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Abstract: In this paper, the energy transfer phenomenon of bilinear oscillators in the
frequency domain is analyzed using the new conceptiasflinear Output Frequency
Response Functions (NOFRFs). The analysis provides insight into how new frequency
generation can occwsingbilinear oscillators, and reveafor the first time, that it is the
resonah frequenciesof the NOFRFs that dominatbe occurrence of th well-known
nonlinear behaviar. The results are of significance for the design and fault diagnosis of
mechanical systems and structures which can be described by a bilinear oscillator model.

1 Introduction

There are abundamlynamcal systems witmonlinear components engineeringFor
example,vibration componentsvith clearances and motion limiting stop wabration
components withfatigue damage which causeabrupt changes of the damping and
stiffness coefficients, represensignificantportion of these systemin practice bilinear
oscillatos can be used to model sometloése nonlinear mechanical compondhig13].

To investigate the motion of an articulated mooring towagmpsoret al. [1] modeled

the systemas a bilnear oscillatorthat hasdifferent stiffnessfor positive and negative
deflections due to the slackening of mooring linkscomparison between thmodel
responseand experimental resulshowed a good agreement. Based on the sanoglel,
Gerber and Engetecht[2] studied the response of an articulated mooring tower driven
by irregular seasandHuang, Krousgrill and Rajaj [3] studied tbgnamic response oha
offshore structure subjected to a nonzero mean, oscillatory fluidwloeve the particular
interest wasthe interaction between the bilinear stiffness characteristic and the
asymmetric hydrodynamic drag foré&'hen investigating thbehaviourof an articulated
offshore platform, Choi and Loj4] modelledthe structureas aSDOFupright pendulum
with bilinear springs at the top. The sprs@awe different stiffness for positive and
negative displacemergbilinear oscillator) Wilson and Gallis[5] modelleda common
multi-bay, multistory scaffold with loose tubi@-tube connecting joints aa plane



structure in sway anévaluated thessential dynamic characteristics wisehjected to
lateral base excitati@n Their investigatios were based ona twodegreeof freedom
modelwith a lumped maswherethe loose restraining joint betweadjacent storiesas
treated as ailinear stiffness Butcher [6] investigated the effects of a clearance or
interferencan mechanical systesron the normal mode frequencies oh-BOF system
with bilinear stiffness without dampin@he bilinear modehasalsobeen widelyused to
model crack occurringin mechanical structures or rotaeere thesize of cracks often
expressed athe stiffness ratioZastrau Y] demonstrated the bilinedehaviourby using
thefinite element method to determine the dynamic responssioijdy supported beam.
Friswell and Penny8] studied the notinear behaviourof a beam with a closing crack
and thenanalyzedthe forced response ta harmonic excitatiorat a frequency near the
first natural frequency of the beansing a numerical integation method. The results
highlighted the presence a&fupeharmonic components in the response spectrum, a
common property for nehnear systemsSundermeyer and Weavfd] exploited he
weakly nonlinear character of a cracked vibrating beam. Theirissudupportedhe
possibility that the bilineabehaviourof a fatigue crack can be exploited the purposes

of nondestructive evaluationBased on a bilinear crack mode&lhati, Rand and
Mukherjee [1Q used perturbation methods to obtain the -lw@ar normal modes of
vibration and the associated period of the motion, and the results justified the definition
of the bilinear frequency as the effective natural frequeRiyola and White[11]
employed the bilinear oscillator model to simulate the nonlibedaviourof a beam
with a closing crek and usedhe bispectrum to analyze the system response. They found
that the normalized bispectrum shows high sensitivity to the bilinear nature ofack.

In cracked rotor studigd 2][13], the cracked element can often ®delledasa weight
loaded hingeandif the hinge is weight dominant, thencanfurtherberepresented as
springelementwith a bilinear stiffness.

It can be seen thahe bilinear oscillatoris of great importancen the modeling othe
nonlinear phenomenaccurring in mechanical structures and machinéscurate
knowledgeof this oscillatoris helgful in the design control andfault detectionof these
systems.A number of analytical and numerical studieson bilinear oscillatoss have
appearedn theliterature Natsiavag14] applied an analyticglrocedure to etermine the
exact, singlecrossing, periodic response of a simildass of harmonically excited
piecewise linear oscillators whodamping andestoring force are bilinedunctions of
the system velocity and displaceme@hu and Shefl5] employedtwo square wave
functions to modethe stiffness change in bilinear oscillatoas\d proposed aew closed



form solutionfor bilinear oscillatorsunder lowfrequency excitationBayly [16] derived
an analytical relationship between the strength of a weak stiffness dischntindi the
magnitudes of superharmonic peaks indbgutFourier spectrum of a bilinear oscillator.
Sincebilinear oscillatos are nonlinear they exhibit muchof the complicated phenomena
associated witmonlinear systemsAll the above mentionedesearchstudieson bilinear
oscillatorshave shown thatonsiderableharmonic componentsan be generated in the
spectrum of the responsehen abilinear oscillator issubjected toa sinusoidal force
excitation. The generation of higher harmonic componeimplies thatsome energy of
the input signal is transferred fronthe input frequencymodesto modesat other
frequencylocations. The conventionalFrequencyResponse FunctioFRF) can not
explainwhy and howthe energyshift occursin bilinear oscillatos as thedefinition of the
classical frequency responge based orinear systera in which the possible output
frequencieat steady state are exactly the samih@Bequencie®f the input.

This paper is dedicated the studyof thefrequency domaienergy transfeproperties of
bilinear oscillatos using a new conceptcently developedby the authors known as
Nonlinear Output Frequency Response Functions (NGFRF]-[20]. The NOFRFs are

a one dimensional function of frequency, which alkbv analysis of nonlinear systems

to be implemented in a manner similar to the analysis of linear system frequency
responses. Consequentlthe NOFRF based analysis in the present standy only
providesnew insight into how nonlinear phenomena such as new frequency generations
occurwith bilinear oscillatos, but also revealthat it is the resonances of the NOFRFs
thatdominate the occurrence tife wellkknown nonlineabehaiour. Simulation studies
justify the conclusions, andemonstrate the significance thie NOFRF based analysis.

The results achieved are sifjnificance for the design and fault diagnasfisnechanical
systems and structures which can be described byadrioscillator model.

2 Bilinear Oscillator Model

The bilinear oscillator is a simple and effective model that can interpret many nonlinear
phenomena in mechanical structures and machines. Figure 1 shows a SDOF bilinear
oscillator whose correspondingotion can be expressed as

{mi(+c>'<+akx: f(t) x>0, )

MX+ cx+ kx= f (t) x<O0,
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Figure 1. bilinear oscillator model

where m and c are the object mass and damping coefficient respectixély;s the
displacementk is the stiffnessy is known as the stiffness ratie<(0a < 1). f(t) is the
external force exciting the model. Obviously, if the stiffness rai®equal to one, then
the model is linear. When excited by a sinusoidal fateeresponse will be a sinusoidal
function of the same frequegc Otherwise, ifa is smaller than one, the response is
expected to contain several harmonics of the excitation frequency. [B¢knas the
restoring force o& bilinear oscillator as follows

okx x>0,
kx X< 0,

ObviouslySx) is a piecewise linear continuous function of displacemeihistrated in
Figure 2.

S(X) = { )

In mathematics,the Weierstrass Approximation Theoref2l] guaranteg that any
continuous function on a closed and bounded interaalbe uniformly approximated on
that interval bya polynomialto any degree of accuracy. This theorem is expressed as

If f(X) is a continuous real-valued function on [a@,b ] and if any ¢ > 0is given, then there
existsa polynomial P(x) on [&,b] suchthat |f(x)-P(x)|<e¢ forall xe [a,b].

S(x) .

Figure 2. The restoring force afilinear oscillator
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Figure 3. Approximation o8x) (« = 0.8) with polynomials
Since therestoring forceS(x) is a continuous functioof displacemenk, it canbe well
approximated by a polynomial. Figure 3 gvthe results of using polynomials with
different orders to approximafx) where the stiffness rati@ is taken as @. It can be
seen that a fourth order polynomial candx) very well. If using a polynomiaP(x) to
replace forS(x) and ignoring theiny approximation error, the SDOF model Equation (1)

mMX+ cx+ P(x) = f (t)

3)

where
N
P(x) = zci kx (4)
i=1
where N is the order of the approximating polynomial, akal , i=1---,N are the

polynomialcoefficiens.

Table 1 The polynomial approximation result fdsiknear oscillator

< o c, C, c,

a
1.00 1.0000 0.0000 0.0000 0.0000
0.95 0.9750 -0.0409 0.0000 0.0204
0.90 0.9500 -0.0818 0.0000 0.0407
0.85 0.9250 -0.1228 0.0000 0.0611
0.80 0.9000 -0.1637 0.0000 0.0814




The model described by Equation (3) is an extensively studied polyntypéahonlinear
system where the termkx represerd the linear part andhe other high order terms
represent the nonlinepart. For the bilinear oscillator model, the polynomial coefficients
are determined by the stiffness raiioTable 1 shows the results of using a fourth order
polynomial to approximate the bilinear oscillator with different stiffness rattos
known fromTable 1 that all coefficients, apart froen, will increase witha decrease of.

This means that the nonlinear strength of the bilinear oscillator will increase with the
decrease oéf. It is worth to nang that except forc,, the values ot,... andcg also
depend on the rge of x which the polynomial approximation is defined. In the case
shown in Table 1, this range »fs [-1, 1].

For the free undamped vibration of bilinear oscillgtds effective natural frequency can
be substituted with a bilinear frequenay [11], as

Wy = 20,0, (0, + ) (5)
where
@, =vK/m and @, =+/ak/m (6)
Therefore
2Ja [k 2Ja
0y = |- =, (7)
Q+va)Vm  @+a)

For the polynomial-type nonlinear system (3), the natural frequency bifdéae part can

be defined as
o, =\Jckim=/co, (8)

Table 2 shows a comparison betwegnand o, under different stiffness ratio#t. can
be seen that the is a good approximation ab,. To a certainextent this further
justifiesusing a polynomial-type nonlinear model to describdiaear oscillator

Table 2. Comparison betwees and o,

a a)L(xa)O) a)B(xa)O) |wg —o, | 0
1.00 1.0000 1.0000 0.0000%
0.95 0.9874 0.9872 0.0203%
0.90 0.9747 0.9737 0.1027%
0.85 0.9618 0.9594 0.2501%
0.80 0.9487 0.9443 0.4660%

For polynomialtype nonlinear systems, a powerful analysis twalled theNonlinear
Output Frequency Response Function (NOFRF) has hesd to study system
behaviourd19]. The objective of the present study is to use the NOFRF concsfotolp



the frequency domain energy transfer properties of bilinear oscalatoder harmonic
loading.

3 Nonlinear Output Frequency Response Functions (NOFRFSs)

3.1 NOFRFs under General Inputs

NOFRFswere recentlyproposed and used to investigate le@aviourof structures with
polynomialtype nonlinearities [B]. The definition of NOFRFs is based on the Volterra
series. The Volterra series extends the familiar concept of the convolutgmaintor
linear systems to a series of mudimensional convolution integrals.

For a linear system, with inpu(t) and outputy(t), the input and output relationship in
the time domain can be described by a convolution integral, as

y(t) = h(z)u(t-r)de (9)
In the frequency domain, the linear system input output relationship is given by
Y(jo)=H(jo)U(jo) (10)

when the system is subject to an input where the Fourier Transfasts. In equation
(10), Y(jw) andU (jw) are the system input and output spectrum which are the Fourier
Transforms of the system time domain inpif) and outputy(t) respectivelylt can be
seen thathe possibldrequency componesitf Y(jw) arethe same as the frequencads
U(jo).

Consider the class of nonlinear systems which are stable at zero equiliibduwhizh
can be described in theigebourhood of the equilibrium by the Volterra series

VORD 3 IS BLXCHRES) § (TGERAtE (11)

where h,(z,,...,7,,) is the nth order Volterra kernel, ahddenotes the maximum order of
the system nonlinearity. Lang and Billings/] have derived an expression tbe output
frequency response of this class of nonlinear systems to a general input.utthis res

Y(ja))ziYn(ja)) forvVe

P

@)™ .

(12)
Yo(jo)=

| Holorio)[Julie)s,,

This expression reveals how nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In {1@)@) represents the nth order
output frequency response of the system,



Ho(j@pmjo,) = [ h(.r)e @ omide, dr,  (13)

n
denotes the integration cHn(ja)l,...,ja)n)HU(ja)i) over the rdimensional hypeplane,
i=1
with the constraint ofo, +---+ @, = @ . Equation (12) is a natural extension of the well
known linear relationship (10) to the nonlinear case.

For linear systems, equation (10) shows that the possible output frequencies amgethe sa
as the frequencies in the input. For nonlinear systems described by equation (&¥grhow
the relationship between the input and output frequersgeEnerally given by

N
fy = U f\(n (14)
n=1

where f, denotes the nenegative frequency range of the system output, &nd

represents the nemegative frequency range produced by the-antter system

nonlinearity. This is much more complicated than that in thelisgstem case. For the

cases where system (12) is subjected to an input with a spectrum given by
Uljo) = {U( jo) when |w]e (a,b) (15)

0 otherwise
whereb>a>0. Lang and Billings [Z] derived an explicit expression for the output
frequency rangef, of the systems. The result obtained is

fY = fYN U fYN—(prfl)
i1
Ule  when nb__j_m |
B (a+b) |(a+b)
UL whe M@ sy
o (a+b) |(a+b)

- { na J+1
(a+b)

where |.| meansto take the integer part

(16)

|, =(na—k(a+b),nb—k(a+b)) fork=0,...i" -1,
. =(0,nb—i"(a+b))




In (16) p" could be taken a$2,---,[N/2|, the specific value of which depends on the
system nonlinearities. If the syste@FRFs Hy ; ,()=0, for i=1---,q-1, and
Hy e () =0, then p =q. This is the first analytical description for the output
frequencies of nonlinear systems, which extends thekmellvn relationship between the
input and output fragencies of linear systems to nonlinear cases.

Based on the above results output frequency responses of nonlinear systems, a new
concept known as Nonlinear Output Frequency Response Functions (NOFRF) was
recently introduced by Lang and Billings [L9he concept was defined as
[ H.(jopjo)][U(ie)deo,
Gn(ja)) _ Ot 0p=0 . i=1 (17)
[ TIY(ie)ds,,

o+, rop=0 1=1

under the condition that

Unio)= | [[U(iw)s,, %0 (18)

o+, Fop=0 1=1
Notice thatG, (jw) is valid over the frequency randg as defined in (16).

By introducing the NOFRF&, (j®), n=1---N, Equation (12) can be written as
N N
Y(jo)=Y Y, (jo) =Y .G,(jo)U (jo) (19)
n=1 n=1

which is similar to the description of the output frequency response of lineansyst
a linear systemthe relationship betwee¥i(jw) andU (jw) can beillustrated asin
Figure 4. $nilarly, the nonlinear system input and output relationsiifquation (19)
can belllustrated asin Figure 5.

U(jw) Y(jw)

. —— Hjw)=G(jo) —

Figure 4. The output frequency response of a linear system

UnG i
N(I]CO) - GN(Ja)) YN(J a))
- Go(jw)
U(jow) Ui(jw) -
- Gi(jw)

Figure 5. The output frequency response of a nonlinear system
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The NOFRFs reflect a combined contribution of the system thedinput to the
frequency domain outputehaviour It can be seen from Equation (17) tl@&i(jw)
dependsot only onH , (i=1,...N) but also on the inpWd (jw). For any structure, the
dynamical properties are determinéy the GFRFs H, (i= 1,...N). However, from
Equation (13)t can be saethat theGFRF ismultidimensional22][ 23], which maks it
difficult to measure displayand interprethe GFRFsin practice Feijoo, Worden and
Stanway[24]-[26] demonstratethat the Volterra series can be described by a series of
associated lineaequations (ALEsWwhose correspondingssociated frequency response
functiors (AFRFs) are easier tmalyze andnterpretthanthe GFRFs.Here, according to
Equation (17), the NOFRF5, (jw) is a weighted sum ofH (j@,....j®,) over

o, +---+ o, = o with the weights depending on the test input. There@ig») can be
usedasalternative representation of the structural aycal properties described by ..
The most importanproperty of the NOFRF G, (j®) is that it isone dimensionaland
thus allows the analysisof nonlinear systemt be implemented in @ery convenient
mannervery similar to the analysisof linear systemsMoreover,there isan effective
algorithm[19] availablewnhich allows theestimationof the NOFRFs to be implemented
directly using system input output datdne algorithmgenerally requires experimental or
simulation results for the system under investigation undedifferent input signal
excitations which havehe same waveforms but different intensities

3.2 NOFRFs under Harmonic Input

Harmonic inpus are pure sinusoidal signswhich hare been widely used for ayamic
testing of many engineering structurébaerefore, the extension of the NOFRF concept to
the harmonic input case is of considerable engineering significance.

When system (11) is subject to a harmonic input
u(t) = Acosct + f) (20)
Lang and Billings 17] showed tht equation(12) can be expressed as

Y(jw)=ivn(jw)=i[2—ln > Holjog jo ) Ao,)-Ala,) | (@)

n=1 Oy + O =0
where

|A|eS®0s if e lkop k=11}

) (22)
0 otherwise

A(iw)={

Define the frequency component$ nth order outpubf the systemas Q,, according to
Equation (21)thefrequency components in the system output can be expressed as

11



QzLNJQn (23)

and Q  is determined by the set of frequencies

{a):a)kl—l_“'—i_a)knla)ki =in1i:l""n} (24)

From Equation (@), it is known thatfiall o, ,---,@, are take as - o, theno=-nw; .
If k of themare take asw., thenw = (-n+ 2k)w. . The maximak is n. Therefore the
possible frequency components ¥f(jw) are

Q. ={(-n+2k)o. k= 04---,n} (25)
Moreover,it is easy taleducehat

QzLNJQn —{ko.,k=-N, - 104, N} (26)

n=1
Equation (B) explairs why somesuperharmonicomponents will be generated whan
nonlinear system is subjeetl to a harmonicexcitation In the following, only those
components with positive frequencies will be considered.

TheNOFRFs definedh Equation (17xan beextended tahe case ofiarmonic inputs as

1 . . . .
on ZHn(Ja)kl,"’1Ja)kn)A(Ja)kl)"'A(Ja)kn)

O+ O =0

G (jo)= n=1,..N (27)

L S Ao Ale,)

n
2 Oy + - F Oy =0

under the condition that

A(jw):z—ﬁ S Ajo) - Ajo, ) 20 (28)

Oy + O =0

Obviously, G (jw) is only valid overQ_ defined by Equation &. Consequentlythe
output spectrun¥(jw) of nonlinearsystens undera harmonic inputan be expressed as

Y(Jw)=ZYn(J'w) =ZG§'(Jw)A1(Jw) (29)

Whenk of the n frequencies ofy, ,---,, are taken ag. andthe othersare as- o,
substitutingequation (22) into Equation (2§jelds,

AN+ 2K)0,) = Zi | AP lr208 (30)

ThusG!' (jw) becomes

12



k n-k
1 . - - : .
an(le,---,ij,—]a)F,-..,_JwF)|A| Qi (205
G (j(-n+2K) o, ) =

i | Aln ej(’n+2k)ﬂ
2n
k n-k
:Hn(ja)F"“’ja)F’_ja)F"“’_ja)F) (31)

Where H, (ja,,...,jo,) is a symmetric functionTherefore, inthis caseG/ (jw) over
the nth order outputfrequency rangeQn:{(—n+2k)a)F,k: 0,],---,n} is equal tothe
GFRFH, (jay,...,j®,) evaluated ato, =--- =0, =0, 0, = =0, =-0g, K=0,---,n.
3.3 NOFRFs of Bilinear Oscillators under Harmonic Inputs

Consider the fourtlorder nonlineapolynomial system used to approximagebilinear
oscillator

MX + CX+ C KX + C,kx* + C,kx® + ¢, kx* = f (t) (32)

wherec, = 0 according to the approximation results in TableBY setting

¢ = < O = Cl_k’ 5220_2’ 53:&201 54:C_4’ 1:o('[):m
2,/mc.k m C, G G m
Equation (32) can be expressed in a standard form
X+ 260, X+ 02X+ £,0 X% + £,07x* = f,(t) (33)

The first order frequency response function can easily be determined from theértear
of Equation (33) as
1

G ) =He) = s 200 (o) + 2

(34)

The GFRF up to 2 order can be calcated recursively using the algorithm by Billings
and Peyton Jones [31] to produce the results below.

H2(ja)l’ sz) = _SZwEHl(jwl)Hl(jwZ)Hl(ja)l + Ja)z) (35)
H;(jo,, jo,, jo,) :_gwfgz[Hl(le)Hz(sz’ jos)+H (jo,)H,(jo, jo,)
+H,(jo)H,(jor, j@,)IxH,(jo, + jo, + jo,) (36)

H,(Joy, jo,, jo,, jo,) :_wEHl(ja)1+ jo, + jo, + ja)A)X[EZHAZ(ja):L’ jw,, jw;, jo,)
+84H44(ja)1’ja’27ja)3'j604)] (37)
where

Hyu(joy, jo,, jo,, jo,) :E[Hl(le)H3(Ja)21 jos, jw,)

13



+H,(jo)H (jooy, jos, joo,) + Hi(jos)Hy (o, jw,, jo,)

FHy(0)Hy (s j0n Jo)]+ L Ha(on To)Ha(0n )

+H,(jo, jo)H,(jo,, jo,)+H,(joy, jo,)H,(jo,, jo,)] (38)
Hy(jo, jo,, o jo,) =H (jo)H,(jo)H, (jo,)H, (jo,) (39)
From Equatioa (35)~(39), it can be seen thaH,(jo,|jo,,|w,; jo,)
H;(jo, jo,, jo,) and H,(jo,, jo,) are symmetric functions. Thereforehan the

systemin (32) is subjected to a harmonic loadirnthe NOFRFs of the system can be
described as

Gh (j20) =H,(jo, j0) = —£,0?H(jo)H,(j20) (40)
Gy (jo)=H,(-jo, jo, jo) =§w58§[wa1(12w)+2]Hf(1w)l H,(jo)|? (41)
G} (j3w) =H,(jo, jo, jo) = 20te?H 2 (jo)H, (j 20)H, (j30) (42)
Gi' (j20)=H,(-jo, o, jo, jo) =-0’H,(j20)[e,H (] 20) + £,H ,(j20)] (43)
G, (j40) =H,(jo, jo, jo, j©) = -o’H,(j40)[e,H ,(j40) + £,H ,(j40)] (44)

where
H,(j20)=H,(jo, jo, jo, jo) = wf«??{wf[Hl(JZw)Hl(JBw)+ H,(jo)H,(j20)]

+2H,(jo)H{(jo) | H,(jo) [ +%8§ IH.(Jo)I* [0f 1H.(j20)F +2]  (45)

Hu(i20)=H,(-jo,jo,jo, jo) = H (jo)|H,(jo) I (46)
Hp(j40) = H(jo jo, jo, jo) = ofelH] (jo)H,(j20)[4H,(j30) + H,(j20)]  (47)

Hu(j40)=H(jo o, jo, jo)=H/(jo) (48)

4 Frequency Domain Energy Transfer of Bilinear Oscillators under
Harmonic Loadings

4.1 General Analysis

It is well known that nonlinear systems subject ttaamonicinput can generate higher
order harmonic output components, and consequerathsfersignal energyfrom the

input frequencyto higherorder harmonics in the outpdithe introduction of the NOFRF
conceptcan clearly explain and even predmdw and when this phenomenbappens.
Equations(25) and(29) indicate that ifN = 4, thenthe 2% 3% and 4" order harmonis

could appeaiin the system output frequency response, and the output spectrum can
analytically be described as

14



Y(jor) =G (jog)A(jo) +G;' (jor ) A o) (49)

Y(j20:) =G, (j20:) A (j20¢ ) +G,' (j20p ) A (j200;) (50)
Y (i30¢) =G;' (j3w:) A (i30) (51)
Y(j4wF):Gr(j4wF)A4(j4a)F) (52)

Equations (59~(52) clearly show how the higher order harmoracs generated-his is a
combined effect of theystem characteristiageflected bythe NOFRF G/ (jw) andthe
spectrumof the harmonic input raised to powegiven by A, for n= 234. In addition,
by taking into account the specific expressionsGgr(j2w), G, (j3w), G, (j2w) and
G, (j4w) given by Equations (40)and (42)~(44), situation wher@ strong harmonic
component an appeain the output of a bilineaoscillator can beeasily predicted.
BecauseH,(jw) of system (32has only one resonee at the frequency, , H,(jko)
will have one resonance at the frequemgyk. Therefore the resonances Idf (j2w),
H,(j3w) and H,(j4w) occur atw, /2, w /3 and w /4 respectively. Equation (40)
shows thatG;' (j2w) contains terms ofH,(jw) and H,(j2w). Consequentlythis may
producetwo resonanceoutpus at @, and w_/2. Similarly, from Equation (41)~(48),
G;' (j3w) may producethree resonancest o, , o /2 and o, /3; G;' (j2w) hasthree
possible resonances o, , »_/2 andw,_/3; and G,' (j4w) has four possible resonances
atw, , o /2, o /3andw /4.

It is known from equation50)~(52) that wherthe driving frequencyo. coincides with
one of these resonafrequencies othe NOFRFs, a significanamplitudein the output
maybe producedorrespondingo thehigher oder harmonicomponents. Consequently,
considerable inpusignal energymay betransferred from thelriving frequency to the
higher order harmonic components in the output. For examplggr the casevhen
w=0, =n_ 12, that is the resonant fequencyw, /2 of G} (j3w) is reached It is
known from(51) that a considerablemplitudecan be expected at tlaitput frequency
3w =3w, 12, becausehe systentouldtransferinput energyfrom the drivingfrequency
o, 12 to frequency 3w, /2 in the output. These observationdead to a novel
interpretatiorregarding whersignificantenergy transfer phenomena may take place with
a bilinear oscillatorsubjectedto a harmonic inputThe interpretation is based on the
conceptof resonant frequenciesf NOFRFs, and concludes thaignificant energy
transferphenomenanay occur with a bilineaoscillatorwhen the drivingrrequency of
the harmonic input happens to be one of the resonances of the NOFRFs.
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This conclusioris likely to be significantin many aspects including both system design
and faultdiagnosis.Simulation studieswill be conductedin the following section to
demonstrate and justithis analysis

4.2 Simulation Studies

The objective of the simulation studies is to demonstrate the effect césbeances of
the NOFRFs on the energy transfer phenomeraallinearoscillatorwhensubjected to
harmonic inputs. The analysis importantfor system designin addition, theeffect of
the stiffness ratia, whichdefines the oscillator nonlinearjtwill also beinvestigated to
show how the NOFRFs changath the stiffness ratioTheseresults willform the basis
of the use o& newsystemfault diagnosis method based on the NOFRFs.

Consider the bilineawscillatorequation(1) with parameters
m= 1kg, k= 355x10*N s/m, ¢ = 23.5619 N/m.

andthe stiffness ratio changing betwee® and 0.8The externaforce f(t) considered
was a sinusoidal type force with unit amplitude drejuencyw. within the range
0< w: <12w,. The simulation studies were conducted by integgaguation (1) using

a fourth-order Runge-Kutta methodto obtain the forced response of the system. The
analysisin the previous sections iéites thatvhenthe system nonlinearity up fourth
order is taken into accourthe spectrunof the forcedsystem response can be described
by equations (56-(52).

From theseelationshipsit is known thathe NOFRFSG,' (j3w, ) and G/ (j4w, ) can be
determined using the algorithm in [19] with only one level of input excitatiao. [Evels
input of excitations are required to determine the NOFREY(jow.), G!' (jo;) ,
G)' (j2w.) andG,' (j2w, ). Therefore, foreach stiffnessatio « and at each frequency
. of the applied inputiwo forced responses wepbtainedwith the magnitude of the
sinusoidal input taken asN and 2N respectively and, from the obtained responses,
G (jwe), G (jop), G} (j20), G} (j20;) , G} (j3w) and G} (j4w;) were then
determined using the algorithm in [19].

Figures 6~11show the amplitudes of the®lOFRFsat five different stiffness ratios of
0.8, 0.85, 0.9, 0.95 and 1.0 and over the range of frequencies ®of / v, <1.2. From
these figures, the resonances of the NOFRFs cadetleemined, anthe results are given
in Table3~8. Accordingto the analysisn Section 4.1 the resonances 06, (j2w,),
G, (j2w.), G (j3w.)and G;' (j4w,) given in Table 5~8 imply that

16



(1) A significantsecond order harmonic could be observed when the drivigganey

o, is about%a)o, the dominant resonance 6f' (j20,.) andG;' (j2w;).

(2) A significant third order harmonic may appear when the driving frequencys
about%a)o, the dominant resonance 6f' (j3w; ).

(3) A significant fourth order harmonimay appeawhen the driving frequency. is

about%coo, the dominant resonance 6f' (j4w, ).

In order tojustify these conclusions from the general NOFRF based analysis, the output
spectra ofthe bilinear oscillatorsubjectedto harmonic inpw at the frequendes of

o =1/60,, o =1/3w, and o =1/2w,, respectively were determined the results
areshown inFigure12. It can be seefrom Figure 12(ajhatat o =1/6w,, all higher
order harmonics,including the second harmoniare very weak, especially the third
order harmonic whichcan hardly be seen. This is simply becauseén this case
o =1/6w, is not a resonant frequencyf any of the NOFRF involved in the
expression for the system output spectrénom Figure 12(b)where o, =1/3w,, the
dominant resonance @, (j3w; ), it is known thatthe third ader harmonic becomes
manifest This can be explained by equation (8&)ich indicates that a significant third
order harmonic could be observed in the system output resgenase.Figure 12(c)
where o, =1/2w,, the dominant resonarcef G} (j20,.) andG;' (j2w,), it can be
observed that althoughe third order harmonic isisible, its amplitude is smaller than
that inFigure 12(b) Thisis becausgasshown in Figure 10althoughw, =1/2w, is a
resonant frequencyf G}' (j3w;), it is not thedominantresonant frequencyHowever
Figure 12(c) shows that the secondorder harmonicis significant. This result is
completely consistent with the ansily one can achieve from equation (50) which
shows the effects of thé“harmonic can be extremeiyportantwhen . happens to
be the dominant resonances@f (j2w.) andG;' (j2w;.).

In mechanicaéngineeringstudies 28], the appearance of superharmonic components in
the output spectrum is considered to be a significanilinear effect From the
perspectiveof the energy transfer, it is the linear FRRich transfers the input energy

to the fundamental harmonic component in the output spectrum, and it is the NOFRFs
which transfer the input energy to the superharmonic components. Therefaae, to
certain extent, one can think that if the superharmonic components contain mgse ener
in the output spectrunthen the nonlinear effect of the bilinear oscillator is stronger.
Figure 13 shows the percentage of the whole energyhatiperharmonic components
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containat different frequenciefr different stiffness ratioslt can be seen that around
the frequencyf 1/2w,, the superharmonic components have the biggesentage of
the total energy. This implies that, when a bilinear oscillator works arcualtl the
natural frequency, more energy will be transferred to the superharmoqicemey
locations, and the bilinear oscillator will thus render the strongest nonlinear
phenomenonThis result again confirms the analysis reshiét can beobtaired from
equation (50) about the effects of the resonance3'dfj 20, ) andG;' (j2w,) on the
system frequency domain energy transfer phenomednoaddition, two weak peaks
appearin Figure 13aroundthe frequencies olw. =1/3w, and o =1/4w,, which is
especiallyobviousin the case ostiffnessratio o = 0.8.This is due to theeffect of the
dominantresonancef G!' (j3w.) andG;' (j4w,) as indicated by equations (51) and
(52).

In engineering practice anthboratory research activitie§13][29][30], people have

observedhat whenthe excitation frequencpasseshroughthe half eigenfrequenayf a

cracked objectthe vibration become more severe This phenomenons known as
secondary resonancAs a cracked element can oftdse modelledas a spring with a
bilinear stiffress,it is knownnow thatthe secondaryesonance igactually produced by
the dominant resonances ofito NOFRFsG}' (j2w,) and G;' (j2w.) . Thereforethe

NOFRF based analysisn the present studprovides analternativeand more geeral

interpretation forthe well-known phenomenon othe secondary resonange cracked
objects Furthermoreit can be expected that themeuld exist3", and &', etc.resonance

However,compared withG}' (j2w.) andG;' (j2w,), the amplitude of the dominant
resonances o6} (j3w.) andG;' (j4w,) arerelativdy small, moreovey theamplitudes

of A(jw), i=1,...,4decrease witthe order numbeir thereforethe effecs from the 3 and

4™ etc. resonances are ofteotsomanifest

All the above analysisesultsverify the general analysigiven inSection 4.1, andeveal

the significanteffectof the resonances of NOFRFs on the energy transfer phenahena
bilinear oscillators.TheseNOFRFs resonancebasedanalysis for the energy transfer
phenomenorof bilinear cscillators can be directly usad system designGiven the
driving frequenciesof possibé harmonic loadings with a bilinear oscillator, if the
objective for the oscillator design is to reduce the energy of higher order harmonic
components, thethe analysis implies that the natural frequency of the linear part of the
oscillator @, =,/c1k/m:\/c_la)0 ~ w, has to be designed such that no frequencies of
possibleharmonic loadings malyappen to be resonances of associbt@#RFs which,

for the specific cases above, avg, 1/2w,, 1/3w, and 1/4w,.
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In addition to the resonances tfe NOFRFs, from Figures 6~11,the relationship
between the stiffness ratio and the NOFRFs can also be observed; the dependence of t
NOFRFs on the stiffness rationsore clearly manifedty the magitudes of NOFRFs at
theresonant frequencieBecausanany cracked rotors and beams t@modelledas a
bilinear oscillator and thestiffness ratio in the oscillator model represents the size of
cracks,the NOFRFs of the rotors and beams at resonances significant indicator.
Therefore, there is considerable potential to use the NOFRFs evaluated at their
resaances to condudault diagnosis and estimation for these mechanical systems and
structures.

5 Conclusion

This paper presents an analysis of the energy transfer phenomebibimeaf oscillatos

in the frequency domain using the NOFRF concept recently developed by the dtthors.
is verified thata bilinear oscillator can be approximated by a foworder polynomial

type nonlinear model, which caasily beanalyzed using th&olterra seriegheory of
nonlinear systemd he NOFRF conceps then used to analyze the forced response of a
bilinear oscillator subjected to a sinusoidal excitatiime results of the analysis reveal,

for the first timethat when the frequency. of the input force is close to the resonances

of the associated NOFRFs, suchl#8a,, 1/3w, and 1/4w,, etc, considerable input
energy vill be transferredo the superharmonic locations 2&., 3w, and4w., etc

This is an important conclusion regarding when the phenomenon of new frequency
generation may occur with bilinear oscillators, asaf practical significance for the
system design. In addition, it is demonstrated that the magnitudes of the NORRéE&s at
resonances are a significant indicator of the value of the stiffness ratio bilitiear
oscillator model. Because the stiffness ragidirectly related to the crack size of cracked
mechanical systems and structures which can be modelled by a bilinear oscillator, the
NOFRF based analysis has a great poteintisdlechanical system fault diagnosis.
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Table3 Resonance 0B, (jo; )

. First Resonance
Stiffness
Ratio | Frequency Amplitude
(Xwo)
0.80 0.94667 | 2.6748e4
0.85 0.95333 | 2.55Me-4
0.90 0.966& 2.4450e4
0.95 0.986& 2.342Be-4
1.00 1.00000 | 2.25%ke-4

Table4 Resonancefo G (jw, )

. First Resonance
Stiffness
Ratio | Frequency Amplitude
(Xwo)
0.80 0.9400 4.3827€19
0.85 0.9533 4.1928€19
0.90 0.9667 1.5892¢19
0.95 0.9867 1.7522¢€19
1.00 1.0000 0.0000€19
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Table5 Resonancesf G (j2w,)

Stiffness First Resonance Second Resonance
Ratio Frequency Amplitude Frequency Amplitude
(%) (Xcwo)
0.80 0.9467 1.0290e5 0.4733 3.8824e5
0.85 0.9533 7.1957e6 0.4800 2.7317e5
0.90 0.9667 4.4698e6 0.4867 1.7116e5
0.95 0.9867 2.0882¢6 0.4933 8.0414e6
1.00 NaN NaN NaN NaN
Table6 Resonances @&, (j2w,)
Stiffness First Resonance Second Resonance
Ratio Frequency Amplitude Frequency Amplitude
(%) (%)
0.80 0.94¢&7 1.470%-6 0.4733 5.5466€6
0.85 0.9533 1.0280e-6 0.4800 3.9®7e-6
0.90 0.966&7 6.3856€e7 0.4867 2.4453e6
0.95 0.98¢7 2.9832¢e7 0.4933 1.1488e6
1.00 NaN NaN NaN NaN

Table7 Resonances @b, (j3w;)

Stiffness First Resonance Second Resonance Third Resonance

Ratio Frequency Amplitude Frequency Amplitude Frequency Amplitude
(Xcwo) (Xcwo) (Xawo)

0.80 0.9467 7.0983e7 0.4733 | 3.2564€6 0.3133 5.3510e6
0.85 0.9533 | 3.5522¢7 0.4800 1.6534€6 0.3200 2.7400e6
0.90 0.9667 1.6106e7 0.4667 6.7182¢e7 0.3267 1.1055e6
0.95 0.9867 3.8108e8 0.4933 1.5098e7 0.3333 2.488e-7
1.00 NaN NaN NaN NaN NaN NaN
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Table8 Resonances @&, (j4w, )

. First Resonance Second Resonance
Stiffness
Ratio Frequency Amplitude Frequency Amplitude
(%) (Xo)
0.80 0.9467 1.4182¢e6 0.2333 1.93®e-5
0.85 0.9533 1.0412e6 0.2400 1.4268e5
0.90 0.9667 6.6331e7 0.2400 8.9509e6
0.95 0.9867 3.1042e7 0.2467 4.298e-6
1.00 NaN NaN NaN NaN
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Figure B The percentage of the whole energy that the superharmonic components
containat differentfrequenciedor different stiffness ratios
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