Level 2 

HAQ -0.993 0.002 -1.132 0.000 0.037 0.723 0.902 0.000 0.041 0.593 

HAQ2 0.847 0.000 0.837 0.000 0.477 0.000 -0.014 0.587 0.209 0.000 

Pain/100 0.550 0.001 0.143 0.255 0.865 0.000 4.653 0.000 0.976 0.000 

AgeM/10 -0.098 0.006 0.042 0.124 -0.027 0.048 -0.072 0.000 -0.302 0.000 

(AgeM/10)
2
 0.039 0.035 0.041 0.010 0.019 0.014 -0.008 0.175 -0.006 0.494 

Sex 0.472 0.000 0.565 0.000 0.364 0.000 0.174 0.000 0.018 0.728 

constant -5.801 0.000 -4.957 0.000 -4.445 0.000 -5.509 0.000 -4.214 0.000 

1
rho 0.527 0.000 0.535 0.000 0.421 0.000 0.420 0.000 0.662 0.000 

1 rho=  
 / (1 +   

 )   2 AgeM = age-age 
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Table 4: Comparison of Models 1, 2 and 3 

 

 

Model 1 Model 2 % diff 2 vs 1 Model 3 % diff 3 vs 1 % diff 2 vs 3 N 

HAQ 0-1 54,086 MAE 0.0968 0.0854 11.77% 0.0906 6.46% 5.68% 

RMSE 0.1292 0.1215 5.96% 0.1250 3.22% 2.83% 

HAQ 1-2 38,307 MAE 0.1571 0.1458 7.17% 0.1515 3.53% 3.77% 

RMSE 0.2061 0.2025 1.75% 0.2033 1.39% 0.37% 

HAQ 2-3 8,005 MAE 0.2309 0.2052 11.11% 0.2130 7.77% 3.63% 

RMSE 0.2626 0.2520 4.01% 0.2543 3.16% 0.88% 

Overall 100,398 MAE 0.1305 0.1180 9.56% 0.1236 5.30% 4.50% 

RMSE 0.1752 0.1693 3.37% 0.1713 2.24% 1.16% 
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Figure 1a)        1b)  
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Figures 2a) Mean EQ-5D by mean HAQ: observed vs predicted b) Mean EQ-5D by mean pain score: observed vs predicted 
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Figure 3a) Distribution of observed data and b) – d) simulated values from linear, mixture and response mapping models. 


