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Abstract— A spring damper system with a nonlinear 

damping element is investigated using the Volterra series 

method to study the system frequency response function 

(FRF) characteristics. The relationship between the FRF 

and the characteristic parameters of the nonlinear damper 

is determined to produce an analytical description for the 

system FRF. Simulation studies are used to verify the 

theoretical analysis. These results provide an important 

basis for the FRF based analysis and design of nonlinear 

spring damper systems in the frequency domain.  
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I.  INTRODUCTION 

Frequency domain analysis of linear systems is well 
established and is used in almost every branch of science 
and engineering. The classical time-domain 
characterization of a linear system is given by: 

( ) ( ) ( )y t d h u tτ τ τ
∞

−∞
= −∫                         (1) 

The corresponding frequency-domain description is: 

( ) ( ) ( )Y j H j U jω ω ω=                          (2) 

In (1) and (2), h(t) is the impulse response function of 
the system, ( )H jω  is the frequency response function 

(FRF), and y(t) and u(t) are the output and input of the 
system respectively. ( )Y jω and ( )U jω are the system 

output and input spectra which are the Fourier Transform 
of y(t) and u(t) respectively. Linear dynamic systems are 
completely characterized by the impulse response function 
h(t) or the FRF ( )H jω .  

For nonlinear systems, the situation is more 
complicated and the classical approach to the analysis of 
linear systems normally does not work. Volterra 
introduced the Volterra series, which is an extension of 
equation (1) to the nonlinear case. Bedrosian and Rice [2] 
developed a harmonic probing algorithm which can be 
used to determine the Generalized Frequency Response 
Functions which are the Fourier Transforms of the 
Volterra kernels: a frequency domain description for 
nonlinear systems. Volterra kernel transforms. Based on 
the Volterra series and the harmonic probing algorithm, 
many theories have been developed to analyze the 
frequency response of nonlinear systems. Wiener and 
Spina [3] derived expressions for the single sinusoid 

describing function in terms of the Volterra kernels. 
Peyton Jones and Billings [4] extended these results and 
derived algorithms for obtaining the general harmonic 
input describing function. Chua and Ng [5] extended the 
Volterra series from single input single output systems to 
multi-input single-output systems. Expressions for the 
output frequency characteristics of nonlinear systems have 
been derived for multitone and general inputs by Lang and 
Billings [6]. This result is a natural extension of the well 
known linear relationship (2) to the nonlinear case. 
Worden, Manson, and Tomlinson [7] extended the 
conventional harmonic probing algorithm to deal with the 
Volterra functional series model subject to a multi-tone 
input. Swain and Billings [8] derived a recursive 
algorithm to compute the generalized frequency response 
function matrix of multi-input multi-output (MIMO) 
nonlinear systems.  

It is well known that the FRF is an important concept 
in the analysis of linear systems in the frequency domain 
and which is widely used in a variety of engineering areas. 
Although, rigorously speaking, the same definition of FRF 
does not hold for nonlinear systems, the FRF concept has 
been applied by researchers and engineers to perform 
approximate nonlinear system frequency domain analysis. 
However, as far as we are aware of, few results have been 
reported on the analysis of the effects of the characteristic 
parameters of nonlinear systems on the FRF although such 
results may be important for FRF based nonlinear system 
analysis and design. In order to partly solve this problem, 
in the present study, we focus on a 
single-degree-of-freedom (SDOF) spring damper system 
with a nonlinear damping characteristic, to derive an 
analytical relationship between the FRF and the damping 
characteristic parameters of the system. Volterra based 
nonlinear frequency domain methods are used to perform 
the analysis, and the results can be extended to more 
general cases. Simulation studies are conducted to verify 
the theoretical analysis. This work provides an important 
basis for the FRF based analytical studies including the 
design of nonlinear spring damper systems. 

II. SYSTEM DESCRIPTION 

Consider the nonlinear spring damper system shown in 
Figure 1. A mass, m, supported on a nonlinear damper and 
a parallel spring, is subject to a harmonic disturbance of 
amplitude, dF at the frequency Ω . The nonlinear 



damping characteristic is represented by a third order 
polynomial: 

2 3

1 2 3(.) (.) (.) (.)f a a a= + +                        (3) 

where 1a , 2a , 3a  are the parameters of the damper. 

The characteristic parameter of the spring is 1k , and the 

force transmitted to the support is ( )sF t . The system input 

and output equilibrium equations can be expressed as: 

2 3

1 2 3( ) ( ) ( ) ( ) ( ) sin( )
d

mx t a x t a x t a x t kx t F t+ + + + = Ω�� � � �       (4) 

2 3

1 2 3( ) ( ) ( ) ( ) ( )sF t a x t a x t a x t kx t= + + +� � �             (5)                               

   For convenience of analysis, define    

1( ) ( )y t x t=                                 (6) 

2 ( ) ( )
s

y t F t=                                 (7) 

and 1 sin( )du F t= Ω                              (8) 

The system can then be described by a single input two 
output system as: 

2 3

1 1 1 2 1 3 1 1( ) ( ) ( ) ( ) ( ) sin( )dmy t a y t a y t a y t ky t F t+ + + + = Ω�� � � �   (9)                            

2 3

2 1 1 2 1 3 1 1( ) ( ) ( ) ( ) ( )y t a y t a y t a y t ky t= + + +� � �             (10)                         

The objective of this study is to investigate how the 
system nonlinearity affects the FRF of the system. In 
order to achieve this, we need to derive the relationship 
between the system FRF and the nonlinear damping 
parameters 2a  and 3a .  

III. THE FREQUENCY RESPONSE FUNCTION 

For a multi-input multi-output (MIMO) nonlinear 
system, under certain conditions, the output of the 1j th 

subsystem can be described by a Volterra functional 
polynomial as (Worden, Manson and Tomlinson [7], 
Swain and Billings [8]):  
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where 
1

( )
( )

n

jy t  is nth order component of 
1
( )jy t , N is 

the maximum order of the system nonlinearity, and 
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where r is the number of inputs and 1 1( : , )

1( , , )nj

n nh
β β τ τ" "  

is the nth order Volterra kernel of the 1j th subsystem. 

The output of a single input two output nonlinear 
system is therefore given by: 
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When system (13) (14) is subjected to a multitone 
input: 

*
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where *,i i i iA A w w− −= = − , according to the output 

spectrum of nonlinear systems derived by Lang and 
Billings [6], the frequency domain input-output 
relationship of the system can be: 
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where
1
( )jY jw , 1j =1, 2, are the output spectra of the 

1j th output. N1

1

:1, 1

( , , )n

n

j

n k kH jw jw
"

"  is the multi-dimensional 

Fourier Transform of the nth order impulse response of 
the 1j th subsystem called the nth order generalized 

frequency response function (GFRF) 
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(18) 
When the spring damper system (9) and (10) is 

equivalently described by the Volterra model (13) (14) 
and is subjected to the multitone input (15), the output 
spectra of the system is given by (16). Consider 1 2j =  in 

(16), and write out the terms in the expression for 2 ( )Y jw  

up to 5th order of nonlinearity to yield 
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Denote 

2:1

1 1

1
( ) ( ) ( )

2
Q jw H jw A w=                        (20) 
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And consider the case where the system is subjected to 
the harmonic input (8). After substituting Ω into (20)-(24) 
for w and some manipulations then 

"+Ω+Ω+Ω+Ω+Ω=Ω )()()()()()( 543212 jQjQjQjQjQjY (25)
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Consequently, when subject to a harmonic input, the 
FRF of system (9) (10) between the input and the second 
output can be expressed as 
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Equation (32) shows that the effect of 2a  and 3a  on 

the generalized frequency response functions ( )⋅m
nH of the 

system have to be determined first. 

IV. GENERALIZED FREQUENCY RESPONSE FUNCTIONS 

Given a parametric model of a nonlinear system, an 
effective method for determining the system GFRFs is the 
harmonic probing method introduced by Bedrosian and 
Rice [2]. The basic idea of this method is to apply an input 
u(t) which is a combination of exponentials such that 

1

( ) 1i

R
jw t

i

u t e R N
=

=       ≤ ≤∑                   (33) 

to excite the system under study, and then to substitute 
the exponential input and the output response of the 
Volterra series model into the system parametric model. 
The Rth order GFRF of the system can then be obtained 

by extracting the coefficient of 1( )Rj w w
e

+"  from the 

resulting expression. 

To use the harmonic probing method to determine the 
GFRFs of system (9) (10), the multi-frequency excitation 
(33) is applied as input to excite the system to yield the 
response of from the system Volterra series model (13) 
(14) as 
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Substitute (33) and (34) into the system parametric 
model (9) (10) for u(t) and 

1
( )jy t , 1 1, 2j =  respectively and 

extract the coefficient from the resulting expressions to 
obtain the equations from which the GFRFs of the 
nonlinear spring damper system  

N N1:1, 1 2:1, 1

1 1( , , ), ( , , )      n=1, 2, 3n n
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" "  can be derived. 

Following this procedure, the GFRFs of system (9) (10) 
up to the 5th order nonlinearity have been determined for 
the analysis of the FRF of the system.  

For the first order GFRFs, the harmonic input 

1

1
( ) j w t

u t e=                          (36) 

is applied to excite the system. Because R=1, (34) can 
be written as 
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Substituting (36) and (37) into (9) and (10), and 

extracting the coefficient of 1jw t
e , gives the first order 

GFRFs: 
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For the 2nd order GFRFs, the harmonic input  
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1
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is applied to excite the system. Now, R=2, and (34) is 
given by: 
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Substitute (39) and (40) into (9) and (10), and 

extracting the coefficient of
1 2( )j w w t

e
+

, yields the 2nd order 
GFRFs: 
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For the 3rd order GFRFs, the harmonic input applied is 

31 2

1 ( )
j w tj w t j w t

u t e e e=  +   +                  (43) 

Since R=3, from (34) 
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Substituting (43) and (44) into (9) and (10), and 

extracting the coefficient of 1 2 3( )j w w w t
e

+ + , yields the 3rd GFRFs 
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For GFRFs of higher orders, the same procedure 
yields expressions which are not presented due to page 
limitations. The 1st,  3rd and 5th order GFRFs will be used 
in the next section to determine an analytical expression 
for the system FRF ( )H jΩ . 

V. ANALYTICAL DESCRIPTION OF THE FREQUENCY 

RESPONSE FUNCTION 

The FRF of the system (9) (10) of interest in the 
present study has been given in (32). Truncating the 
expression at 5th order yields 

( )
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1 3 53 5
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H j H j H j j j A H
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Ω = = Ω + Ω − Ω Ω + + Ω ⋅⎢ ⎥Ω ⎢ ⎥Ω Ω − Ω⎢ ⎥⎣ ⎦

∑

             (49) 

which is valid under the assumption that the system 
nonlinear effects beyond 5th order are negligible. 

To derive an analytical expression for the FRF ( )H jΩ  

in terms of the system damping characteristic parameters 

2a  and 3a , substitute ( )2:111

3H ⋅  and ( )2:11111

5H ⋅  evaluated at 

the relevant frequency points into (49) for 
2:111 2:111 2:111

3 3 3( , , ) ( , , ) ( , , )H j j j H j j j H j j j⎡ ⎤− Ω Ω Ω+ Ω− Ω Ω+ Ω Ω− Ω⎣ ⎦ and ( )2:11111

5H ⋅∑  

respectively. In order to illustrate the approach, consider 
the derivation of the analytical relationship between 

( )H jΩ  and 2a , 3a  in three relatively simple cases: (i) 

2 0a ≠ , 3 0a ≠  and ignoring the nonlinear effects higher 

than 3rd order; (ii) 2 0a = , 3 0a ≠  and considering 

nonlinear effects up to 5th order; (iii) 2 0a ≠ , 3 0a =  and 

considering nonlinear effects up to 5th order. 

In case (i), substitute the results of  ( )2:111

3 1 2 3, ,H jw jw jw  

given by (45) and evaluate at ( ), ,−Ω Ω Ω , ( ), ,Ω −Ω Ω  and 

( ), ,Ω Ω −Ω  respectively into (49), yields 
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2 :1

1 1

1
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In case (ii), substituting ( )2:111

3 1 2 3, ,H jw jw jw  evaluated 

at ( ), ,−Ω Ω Ω , ( ), ,Ω −Ω Ω  and ( ), ,Ω Ω −Ω  and 

( )2:11111

5 1 5, ,H jw jw"  evaluated at the ten 5-dimensional 

frequency space points in the definition of ( )2:11111

5H ⋅∑  in 

(31) into (49) yields 
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where 1p  and 3p  are as defined above and 
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In case (iii), the same computation as in case (ii) yields 
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where 1p  and 2p  are the same as defined above and 

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

410

5 5 4 2

32 48

2 3 2A  
( )

48 162 ( ) 2

(2 ) 3 ( ) 2

m
p j

β β β β
β β β

β β β β

⎡ ⎤− +⎢ ⎥Ω Ω Ω − ΩΩ Ω ⎢ ⎥Ω = ×
⎢ ⎥Ω −Ω Ω

+⎢ ⎥Ω Ω −Ω − Ω⎢ ⎥⎣ ⎦

(57) 

More general results which consider both 2a  and 3a  

and take higher order system nonlinearities into account 
can be determined following the same approach. These 
results explicitly reveal how the FRF depends on the 
system nonlinear damping characteristic parameters, and 
are therefore of considerable significance for the analysis 
of the effects of the nonlinear parameters on the system 
behavior and for the design of this system in the frequency 
domain. 

VI. VERIFICATION OF THE ANALYTICAL RESULT 

In order to verify the analytically determined FRF, 
consider the nonlinear spring damper system of (9) (10) 
excited by the harmonic input (8) with the parameters m 
and k given by k=16000 N/m; m=240 kg. 

Simulation studies were conducted to determine the 
Nyquist plots of the system FRF under the three different 
cases of (i) (ii) (iii) in section 5 and to compare the 
simulation results with the FRFs analytically determined 
using (50) (54) and (56) respectively. 

For case (i), where 2 0a ≠ , 3 0a ≠ , simulation studies 

were conducted for 1 296a = , 100dF =  to compare the 

system FRFs with the analytically determined results for 
the following five choices of 2a  and 3a : 

(1) 2 200a = , 3 200a = ; (2) 2 500a = , 3 500a = ; 

(3) 2 1200a = , 3 1200a =  ; (4) 2 100a = , 3 1000a = ; (5) 

2 1000a = , 3 500a = . 

The solid lines in Figures 2-6 represent the simulation 
results of the FRF obtained by a FFT analysis. The dashed 
lines show the FRF analytically determined using (50) 



when nonlinear terms up to 3rd order are considered. The 
dotted lines represent the FRF which only takes the 
system linear effect into account. Figures 2, 3 and 4 
clearly indicate how the theoretical analysis works for the 
three choices of 2a  and 3a . From Figure 2, it can be 

observed that the analytical result is very similar to the 
simulation results when 2 3 200a a= = . Figure 3 shows that 

as the value of 2a 3a  increases to 500, which means an 

increase of the nonlinear effects of the system, the 
analytical results can still represent the simulation results 
reasonably well. A detailed analysis of Figure 4 indicates 
that when 2 3a a= =1200, the analytically determined FRF 

can represent the simulation results over all frequencies 
apart from those between 7.7 and 8.7, which is near to the 
resonant frequency of 8.16 rads/s. The further the 
frequency is away from the resonant frequency, the more 
accurately the analytical expressions can represent the 
FRF of the system. Further simulation studies show that 
when 2 3a a=  increase beyond 1200, basically the 

analytically determined FRF can not be used to well 
represent the real system FRF. This implies that the 
system nonlinearity higher than 3rd order has to be taken 
into account in these cases to achieve a better analytical 
representation of the system FRF. Figures 5 and 6 show a 
comparison of the analytical and simulation results for 
two other choices of  2a  and 3a , and demonstrates that 

the conclusions for the case of 2 3a a=  also holds for these 

more complicated situations.  

For case (ii), where 2 0a = , 3 0a ≠ , simulations studies 

were conducted to compare the system FRF with the 
analytical results for the following choices of 1a  and dF : 

(1) 1 29.6a = , 1dF = , 3 3000a = ; (2) 1 29.6a = , 1dF = , 

3 5000a = ; (3) 1 29.6a = , 1dF = , 3 10000a = ; (4) 1 296a = , 

100dF = , 3 300a = ; (5) 1 296a = , 100dF = , 3 500a = ; 

(6) 1 296a = , 100dF = , 3 1000a =  

In Figures 7-12, solid and dotted lines again represent 
the simulated FRF and the FRF which only takes linear 
effects into account. The dash-dotted lines show the 
analytical FRF determined by (54) which considers 
system nonlinear effects up to 5th order.  

The results in Figures 10-12 reflect the same 
phenomena as demonstrated by Figures 2-6 but for the 
cases 2 0a = , 3 300a = ; 2 0a = , 3 500a = ; and 2 0a = , 

3 1000a = . The results in Figures 7-9 show similar 

phenomena but under a smaller 1 29.6a = , a smaller input 

amplitude 1dF = , and a greater range of change of 3a  

from 3 3000a =  to 3 10000a = . Notice that a smaller value of 

1a  and a greater value of dF  both correspond to severe 

nonlinear effects. Because of this, for the two scenarios of 
smaller 1 29.6a = , smaller 1dF = and greater 1 296a = , 

greater 100dF = , similar comparison results between the 

simulated and analytical FRFs can be observed.  

For case (iii), where 2 0a ≠ , 3 0a = , simulation studies 

were conducted when 100dF =  to compare the system FRF 

with the analytical results for the following choices of 

1a and 2a : (1) 1 1960a = , 2 20000a = ; (2) 1 1960a = , 2 30000a = ; 

(3) 1 2960a = , 2 40000a = ; (4) 1 2960a = , 2 50000a =  

The comparison between the system FRF and the 
analytically determined results is shown in Figures 13-16 

for the four different choices of 1a  and 2a  respectively. 

Conclusions similar to those for cases (i) and (ii) can be 
reached regarding these results. 

Simulation studies for the above three different cases 
all indicate that the analytically obtained FRF can match 
the real results over a considerable range of parameter 
values and frequencies although only up to 3rd or 5th order 
system nonlinear effects have been considered. If higher 
order nonlinearities were taken into account in the 
analytical expressions (50), (54) and (56) for the system 
FRF, it should be possible to get significant improvements 
in Figures 4,5,9,12,14 and 16 where the match between 
the analytical and real FRF result is not very satisfactory 
close to the system resonance frequency 8.16 rad/s. 

Given a specific harmonic input, and the parameters 

1, ,k a m  in the linear part of the system (9) (10), it is shown 

via theoretical analysis in section 5 and verified by 
simulation studies above that the FRF of the nonlinear 
spring damper system can be expressed as an explicit 
analytical function of the system damping characteristic 
parameters 2a  and 3a . This result can be used directly in 

the FRF based analysis and design of the system (9) (10). 
This approach can be extended to address the frequency 
domain analysis and design issues of more general 
nonlinear systems. 

VII. CONCLUSIONS 

The FRF of a nonlinear spring damper system has 
been studied. For the first time, an analytical relationship 
between the FRF and the nonlinear damping characteristic 
parameters has been derived for this system using Volterra 
series method. Simulation studies have been used to verify 
the theoretical analysis. It has been observed from the 
simulation results that the orders of nonlinearity 
considered in the analytical FRF description have 
significant impact on the accuracy of the derived 
analytical expressions when severe nonlinear effects are 
involved. This work provides a significant basis for the 
FRF based analytical study and design of nonlinear spring 
damper systems in the frequency domain. 
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Figure 1. The single-degree-of-freedom (SDOF) spring damper system 
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Figure 2 
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Figure 6 
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Figure 10 
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Figure 14 
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Figure 3 
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Figure 11 
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Figure 15 
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Figure 12 
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