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Abstract— This paper is concerned with the application of
forward Orthogonal Least Squares (OLS) algorithm to the design
of Finite Impulse Response (FIR) filters. The focus of this study
is a new FIR filter design procedure and to compare this with
traditional methods known as the fir2() routine, provided by
MATLAB.
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I. INTRODUCTION

Linear Finite Impulse Response (FIR) filter coefficients

design has been extensively studied. Classical methods involve

designing a FIR filter based on Fourier Series theory and

Inverse-DFT transform. This is also the primary principle

of the FIR design in MATLAB. However, researchers still

continue to study improved methods for FIR filter design.

Lertniphonphun developed an algorithm which designs a FIR

filter using a weighted Chebyshev norm based optimization

approach [1]. FIR designs subject to upper and lower bounds

on the frequency response magnitude were studied by Wu [2].

Yong [3] investigated the design of FIR filters using a cluster

of workstations as computing platform. Given the benefits of

FIR filter applications to the digital signal processing field, it

is reasonable to believe the feasibility of further innovation in

this specific area.

There are many well developed FIR filter design methods.

The fir2() routine is one method embedded in the MAT-

LAB signal processing toolbox, which can be used to design

frequency sampling-based FIR filters with arbitrarily shaped

frequency responses. In the present study, fir2() is used as a

representative of traditional FIR filter design and is compared

with a new design method based on the forward orthogonal

least squares algorithm.

The Orthogonal Least Squares (OLS) algorithm was derived

as an effective solution for structure selection and parameter

estimation in nonlinear system identification [4]. In this paper,

a new OLS based procedure is introduced to provide an alter-

native method for FIR filter design. The new method employs

the OLS algorithm to determine the terms and parameters of

a FIR filter in order to meet a specified frequency response

requirement. Compared with the traditional fir2() procedure,

the new method not only provides a different way of designing

FIR filters but also offers several advantages. More impor-

tantly, the OLS based design can easily be extended to deal

with nonlinear filter designs which are issues currently under

study and will be discussed in a future publication.

The paper is organized as follows. First, the fir2() routine

and associated theory are introduced. Then, the new OLS

based FIR design is proposed, and a comparison of the new

method with the fir2() routine is conducted to show the

advantages and potential of the new approach. Finally, results

of case studies are presented and discussed in detail.

II. THE FIR2() ROUTINE FOR FIR FILTER DESIGN

Let H(ejω) denote the frequency response of the digital

transfer function H(z) to be designed to approximate the

desired (ideal) response Hd(e
jω). The basic idea behind

the fir2() routine in MATLAB is to determine the transfer

function coefficients so that the difference between H(ejω)
and Hd(e

jω) for all values of ω in the range 0 ≤ ω ≤ π
is minimized. The MATLAB routine fir2() satisfies the least-

square criterion [6].

Because Hd(e
jω) is a periodic function, it can be expressed

as a Fourier series:

Hd(e
jω) =

∞
∑

n=−∞

hd[n]e−jnω (1)

with Fourier coefficients given by

hd[n] =
1

2π

∫ π

−π

Hd(e
jω)ejnωdω −∞ < n < ∞ (2)

The fir2() routine is a frequency sampling approach. The

desired frequency response Hd(e
jω) is first uniformly sampled

at N equally spaced points ωk = 2πk/N, k = 0, 1, ..., N − 1,

providing N frequency samples. These samples compose of

an N -point DFT H[k] whose N -point inverse-DFT yields the

impulse response coefficients h[n] of the FIR filter of length

N . From equation (1),

H[k] = Hd(e
jωk) = Hd(e

j(2πk/N)) =

∞
∑

l=−∞

hd[l]W
kl
N (3)

where WN = e−j(2π/N). An inverse-DFT of H[k] yields

h[n] =
1

N

N−1
∑

k=0

H[k]W−kn
N (4)



The coefficients h[n] often produce an oscillatory magnitude

response which is called Gibbs phenomenon. In order to

reduce the ripples, a window function is finally used to yield

the filter coefficients.

The MATLAB syntax formulation

b = fir2(N, f,m) (5)

designs a N -th order FIR filter and returns the filter coeffi-

cients in vector b of length N + 1. Vectors f and m specify

the frequency and corresponding magnitude sample points

respectively. In practice, f is the normalized frequency point

vector ranging from 0 to 1, where 1 represents the Nyquist

frequency (corresponding to half the sample rate). m is a

vector containing the desired magnitude response at the points

specified in f . By default, fir2() uses a Hamming window.

Usually, b is real, symmetric. Without loss of generality, It

is assumed that even symmetric coefficients obey b[k] =
b[N + 2 − k], k = 1, 2, ..., N + 1 [7].

III. THE ORTHOGONAL LEAST SQUARES ALGORITHM

Model identification can generally be formulated as a

standard least squares problem. Compared with simple least

squares algorithms, the orthogonal least squares method has

been demonstrated to be a powerful means to achieve this

objective. Basically, the orthogonal algorithm was developed

as an approach to combine parameter estimation and model

structure detection. The principal idea of the algorithm is to

decouple the candidate terms by introducing an orthogonal

transform so that selected terms will not be affected when

a new term is selected. For most system representations, the

orthogonal decomposition approach of the regressor matrix

avoids possible ill-conditioning and presents more accurate

results. The forward OLS algorithm is based on the classical

Gram-Schmidt method [4] [5].

A. Parameter Estimation

Consider a linear regression model

y(k) =

n
∑

i=1

φi(k)θi + e(k) k = 1, ..., N (6)

where y(k) represents the k-th measurement, N is the data

length, n is the number of column vectors, φi(k) and θi

denote the regressors and parameters respectively, and e(k)
is the modelling error, assumed to be a zero mean white noise

sequence. Using the orthogonal algorithm, the parameters θi

are estimated by transforming model (6) into an equivalent

auxiliary model

y(k) =

n
∑

i=1

giwi(k) + e(k) (7)

where wi(k) are constructed to be orthogonal and gi are

constant coefficients.

First, orthogonal vectors can be constructed over the given

data record as

w1(k) = φ1(k) (8)

wj(k) = φj(k) −

j−1
∑

i=1

αijwi(k) (9)

where

αij =

∑N
k=1 wi(k)φj(k)
∑N

k=1 w2
i (k)

{

j = 1, ..., n
i = 1, ..., j − 1, j

(10)

and from the orthogonal property, there is

wi(k)wj(k) = 0 i 6= j (11)

where the overline denotes the time average over the data

length.

The second step consists of estimating the coefficients gi,

which is given by

ĝi =

∑N
k=1 wi(k)y(k)
∑N

k=1 w2
i (k)

(12)

Finally, the unknown system parameters can be calculated

from ĝi according to

θ̂n = ĝn (13)

θ̂i = ĝi −

n
∑

j=i+1

αij θ̂j i = n − 1, n − 2, ..., 1 (14)

The auxiliary regressor wi(k) are orthogonal so that ad-

ditional terms can be added to the model without the need

to recompute all the previous ĝj , j < i. The orthogonal

least squares parameter estimation algorithm is therefore very

simple and easy to implement.

B. Structure Selection

The determination of a parsimonious representation of a sys-

tem is one of the most important tasks in system identification.

A great advantage of the orthogonal estimator is the possibility

of selecting the relevant terms using the Error Reduction Ratio

(ERR). The basic principle is given below.

Multiplying equation (7) by itself gives

y2(k) =

n
∑

i=1

g2
i w2

i (k) + e2(k) (15)

The above equation shows that the contribution of each term

g2
i w2

i (k) to the output energy y2(k). Expressing this quantity

as a fraction of i-th term as

ERRi =
ĝ2

i w2
i (k)

y2(k)
=

ĝ2
i

∑N
k=1 w2

i (k)
∑N

k=1 y2(k)
× 100% 1 ≤ i ≤ n

(16)

The forward regression procedure is implemented as:

1) Consider all regressors φi(k) i = 1, 2, ..., n as possible

candidates for ω1(k), calculating through equation (8), (12)

and (16), find the maximum of ERR1 for example ERR
(j)
1 =

max{ERR
(i)
1 , 1 ≤ i ≤ n}. Then the first term selected should

be the jth term. i.e. ω1(k) = φj(k).



2) Consider all the φi(k) i = 1, 2, ..., n, i 6= j as possible

candidates for ω2(k) calculating through equation (9), (12) and

(16), find the maximum of ERR2 for example ERR
(l)
2 =

max{ERR
(i)
2 , 1 ≤ i ≤ n, i 6= j}. Then the second term

selected should be the lth term. i.e. ω2(k) = φl(k)−α12ωl(k).
3) Continue the process and in each loop, the term with the

maximum error reduction ratio is then selected to produce the

term ωi(k).
The ERR value could be computed together with the pa-

rameter estimate to indicate the significance of each candidate

term. Insignificant terms will be discarded from the model

by defining threshold value of ERR summation. The forward

Orthogonal Least Squares algorithm is terminated when the

summation of ERR values is close to 100%.

IV. OLS-BASED FIR FILTER DESIGN

In the following, the FIR filter design is formulated as a

difference equation with 2N + 1 coefficients [8],

y(n) =

N
∑

i=−N

bix(n − i) (17)

Applying the z transform to both sides of equation (17) yields

H(z) =
Y (z)

X(z)
=

N
∑

i=−N

biz
−i (18)

Replacing z in equation (18) with ejω yields the filter fre-

quency response

H(ejω) =

N
∑

n=−N

bne−jnω (19)

Since the filter coefficients can only be real valued, the fre-

quency response must be conjugate symmetric. This premise is

the same as for the fir2() routine in MATLAB. From equation

(19), a noncausal filter is designed. Then by shifting the filter

coefficients, the filter can be made to be causal and practical.

A causal FIR filter with impulse response bc[n] can be

derived from b[n] by shifting the sequence by N samples.

i.e.

bc[n] = b[n − N ] (20)

Accordingly the corresponding transfer function is

H(z) =

2N
∑

i=0

bc[i]z
−i (21)

The key step in using the OLS algorithm to design the

FIR filter coefficients θi involves the choice of arguments,

φi and y(k) in equation (6). Comparing equation (6) and

(19), it can be concluded that the regressor φi corresponds

to each frequency component e−jnω , y(k) corresponds to

H(ejω), and the index k in equation (6) should be replaced

by frequency sampling points ω in equation (19). Using all

these relationships, the filter coefficients {bn} can be easily

determined using the forward OLS algorithm.

The matrix expression of system parameter estimation on

equation (6) is

Y = ΦΘ + Ξ (22)

Consequently, the related FIR filter design is of the form

H = Uβ + Ξ (23)

where H , a (2m + 1) × 1 vector, represents the frequency

response at the equally divided frequency sampling points as

H =







H(ejω
−m)

...

H(ejωm)






(24)

and U , a (2m + 1) × (2N + 1) complex matrix, is given by

U =







e−j(−N)ω
−m . . . e−j(N)ω

−m

...
. . .

...

e−j(−N)ωm . . . e−j(N)ωm






(25)

In order to apply the OLS algorithm to perform FIR filter

design, equation (23) is partitioned into real and imaginary

parts to yield

[
HR

HI
] = [

UR

UI
]β + [

ΞR

ΞI
] (26)

where the subscript R denotes the real part and I the imaginary

part [9].

The OLS algorithm is employed to compute the parameters

in the column vector β, a (2N + 1) × 1 coefficients vector,

β =







b−N

...

bN






(27)

which are the FIR filter coefficients.

V. CASE STUDY AND DISCUSSIONS

In order to verify the OLS approach to FIR filter design

and compare the OLS-based approach with the fir2() routine

in MATLAB, a lowpass FIR filter design is considered in this

section.

A. Lowpass FIR Filter Designs

Consider an order-N (N=10) lowpass FIR filter that has

frequency response defined as normalized frequency f =
{0, 0.6, 0.6, 1} and magnitude response m = {1, 1, 0, 0}, The

duplicated frequency points at f = 0.6 indicates a step

in frequency response. The desired frequency response is

depicted in Figure 1.

The ideal frequency response can be analytically described

as

Hd(ω) =

{

1 |ω| ≤ 0.6π
0 0.6π ≤ |ω| ≤ π

(28)

The impulse response corresponding to the frequency response

is given by

hd(n) =
0.6π

π

sin 0.6πn

0.6πn
−∞ < n < ∞ (29)
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Fig. 1. Desired Normalized Frequency Response

which are the components of the Fourier Series. Based on these

coefficients, the following discussion focuses on a comparison

between the filter design methods.

First, the fir2() routine, which involves applying equation

(5) in MATLAB, is used to design the FIR filter coefficients

with order N = 10, and f and m as given above. The design

results without applying windowing are shown in the column

under bfir2(n) in Table I.

Then the OLS based approach is applied for the design with

the following considerations:

1) Hd(e
jω) are equally sampled over [−π, π] with a sam-

pling interval of π
1000 to produce the sampled frequency vector

ω = [ω−m, . . . , ωm] and the desired frequency response over

the sampled frequencies H = [H(e−jω
−m), . . . , H(e−jωm)]τ .

2) Assume that the filter coefficients are symmetric, i.e.

b−i = bi, 0 ≤ i ≤ N . Therefore, only half the coefficients

β1, the (N + 1) × 1 column vector

β1 =







b−N

...

0






(30)

need to be determined and matrix U in equation (25) can

consequently be reduced to

U1 =







(e−j(−N)ω
−m + e−j(N)ω

−m) . . . e−j(0)ω
−m

...
. . .

...

(e−j(−N)ωm + e−j(N)ωm) . . . e−j(0)ωm







(31)

The design results (again without applying windowing) are

shown in the column under bOLS(n) in Table I.

3) Using the forward OLS algorithm based on equa-

tion (26), the term selection stopped when
∑

ERR10 =
0.96631922625219 and altogether 10 terms were included in

FIR filter.

B. Algorithm Analysis

From Table I, it can be observed that the difference between

the two design methods is not significant at all, but the OLS

based design is slightly better than the design using the fir2()

routine. Two aspects of analysis are conducted in the following

for the two different design methods.

TABLE I

COEFFICIENTS COMPARISON OF THE TWO ALGORITHMS AND THE IDEAL

FILTER.(ORDER-10)

n hd(n) bfir2(n) bOLS(n)

-5 0.00000000000000 0.00038455366668 0.00002979805319

-4 0.07568267286407 0.07480846476052 0.07561109368412

-3 -0.06236595225258 -0.06232992055387 -0.06235323232102

-2 -0.09354892837886 -0.09299995683258 -0.09359782644052

-1 0.30273069145626 0.30266212174209 0.30275145161048

0 0.60000000000000 0.59960937500000 0.59991711964520

1 0.30273069145626 0.30266212174209 0.30275145161048

2 -0.09354892837886 -0.09299995683258 -0.09359782644052

3 -0.06236595225258 -0.06232992055387 -0.06235323232102

4 0.07568267286407 0.07480846476052 0.07561109368412

5 0.00000000000000 0.00038455366668 0.00002979805319

1) Analysis of the Filter Coefficients: According to equa-

tion (3) and (4),

h[n] =
1

N

N−1
∑

k=0

∞
∑

l=−∞

hd[l]W
kl
N W−kn

N (32)

and the relation between the ideal filter Fourier series and

the frequency sampling impulse response coefficients can be

simplified by swapping the order of summation [6],

h[n] =

∞
∑

m=−∞

hd(n + mN) 0 ≤ n ≤ N − 1 (33)

Equation (33) implies that h[n] from the fir2() routine is

obtained from hd[n] by adding an infinite number of shifted

replicas of hd[n], with each replica shifted by an integer

multiple of N sampling instants. Since hd[n] is an infinite

length sequence according to equation (2), which shows that

the coefficients h[n] computed from the inverse-DFT can not

be the same as the ideal result. This is the intrinsic shortcoming

of the fir2() routine.

However, the OLS based method doesn’t possess this prob-

lem. This explains the slightly better performance of the OLS

algorithm compared to the fir2() routine.

Another point is that fir2() may miscalculate coefficients

when a higher frequency resolution is used in the computation.

Consider the case f = [0, 0.6, 0.6, 1] and frequency interval

as π
1000 cases for the fir2() routine, the coefficients estimation

through this approach is listed in Table II.

Considering next the frequency interval as π
1000 and π

10000 ,

the results for the OLS algorithm are given in Table III.

It is obvious that for the OLS method the higher the

frequency resolution, the closer the results converge to the

ideal result, and the better the effect of the design. While for

the fir2() routine, the limitation is that for higher frequency

resolution situations, it may perform worse.

2) Term Selection Study: Normally, the OLS based method

needs to select all the relevant terms to achieve an ideal

filtering effect. However, by control of the summation of the



TABLE II

COEFFICIENTS COMPARISON OF FIR2() AND IDEAL ONES.(ORDER-10)

n hd(n) f = [0, 0.6, 0.6, 1] interval= π
1000

-5 0.00000000000000 0.00038455366668 0.00474422289254

-4 0.07568267286407 0.07480846476052 0.07381197433722

-3 -0.06236595225258 -0.06232992055387 -0.06603956659887

-2 -0.09354892837886 -0.09299995683258 -0.08955904050756

-1 0.30273069145626 0.30266212174209 0.30410856041926

0 0.60000000000000 0.59960937500000 0.59521484375000

1 0.30273069145626 0.30266212174209 0.30410856041926

2 -0.09354892837886 -0.09299995683258 -0.08955904050756

3 -0.06236595225258 -0.06232992055387 -0.06603956659887

4 0.07568267286407 0.07480846476052 0.07381197433722

5 0.00000000000000 0.00038455366668 0.00474422289254

TABLE III

COEFFICIENTS COMPARISON OF OLS AND IDEAL ONES.(ORDER-10)

n hd(n) interval= π
1000

interval= π
10000

-5 0.00000000000000 0.00002979805319 0.00000353824178

-4 0.07568267286407 0.07561109368412 0.07567239400313

-3 -0.06236595225258 -0.06235323232102 -0.06236359287874

-2 -0.09354892837886 -0.09359782644052 -0.09354792546414

-1 0.30273069145626 0.30275145161048 0.30273168582088

0 0.60000000000000 0.59991711964520 0.59998368155733

1 0.30273069145626 0.30275145161048 0.30273168582088

2 -0.09354892837886 -0.09359782644052 -0.09354792546414

3 -0.06236595225258 -0.06235323232102 -0.06236359287874

4 0.07568267286407 0.07561109368412 0.07567239400313

5 0.00000000000000 0.00002979805319 0.00000353824178

ERR value, the number of terms in the desired FIR filter can

be actively controlled to achieve a compromise between the

filter complexity and the filter performance. This is another

advantage of the OLS based method over the fir2() routine,

which can do nothing on this point.

To demonstrate the merits, the term selection process of the

OLS based design is illustrated in Table IV. Clearly, if the

target value of
∑

ERR is only 95%, then the FIR filter of

seven terms

HOLS(ejω) = b−4e
−j(−4)ω + b−2e

−j(−2)ω + b−1e
−j(−1)ω

+b0e
−j(0)ω + b1e

−j(1)ω + b2e
−j(−2)ω + b4e

−j(4)ω(34)

is sufficient to satisfy the design requirements. After the

fourth step, the summation of ERR reaches
∑

ERR =
0.95333829836719.

However, the seven terms FIR filter design using fir2() is

Hfir2(e
jω) = b−3e

−j(−3)ω + b−2e
−j(−2)ω + b−1e

−j(−1)ω

+b0e
−j(0)ω + b1e

−j(1)ω + b2e
−j(−2)ω + b3e

−j(3)ω(35)

The difference is that the fir2() routine selects frequency

component n = 3 but not n = 4. Through further calculation,

TABLE IV

ERR VALUE ANALYSIS FOR EACH STEP.(ORDER-10, FREQUENCY

INTERVAL= π
1000

)

Step ERR(i)

∑

(i)
ERR Selected terms

1 0.59978262523488 0.59978262523488 e−j(0)ω

2 0.30537642402055 0.90515904925543 e−j(1)ω + e−j(−1)ω

3 0.02912828996622 0.93428733922166 e−j(2)ω + e−j(−2)ω

4 0.01905095914553 0.95333829836719 e−j(4)ω + e−j(−4)ω

5 0.01298092491840 0.96631922328558 e−j(3)ω + e−j(−3)ω

6 0.00000000296661 0.96631922625219 e−j(5)ω + e−j(−5)ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ideal
fir2
OLS

Fig. 2. Frequency Response Magnitudes with Term Selection (
∑

ERR =
0.95333829836719)

the value of ERR for term (e−j(3)ω + e−j(−3)ω) on the

fourth step is 0.01296523967681, which makes
∑

ERR′ =
0.94725257889847, unqualified for the design requirement.

The comparison of design results and corresponding co-

efficients are depicted respectively in Figure 2 and 3. The

significance of frequency component n = 4 is greater than

that of n = 3, therefore, the OLS algorithm takes advantage

and picks up the most significant term to improve the overall

system design.

VI. CONCLUSIONS

In this paper, a new OLS based FIR filter design procedure

has been proposed and compared with the traditional FIR filter

design routine fir2() in MATLAB. Several advantages of the

new method over traditional method have been demonstrated
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0.6
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OLS

Fig. 3. Filter Coefficients Comparison with Term Selection. (Order-10)



using simple design examples. The simulation studies verify

the effectiveness and value of this new approach. We are

currently extending the OLS based method to deal with the

issue of nonlinear filter designs. These results will be presented

in a future publication.
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