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An Algorithm for Determining th®utput
Freguency Range of Volterra Models with
Multiple Inputs

HuaLliang Wei, ZiQiang Lang, and Stephen A. Billings

Abstract—A new algorithm for determining the output frequency range and the frqquency components of Volterra
models under multiple inputs is introduced for nonlinear system anakis. For a given Volterra model, the output
frequency components corresponding ta multi-tone input can easily be calculated using the new algorithm.

Index Terms—generalized frequency response functions, nonlinear systems, outppestrum, Volterra models.

I. INTRODUCTION

One important aspect of system analysis in the frequency domsahe requirement to investigate the
relationship between the system input frequencies and the output fredpedvaviour. For linear systems,
the output frequency functio¥( jw) is related to the input frequency spectruh{j ) by the system frequency

response functiorH (jw) via the simple linear relationshif( jw) = H(jw)U (jw) . This simple basic result

provides the foundation for all linear system analysis and design iretigehcy domain. In thisase, the input
frequencies pass independently through the system, that is, an input at &egjuency® produces at steady
state an output at the same frequency and no energy is transferred to oryfrothearfrequency components
The system frequency response functib(j ) itself alone can totally characterise a given linear system. For

nonlinear systems, however, this is not true. It has been observedighatitput frequency components of
nonlinear systems arauch richer compared to the corresponding input frequencies. The inpueericies pass
in a coupled way through a nonlinear system, that is, an input at given frisgueray produce quite different
output frequencies. This is quite different from theecéor linear systems where the output frequency range is
identical in steady state to that of the inputs. This makes it difficult to @igeneral explicit expression
connecting the input and output frequencies for most nonlineamsystéowever, for soe specified inputs,
explicit algorithms are available to determine the output frequency range [1]

This study presents a new and much simpler algorithm for the detémmiod the output frequency range
and the frequency components for Volterra modetieumultitone inputs. This is very useful for the analysis of
nonlinear systems in the frequency domain.

Il. GENERALIZED FREQUENCYRESPONSEHFUNCTIONS FORNONLINEAR SYSTEMS

It is well known that the inpebutput relationship of a wide class of nonlinear gystean be approximated in
the time domain by the Volterra functional series [4].

yt) =Y ya () (1)

where the system outpuft) is expressed as a sum of the responde mdrallel subsgtems, each of which is
related to both the system inpuft) and annth-order kernel. The output of thath-order nonlinear
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subsystemy,, (t) , is characterised by an extension of the familiar convolution intefjimlear systems theory
to higher dimensions

Va® =" [ Ry mut = 2) - utt -z )dzy dey, = [ [ (o m)[ Jlu - 7)de]
i=1
@)

where thenth-order kernel or nth-order impulse response h,, (z;,---,7,) is so called because this reduces to the
linear impulse response function for the simpleasen=1. By introducing the concept of thath-order

associated function [4] and thendking the multidimensional Fourier transform of the associated fumgtields
from (2)

Y}(jwl,---,jwn)=Hn(jwl,---,jwn)ljluuw.) @3)

whereU (-) is the inputspectrum defined as the Fourier transform operkbtq(.j®,, -, jo,) is thenth-order
transfer function or nth-order generalised frequency response function (GFRF) defined as

H,(joy,---, joy,)
=J:-.-fw h, (zy,,7,)e enttomldr .dr - (4)

Following [1] and [3], it can easily be shown that

yn() (2 ) I 'J-_OOYn(jwl"”vja)n)

x el altge - de, (5)

By making a change of variables

.S ®

Eq. (5) becomes

o) = (zi)nIi---f_”jn(jal.--~,jan,l,j(on—al—--~—an,1))
xelidoy doy L1 J V(00 100 (0 - X )doy - do,
27[)
xel'do
— [ Yoo de )
where
Yolio) = )“J N @y, jon, j(@=-ay -~ 0,,))

xdw,---dao, ; (8)



From (1) and (7)

L

Y=Y o[ Valioe do

n=1
1 o | & ] .
= gjw{zn (i w)} eldw 9)
n=1

Therefore, the system output frequency response or output specteugiven general inputt) is
L L
Y(jo)=) Y. (j0), we| JQ, (10)
n=1 n=1

where Q) is the effective frequency domain of thth-order output frequency functio¥, (j@). The family
{o,,--,0,;0} in Eq (8) was referred to as theput-output frequency domain in [3]. The output
spectrunY, (jw) can therefore be referred to as tith-order output frequency (response) function or output
spectrum. For a physical interpretation of (5) and (8), see [1][3]. Note from dhiable transform (6) that the
inputoutput frequency domain is restrictedap+---+ @, =@ . The valid frequency range of the output
spectrum can therefore be determined provided that the input frequenciesvane kno

I1l. DETERMINING OUTPUT FREQUENCIESUNDER MULTIPLE INPUTS

This section presents a useful result on calculating the output freqaiencienlinear systems which can be
described by the Voterra series.

A. Description of Output Frequencies
As a simple example, consider a simple case, where meankystem is driven by a sinusoidal signal

u(t) = Acos@t) = g(ej”"’t e Joty (11)

Substituting (11) into (2), yields [2]

AY' & (n . . . . i (n-2K) @t
Yo =| = | 2|, [Hali@p -, j@g,— jay, = jwy)e’ °
2) ik ok K

(12)

From (12), the input to thenth-order submodely,(t) contains only one single principal frequency
componenty,, the output of thenth-order submodey, (t) , however, contains many frequency components
distributed att nw,, + (N-2)w,, £(N—4)w,,---. For examfe, for the linear submodel of the nonlinear
system (1), the output frequencies incldade,; for the 2ndorder nonlinear subsystem, the output frequencies

will appear at 0 antt 2w, .
For a general case, where the ingu isummation of multiple sinusoidal waves

u(t) = ZK: A cost) = ZK: %ei“"t (13)

withw, =0, 0 =-w,, Ay=0, A, =A, the output of thenth-order submodey,(t) can be
calculated to be [1]



1 K K
yn(t)=?kz 2. B(®y)Blo H, (o o)

=—K k=K

(o ++ay N

xe (14)

where

B(a)):{Ak oe{ow, k==£1--- +K} (15)

0 otherwise

Following [1], thenth-order output frequency functiofy (j@) can be expressed as

1 kK K
F z Z B(wkl)”'B(a)kn)Hn(a)klv"':wkn)

k=K  k,=—K
%,—J

Yojo)=

O+t o =0

(16)

As will be shown in the next section, the output frequency compongtite uth-order submodely,, (t) will be
much richer compared with the input frequency components since each fiequemmonento determined by

n
the combinationa)=2a)kl with k; e{+1+2,---, K} might appear in the output frequency domain. An
i=1
important point is that these possible output frequency components canebmied beforehand onceeth
frequency components in the multiple input are given.

B. An Algorithm for Determining the Output Frequency Range

It is observed that the output frequency components of nonlinear syatemsuch richer compared to the
corresponding input frequencies. The input frequencies will pass in &edoupy through a nonlinear system,
that is, an input at given frequencies may produce quite differenttdudiguencies. Therefore energy may be
transferred to or from other frequency components. This is gtiigzedit from the case for linear systems where
the output frequency range is identical in steady state to that of the linywatld be difficult to give a general
explicit expression connecting the input and output frequerfofeall nonlinear systems. Howaydor some
specified inputs, explicit algorithms are available to determine the effeftéquency range for arbitrary order
output frequency response functions. Lang and Billings [1] proposedgarnitian to compute the frequency
range of the arbitrargrder output frequency functiovi (jw) defined by (7) and (8). In this study, however, a
much improved and compact recursive algorithm is proposedaloulating the effective frequency range of
arbitrary order output frequency functions.

From (7) and (8), the input and output frequencies fomtherder subsystem with a multiple input of the
form (13) will be constrained by

w:Zn:wki Kk e{t1£2,-- K} (17)
i=1

This will be used to determine the dreency range of theth-order output frequency function. For convenience
of description, denote



o, =—0
Ok =0
O =Wy

For the simplest case af=1, it is clear that the effective frequencgnge of the output spectrum is
weQ,={o, k=212 2K} ={w, :k=%1--- £K}.

In order to determine the effective frequency rar@e for the case ofn=2, consider the following
combinations of two frequency components

o,+0,

O, +05

O, +0;

(19)
(o) +O—2K

Oy, +0;

Ook + 02
This can be expressed in a vector form as

oyl +V

T, = =V ® 1,y + 1, ®V  (20)

Ol +V

wherel ,, = [ZI.,-~-,ZI.]T , V=[al,-~,o-2K]T. The symbol ® ' denotes the Kronecker product, which is
\_‘\f—_J
2K

defined fortwo vectorsA=[a,,--,a,]" and B=[b,---,b,]" as

a,B

a,B

Ays ® By, =

o (21)

apB

For a given vectoX =[x, x,,---,x,]", letX® denote a set whose elements farmed by the

entities ofX in the sense that® ={x :1<i< p}. It can easily be proved that all the different
entities of the vectar; are identical to all the effective frequency components of the second
order output frequencfunctiony,(jo). Note that some entities in the veatdrmay be the



same. Therefora; is redundant for determining the effective frequency components
ofY,(jw) .

In general, the féective frequency components of timth order output frequency functio¥,(jw) can be
calculated using the recursive algorithm below:

Algorithm 1 Assume that a nonlinear system is excited by a multiple input signal u(t) of the form (13) with K
fundamental frequency components , {®,,®,,---,®,} . The effective frequency components of the nth-order

output frequency function can be determined by searching all the different entitiesof €2, which isdefined as

r,=V (22)
rn = rnil ® | 2K + I<r5 > ®V (23)
Q,=I3, n>2 (24)

where V is defined as in (20), <T3; >=<Q, ; >indicates the number of entities in the vector

r,,,and

ln=[22 1] (25)

The above recursivalgorithm is very simple and quite easy to implement using veciented software tools.
As an example, consider the cas&KeB, w, =2, @, =3 andw;=7. Forn=2 and 3, the frequency componeots

the output frequency functions were calculated tdhe={0,+1, +4, +5, +6, +9, +10, £14} and2,={+1, £2,
13, #4, 6, 7, £8, £9, +11, 12, +13, £16, +17, +21}.

Proof of Algorithm 1 Assume that all the differémntities of the vectdr, are identical to all the effective

(n .. -0

frequency components of tmth-order output frequency functio¥, (jw) . Letl', =[o; ", ,O'a(n)]T, where

a(n) =< l"ns> . All the possible frequary components for thentl)th-order output frequency function

Y,...(Jo) can then be determined by inspecting the following combinations:
o+ o,

o 4o,

o + o,

(26)
0'5”) + 0

(n)
O'arzn) +0,

(n)
Oan) T 02k

Similar to (25),the above equation can be expressed in a vector form as



oM, +V
Cha=| ¢ =T, ® 1, +1

(n)
O u(n) I +V

OV (27)

a(n

This is just (23). Therefore, Algorithm 1 can be used to determineftwied frequency range for the arbitrary
order output frequency functiofy (j@) . Note that some entities ifi, are the same anH,, is often redundant

for determining the effective frequency components ofithedrder output frequency functiofy (j) .

It is known that thepositive and negative frequencies are symmetrical about the origin, therefprine
nonnegative frequencies need to be calculated. It can easily be shown that thegative frequency

components of thath-order output frequency functio¥, (jw) can be calculated using the recursive algorithm
below:

Algorithm 2 Assume that a nonlinear system is excited by a multiple input signal u(t) of the form (13) with K
fundamental frequency components , Q, ={®,,®,,---,®} . The non-negative frequency components of the

nth order output frequency function can be determined by searching all the different entities of Q;, which is
defined as
rlz[a)l!a)Z""’a)K]T (28)
I =T ®1, +1 K 2K)™2 ®V (29)
Q) AT, 15, n>2 (30)

whereV is defined as in (20)| ,, is defined by (25), and’, |° is a set whose elements are composed by all the

different entities of the vectdi, by taking absolute values.

Algorithm 2 can be proved in the same way as Algorithm 1. The recursiwétlag is very simple and quite
easy to implenent using vecteoriented software tools. For the cases?, (29) becomes

(01+O'1
Wy Wy + 0O
L= |®ly+1,®V=| : (31)
Oy Wy +0,
| oy +0y |

Clearly, the absolute values of all the different entities of the vdc¢iare identical to all the nenegatie
frequency components of the second order output frequency fulg(ipm) .

As an example, consider the casekeB3, @, = 27f,, w, = 2xf,, w; =2af, with f,=2, f,=3 andf;=7.
For n=3, the nomegative frequency components of the output frequency functions werdatedl to be
Qg ={1,2,3,4,6,7,8,9, 11,12,13,16,17,21}.

IV. CONCLUSION

A new algorithm has been introducedditermine the output frequency range and the frequency components
for the Volterra class of nonlinear systems with multitone inputs.nEmealgorithm is quite simple and easy to
implement using vector and matiixiented software tools. Thus compared tevpus results [1], the new
algorithm is more compact in form and much simpler to implement.
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