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Abstract

A new approach for the estimation of spatial derivatives and the identification of a
class of continuous spatio-temporal dynamical systems from experimental data is presented
in this study. The proposed identification approach is a combination of implicit Adams
integration and an orthogonal forward regression algorithm (OFR), in which the operators
are expanded using polynomials as basis functions. The noisy experimental data are de-
noised by using biorthogonal spline wavelet filters and the spatial derivatives are estimated
using a multiresolution analysis method. Finally, a bootstrap method is applied to refine
the identified parameters from the OFR algorithm. The resulting identified models of the
spatio-temporal evolution form a system of partial differential equations. Examples are
provided to demonstrate the efficiency of the proposed method.

1 Introduction

Complex spatio-temporal patterns have been widely observed and explored in many diverse
fields including physical, chemical, biological, and ecological systems. To better understand
these spatio-temporal phenomena and to bring together experiment and theory, much has been
achieved to model these systems with partial differential equations (PDE). However, in most
of these studies, PDE models arise from mainly theoretical consideration and are derived by
analytic modelling methods where often a large number of assumptions have to be made in
order to obtain such models. It should be stressed that although some information about the
physical properties for many of these systems might be available, normally not all the dynamical
structures and parameters are known, therefore, the resulting theoretical PDE models are often
over-simplified, or in error. These problems can result in large discrepancies between simulated



and observed patterns both qualitatively and quantitatively. Therefore, there is a need to use
identification methods to refine, update, validate, or even replace these theoretical PDE models.

The identification of PDE models of continuous spatio-temporal systems has been studied by
several authors (Coca and Billings 2000, Fioretti and Jetto 1989, Voss, Bunner, and Abel 1998,
Travis and White 1985, Phillipson 1971, Niedzwecki and Liagre 2003). However most of these
studies assume that the form of the PDE equations is known up to a set of constant parameters.
In this paper a novel approach is used to reconstruct the system of PDEs for unknown continuous
spatio-temporal dynamical systems. This new approach represents one of the first algorithms
to determine the PDE model terms, and estimate the unknown parameters, from a given noisy
spatio-temporal data set. The approach can be regarded as the inverse of the classical Adams
method for the numerical solution of differential equations, that is, the operator of the evolution
is estimated from the observed values of the system variables. By using Adams integration, a
system of algebraic equations can be obtained for the underlying continuous spatio-temporal
system that is discrete in time. The advantages of the Adams method over Euler integration is
that the former should provide a better fit for less data than the latter, and the latter works well
only when the sampling interval is small which might amplify any possible noise. When applying
the Adams formula, the higher-order spatial derivatives have to be included in the identification
data. A major difficulty is that these derivatives can not generally be measured directly. In these
circumstances the most common approach is to use finite difference approximations. However it
is well known that numerically differentiating discrete noisy data can prove to be very difficult
because such a differentiation process tends to amplify the effects of the noise, particularly in
the case of higher-order derivative estimation. This may cause extra difficulties when the spatial
domain of interest is of more than one-dimension. To overcome this problem, a B-spline wavelet-
based strategy is introduced. The idea behind the proposed strategy is: the orginal noisy signal
is approximately expressed as a series expansion of B-spline functions based on a multiresolution
analysis, the resulting signal is then passed through a biorthogonal B-spline wavelet filter with a
prespecified threshold value and a denoised signal is then obtained as a new series expansion of
B-spline functions. Thanks to the properties of B-spline functions, the higher-derivatives of the
signal can be computed easily and effectively by using the retrieved series of B-spline functions.
In the case when the signal of interest is deterministic, the proposed strategy is still applicable
for calculating the spatial derivatives of the signal. By adapting system identification techniques,
the continuous operator can then be estimated from these denoised and estimated data. This
is achieved by using a polynomial estimation of the operator and the OFR algorithm (Chen,
Billings, and Luo 1989). Note that the estimation to the parameters is generally biased because
of the presence of the noise and error. To overcome this problem, in this paper, a bootstrap
method is applied to refine these parameters after obtaining the correct and significant terms
from the OFR algorithm.

The paper is organised as follows. Section 2 introduces the basic idea of the proposed approach
and presents the derivation of the system of algebraic equations using Adams formula. A bias
analysis from standard least squares algorithm is given as well. The method for denoising the
signals and estimating the spatial derivatives is presented in section 3. The OFR algorithm
for detecting the significant terms and the bootstrap method for estimating the corresponding
parameters are given in sections 4 and 5, respectively. Section 6 illustrates the proposed approach,



and finally conclusions are given in section 7.

2 Problem description

2.1 System modelling

Assume that the evolution of a continuous spatio-temporal dynamical system is governed by a
system of partial differential equations as follows

g=fy v, yV),zeQteT (1)

where y(z,t) € R™ is the independent variable of the system, The dot - denotes the time derivative
of y and the prime ' denotes the spatial derivatives of y. ¢t € T denotes time and z € Q C R™
denotes the spatial variable. f(-) is a unknown nonlinear function. Note that the time and spatial
variables t and x do not appear in f directly. This indicates that the system under consideration
is time and spatial invariant. The initial and boundary conditions for eqn.(1) are assumed as

9(y(0,1)) = yi(z) (2)

and

h(y(z,t)) = yp(x,t),x € OS2 (3)

For such a continuous spatio-temporal system, experimental measurements are often available in
the form of a series of snapshots y(x,nAt), n =0,1,2, -, z € , where At is the time sampling
interval. In this paper, it is assumed that all the components of the vector y(x,t) € R™ at
one location x are measurable (subject to some measurement noise) otherwise some state space
reconstruction techniques may be needed (Packard, Crutchfield, and Farmer 1980, Takens 1981,
Sauer, Yorke, and Casdagli 1991). The objective is to determine the nonlinear function f in eqn.
(1) from these discrete (noisy) measured snapshots. To this end, the Adams-Bashforth formula
(Press, Flannery, Teukolsky, and Vetterling 1992) is used to obtain a discrete representation of
eqn. (1). Consider a point z in the spatial domain Q, let y,(z) = y(z, nAt), then it follows

(n+1)At (n+1)At

f(y(xa t)a yl(xa t)a y”(xa t)a ) y(l)(x7 t))dt

(4)
The Adams-Bashforth formula of order p is obtained by integrating a polynomial that interpolates
fn—l—l—j(l‘)aj = ]-7 D that is

Yn+1(2) = yn(2) + /

[ it = g(a) + /

nAt



Yir(2) = (@) + A 0y fors (2) + i () )

J=1

where f11 (%) = f(Uns15(2), Ypp1—; (@), -+, ySJ)rl,j (x)) and e,,41(x) is the approximation error

of the Adams-Bashforth formula. Note that eqn. (5) reduces to Euler integration when p = 1.
The advantages of Adams-Bashforth integration over Euler integration is the former should
provide a better fit for less data than the latter and the latter works well only when the sampling
interval At is small which might amplify any possible noise.

Unlike the numerical problem, in our case the (noisy) experimental data y,(z),n =1,2,---, is
given, and the task is to determine the nonlinear function f in eqn. (5). Here it is assumed that
the unknown nonlinear function f takes a form of polynomial and the polynomial form of eqn
(5) is given by the model

Unt1(x) = yp(z) + At Xp: ;Y Biti(yni1—j(x), -, ?JSJ)rkj(x)) + ept1 () (6)

j=1 4=l

where M denotes the order of the polynomial, (; is the coefficient of the ith polynomial term,
and ¢; (Yny1—5(2),- -, ySJ)rl_j (x)) is the corresponding monomial which is the product of different

spatial derivatives of y,11_j(x) at x.

Discretising the spatial domain {2 with sampling interval Az, re-arranging and rewriting eqn.
(6) in the form of a linear-in-the- parameters (; yields

y(k,n+1) = y(k,n) + fjﬁi(ip: Ata;di(y(k,n+1—3), -y Ok, n+1—7))) +e(k,n+1) (7)

i=1  j=1

where k = zo+ kAxz and n = nAt are the discrete spatial location and time instant, respectively,
In principle, both the parameters o; and f3; should be calculated during identification. For the
sake of simplicity, the values of the «; are the ones originally dictated by the Adams-Bashforth
formula. Therefore 3; are the only parameters that need to be determined.

2.2 The bias analysis

Eqn. (7) is a discrete representation of the original continuous PDE (1). It is reasonable to
assume that the modelling error e(k,n) is an independent noise sequence with zero mean and
finite variance. In this case, a least squares-like algorithm will provide an unbiased estimation to
the parameter (3; if the data are deterministic and all spatial derivatives are available. However,
in practice, this is clearly not realistic. In what follows it is shown that a least squares type
algorithm will produce a biased estimation in the presence of noise, even if the noise is white.
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Let
z(k,n) = y(k,n) +w(k,n) (8)

be a noisy measurement of y(k,n), where w(k,n) is an independent, corrupting noise sequence
with zero mean and finite variance. Then the noisy model, which consists of eqns. (7) and (8),
can be expressed in a vector form as

z(k,n+1) = ylk,n+1)+w(k,n+1) 9)
= y(k,n)+ Zﬁl(i Atajpi(k,n+1—7)) +e(k,n+1) +w(k,n+1) (10)

= PpB+ek,n+1)
where ¢Z(k7n+1_]) = ¢Z(y(k7n+]-_])a o 7y(l)(k7n+1_]))a B = (17517 o '7BM)T7 8(]€,’I’L—|—]_) =
)

e(k,n+1)+wk,n+1)+ (P, — P,)B, and

Py = (y(k,n),ZAtaj¢1(y(k,n+ - ])7 o '7y(l)(k7n+ 1 _j))7 T (11)

J=1

S Atasou(y(k,n+1—3), -, yO(k,n+1—j)))
=1

and

7=1

p
ZAta]gzﬁM (k,n+1—7), -, 20(k,n+1—-7)))
The least squares parameter estimation is based on minimising the mean squared error criterion

J = E[e(k,n+1)?] (13)

where E[-] denotes the expectation value, which gives rise to the estimate of 3 as

B = E[PTP,) 'E[PT2(k,n +1)] (14)

It follows that if E[P’e(k,n+ 1)] = 0 the estimation will be unbiased. Under the assumptions
that e(k,n + 1) and w(k,n + 1) are mutually uncorrelated white noise sequences, then

5



E[Pre(k,n+1)] E[Ple(k,n+1)]+ E[Pw(k,n+ 1)+ E[P/(P,— P,)]3  (15)

E[P](P, - P.,)]B

which is generally not zero and immediately yields a biased estimation to the parameter B, even
if the noise sequences are white, as follows

=B+ B[P/ P)"'E[P](P, - P.)| (16)

and the bias is closely dependent on the observation noise w and the estimation errors of the
spatial derivatives.

The above analysis shows that in order to obtain an accurate identified model in the presence of
noise, three problems need to be solved:

1. How to estimate the spatial derivatives. In practice, it is very difficult to measure these
spatial derivatives directly. Therefore, some estimation methods have to be employed to
obtain an estimated version of these derivatives. The most common used method is finite
difference approximations. However, a finite difference approximation method, in partic-
ularly, for estimating the higher derivatives, is very sensitive to noise. The higher order
derivatives of a signal with a modest SNR (Signal-to-Noise Ratio) could induce extremely
low SNR's.

2. How to detect the model structure and select the significant terms. Because the order of
polynomial form of f and the correct terms are generally unknown, there is a need to detect
the correct order and these terms, which involves a combinational explosion if all possible
model structures are tested in a brute force manner.

3. How to determine the parameter (3;. As mentioned above, a general least squares type
algorithm will produce a biased estimation to the parameters even if the model structure
is correct and the noise sequences are white.

In the following sections, these three problems will be investigated in more detail.

3 Spatial derivative estimation and wavelet filtering

Numerically differentiating discrete noisy data can prove to be very difficult because such a
differentiation process tends to amplify the effects of noise, particularly in the case of higher-
order derivative estimation. Even for the noise-free case it can be hard to obtain the desired
accuracy using an ordinary difference approximation method because of the strong dependence



on the length of the sampling interval and the SNR. The new method presented here involves
estimating the spatial derivatives directly from a series of snapshots using a multiresolution
analysis of the spatio-temporal signal based on B-spline functions. The advantage of using a
B-spline wavelet expansion of a function is that the differentiation can be easily performed on
the individual smooth wavelet bases and takes a simple form.

3.1 Multiresolution analysis

A multiresolution analysis of L?(R") is defined as a set of closed subspaces V; with j € Z that
exhibit the following properties (Chui, 1992)

1. V; C Vi,

2. f(1) €V = [(20) € Vyryj € 7,

3. Ujez Vj is dense in L*(R"™) and N;ez V; = 0,

4. A scaling function ¢(x) € Vj exists such that the set {¢(x —k)|k € Z"} forms a Riesz basis
of Vj.

Following the definition of the multiresolution analysis, the set of functions {¢;; = 2//2¢(2/z—k)}
is a Riesz basis of V. Let W; be a complementary space of V; in V4, such that V;;; = V; @ W;.
Consequently

Dw; = L*(R") (17)

W; is called a wavelet subspace. A function ¢ (z) is a wavelet if the set of functions {¢(x —k)|k €
Z"} is a Riesz basis of Wy. It follows that the set of wavelet functions {1, = 2//%¢)(27x — k)}
is a Riesz basis of L?(R").

At resolution j the projection P; (resp. @;) of a function f onto Vj (resp. W;) that corresponds
to the above splitting of L*(R™) can be written with the use of a dual scaling function ¢ (resp.
dual wavelet function ) as follows

Pif(x) = Y < fibj > bjilx) (18)
k
Qif(x) = 3 < fithin > dyn(x) (19)
k
where < - > denotes the inner product. Such wavelets are called biorthogonal wavelets. Gener-
ally, ¢ # ¢ and 1 # 1 except when orthogonality holds. Note that B-spline wavelets are only

biorthogonal. The definition of a multiresolution analysis implies that for any f(z) € L?(R"),
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lim P;f(r) = f(z) (20)

]*)00

fla) = Y Qi () (21)

Since W; is the complementary subspace of V; in V44, that is V1, = V; @ W, it follows that
P f(x) = Pif(z) + Q;f(x). This gives an alternative representation of the projection of a
function f € L?*(R") at resolution j + 1 using both the scaling and wavelet functions as

Pif(x Z < fodin > big(@) + 3 < fo i > k() (22)
"

In this way, it is understood that the projection P; provides an approximation of the function f
at some resolution j and the details left by this approximation are contained in ;. By iteration,
a wavelet decomposition can be obtained as follows

Piiif(z Z<f¢gzk>¢gzk +Zz<fl/}zk>1/%k() (23)

i=j—l k

Considering the time-frequency characteristics of the wavelet transform, the decomposition and
reconstruction (23) are widely used as a filter for noisy signals. Such a decomposition and
reconstruction can be performed in a fast way using Mallat’s pyramid algorithm (Mallat, 1989).
In this paper, the snapshots of (noisy) spatio-temporal signals are initially projected onto the V;
subspace at some designated resolution level j. Then the resulting signals are passed through a
wavelet filter (decomposing and thresolding) and finally the filtered signals are used to reconstruct
the original signals and their higher-order spatial derivatives.

3.2 Spatial derivative estimation using B-spline functions
3.2.1 One-dimensional case

The one-dimensional cardinal B-spline function N,, of m-th order is given by the following
recursive relation

Nyn(z) = m""”_ N (1) + %Nm_l(:ﬁ ~1) (24)

where Nj(x) is the indicator function

1 ifz e (0,1)

Mi(z) =1 0 otherwise

(25)



Let the m-th B-spline function be the scaling function, that is

¢" () = Nin(2) (26)
Then the wavelets can be expressed in terms of the scaling function

3m—2

= Z: qp™ (2z — 1) (27)

with the coefficients given by

iij( >¢2m —k+1),1=0,---.3m — 2 (28)

Note that the B-spline function ¢™(x) has the property

o™ (x) = Npp(2) = N1 (2) = N (@ = 1) = "7 (z) — ¢™ 7 (@ — 1) (29)

From (20) any f(z) € L?*(R) can be represented as

f(xz) = lim P;f(x —hmz<f, > o7, —llchquﬁ (30)

j—00

It follows that if f(x) is smooth enough, the derivative function of f(x) is of the following form

f'(x) = lim P;f'(x —11m2<f¢) gb —llmZb]kgb (x) (31)

J—00

where b = 27(c;x — ¢jx—1) because of the property (29).

According to eqns. (30) and (31), the jth resolution approximation of a function f € L*(R) and
its derivative function can be obtained as

flz) = ZC] kP (T ZC] kP (T (32)
fl@) ~ ij,k () = ZQJ Cik — Cj,k—l)qﬁ?,?l(x)
k k

The higher-order derivatives of f can be approximated iteratively using formula (32).



3.2.2 n-dimensional case

The B-spline function series representation of a multivariate function f defined on R™ can be
described as follows. Let @ be a bounded function defined on R™. For all p € Z and k € Z", a
family of functions defined on R" can be derived in terms of the translates and dyadic dilates of
O: O, (x) = (2"x —k). Then if these functions @, x,p € Z,k € Z" form a Riesz basis, function
f has a unique decomposition in terms of functions ®,,

X) =2 pxPp(x) (33)

Such a Riesz basis in space L?(R") can be constructed from some univariate scaling functions and
the associated wavelet functions by using the tensor product method. For the sake of simplicity,
consider the two-dimensional case. Let ¢™ (x) = N, () and ¢™2(z) = N,,,(z) be the two
univariate B-spline scaling fucntions of order m; and my. Note that here m; and my could be
different. Then a two-dimensional scaling function can be introduced as follows

QT2 (1, w9) = ¢™ (1) ™ (w2) (34)

and the 2" — 1 mother wavelets W12 [ =1 2 ... 2" — 1 are obtained by substituting some

¢™i (x;)s by Y™ (z;) in (34).

Similar to the one-dimensional case, the jth resolution approximation of a function f € L?(R?)
onto V; with two dimensional B-spline function ®™*™2 = N, N, as scaling function can be
obtained as

f(x1,22) = Pif (1, 22) Z<f QUL > BTN (11, 40) = Y €k o Bk, (1) D), (22)  (35)
k

and its partial derivative functions are approximated as

af x 71. 1(x1)¢m22(x2) ] mi— mso
7( 2 ch,kl,kz ot 2t = V(s — Cir—t ko) D, (w1)BTE, (22)  (36)

al‘l L
and
of(x1,x 09 (11)95% (v . -
M ~ ch,kl,kz L (alizm @) _ Y 2 (ks — Cirprka—1) D (21) T2 (w2)  (37)
P
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The higher-order partial derivatives of f can be approximated iteratively using formulae (36)
and (37).

The new procedure of denoising a signal and obtaining the spatial derivatives from noisy exper-

imental data can be summarised as follows

e Approximating the original signal with its projection onto V; with B-spline functions as
scaling functions (eqns.(30) and (35)). The selection of the resolution level j depends on
the desired approximation accuracy. Generally, the higher the resolution, the better the
approximation. The order of B-spline scaling function should be chosen in a way that the
signals resulting from subsequent differentiations are at least C?;

e Performing a wavelet decomposition. The scales of the decomposition generally depend on
the length of the data sequence;

e Conducting a threshold filtering method for the obtained wavelet coefficients. The selection
of the threshold depends on the SNR of the noisy data;

e Reconstructing the original signal from the denoised wavelet coefficients;

e Computing the spatial derivatives using eqns. (32), (36), and (37).

4 Term detection using OFR algorithm

The noisy discrete model (9) of the partial differential equation (1) obtained is of the form

z(k,n+1) =P, +e(k,n+1)+wlk,n+1) + (P, — P,)p (38)
where 8 = (1,51, -+, Bu)", and P, and P, are defined as in (11) and (12).

Substituting y(k,n) = z(k,n) — w(k,n),y'(k,n) = 2'(k,n) +w'(k,n), - -,y (k,n) = 20k, n) +
D (k,n) into P, yields

Py_PZ = (y(kﬂn)_Z(kan)vataj(¢1(y(kan+l_j)a"'ay(l)(k7n+1_j)) (39)
—(@1(e(kn+1=4), 2Ok n+ 1)),

p
oy Atag (b (y(k,n+1—4), -y (ko + 1= )

j=1
= (_ (kvn);
z/;l(z(k,n),---,z(k,n—f-l—p),w(k,n),---,w(k,n—i—l—p),---,w(l)(k,n),---,w(l)(k,n+l—p)),

BN

¢M(z(k,n),---z(k,n+1—p),w(k,n),---,w(k,n+1—p),---,w(l)(k,n),---,w(l)(k,n—i—1—p)))

11



where 1; is a sum of the products of its variables, which are some of the z(k,n), - z(k,n+1 —
p),w(k,n), -, wlk,n+1—-p), -, wD(kmn), -, wh(k,n+1-p)). It is stressed that w® (k,n)
should be understood as the estimate error of 3 (k,n) rather than the i-th order derivative of
w(k,n). Then eqn. (38) can be augmented as

z2(k,n+1) =P, 4+ Q.0 +w(k,n+1) (40)

where (), includes the terms associated with error variables, that is, it is a vector composed of all
possible monomials formed by the products of the lagged signals of z(k, n), w(k,n), -+, wV(k, n)
from P, — P,, and 0 represents the corresponding coefficients. Note that in eqn (40), e(k,n +1)
has been absorbed into w(k,n + 1). This can be done because both e(k,n + 1) and w(k,n + 1)
are white. In this way, the bias associated with the noisy model (9) can often be reduced or
eliminated by using the well known Orthogonal Forward Regression algorithm (Chen, Billings,
and Luo 1989). The OFR algorithm involves a stepwise orthogonalisation of the regressors and
a forward selection of the relevant terms based on the Error Reduction Ratio criterion (Billings,
Chen, and Kronenberg 1988). It should be emphasised that w" (k,n), - -, w"(k,n) are actually
the estimation errors of the spatial derivatives of y(k,n), the OFR algorithm can not eliminate
these errors so that the final estimation of the parameters will generally be biased. However,
one of the advantages of the OFR algorithm is that it can be used to separate the deterministic
part (P,/3) and uncertain part (Q.0) of the model and therefore determine the final deterministic
model structure by removing the uncertain part. In general, the OFR algorithm can produce
the correct terms as long as the presence of the noise and/or the filter does not change the
correlations between the variables. With this deterministic model structure, the parameters can
be estimated using some other method. In this paper, a bootstrap algorithm is applied to tackle
this problem, this will be discussed in the next section.

Let N be the length of the measured data from a specific spatial location k, then a linear-in-the
parameter form of the system at that location can be expressed as

Z = Z(k) = P,(k)B + Q:(k)0 + E(k) (41)

where Z(k) = (2(k,1),---,2(k, N)T, E(k) = (w(k,1),---,w(k,N))T, and P,(k) and Q. (k)
are corresponding regression matrices. For a given candidate regressor set G = {;}M,, where
Y; = (E?;é Atopi(k,2—7),- -, Z?;é Atajgi(k, N+1—7))", the OFR algorithm can be outlined
as follows

Step 1
IIZIM:{LaM}

wlrz
Wi = ¥y, bz = 4 42

)

>
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i
Z
2 _
lL =arg rzrg}f((bz i ) =arg Ilréaf((ERR ) (43)
witz
WIO = VI/h? C(l) = W 1TW1 (44)
a1 = 1 (45)
Step 7,7 > 1
I =1,,\l; -1 (46)
2wtz Wz
W= — Wb = 47
¥ kz::l WISTWk k WTW ( )
A
lj =arg rnax(bz2 7T ) =arg rlréa]X(ERR i) (48)
w7
W} =W, ¢ = WOJTWo (49)
j
W;?T@z]- .
kj = WISTWIS,]{ =1 ] — 1. (50)
The procedure is terminated at the M -th step when the termination criterion
M,
1-> ERR;<p (51)

=1

is met, where p is a designated error tolerance, or when a given number of terms in the final

model is reached.

The estimated coefficients are calculated from the following equation

Bll L ap Qa1,M;
b= B | _ 10 1 Qo.M
Bins, o 0 --- 1

and the selected terms are ¢, -+, @, .

13
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Note that the prediction error w(k, n) are not measurable a priori and therefore must be estimated
as follows

W(k,n+1) = z(k,n+ 1)P.(k)B (53)

Using this estimated noise sequence and the model variables, repeat the above algorithm to
identify the terms and parameters for the deterministic part P, and uncertain part Q,(k)6
until the final residuals become unpredictable and the parameters do not change anymore. Then
the final model comprises of a deterministic part (without errors as variables) and an uncertain
part (including error variables). By removing the uncertain part, a final deterministic model can
be obtained. As mentioned earlier, the estimation to the parameters is generally biased so that
these estimated parameters must be refined. In the following section, a bootstrap algorithm is
introduced as one solution to this problem.

5 The Bootstrap algorithm for parameter estimation

The bootstrap method, which is similar to the jackknife method, is a Monte Carlo simulation
based statistical technique for estimating standard errors and bias, and requires a minimum
number of mild assumptions and does not require a large number of samples.

Assume that a random sample & = (£, -+, &,) from an unknown probability distribution F' has
been observed, and an estimate for a parameter # = w(F) is of interest on the basis of the
observation €. A bootstrap method is associated with the notion of a bootstrap sample. Let F
be an empirical distribution function of F', which is defined to be

E<FS e <F (54)

where £* = (&F,--+,&"), the symbol £ < F implies that the random sample £ comes from the

distribution F', the symbol “4 implies that F assigns to a set Q = Q(F, &) in the sample space
of & with an empirical probability p = 1/n in the sense that for any i,5 € {1,2,---,n}

Pri& = ¢} = % (55)

The star notation indicates that £*, which is referred to as a bootstrap sample of size n, is not
the actual data set & but rather a randomized, or resampled, version of £&. From the plug-in
principle, the plug-in estimate of § = w(F) can be calculated by

0 = n(F) (56)
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This means that the function # = 7(F') of the unknown distribution F' can be estimated using
the same function of the empirical distribution F' with the form of (56). In practice the function
7 is unknown, and the unknown parameter 6 is often approximated using a statistical estimator
6 = s(&) based on the observed data. The bootstrap replication of 0 is therefore given by
0* = s(¢*). The function s(-) here can be any statistic of interest, for example, the mean, the
standard derivation, or the second moment of the sampled data.

To obtain an efficient bootstrap estimate, it is often required to generate a number of independent
bootstrap samples, say resampling the original observed data £ L times, where the number L
is ordinarily chosen in the range 25-200 and L = 50 is often enough to give a good estimate
(Efron and Tibshirani 1993). Assume that the bootstrap replication at step [ is 0*(I) = s(£*(1))
for | = 1,2,---, L. The bootstrap estimate f* can then be obtained by synthesizing all the
individual bootstrap replications 6*(I) = s(£*(1)) via a given function g with the form 6* =
g(0*(1),---,0*(L)). Readers are referred to Efron and Tibshirani (1993) for more details of the
bootstrap methods.

The basic idea of applying bootstrap methods for refining the identified parameters for continuous
spatio-temporal systems is outlined below.

After the significant variables and model terms have been correctly selected, and that the system
output can be expressed using a linear-in-the-parameters model form given by

2(k,n+1) = z(k,n)+z Bi(zp: Atojgi(2(k,n+1—7), -, z(l)(k,n+1—j))) = z(k,n+1)—P,(k)3

(57)

For given a set of data of length N at some spatial location, the estimates for the unknown
parameter [ can then be calculated using a standard least-squares algorithm. The model residuals
(one-step-ahead prediction errors) for any spatial location k can be estimated as

e(k) = Z(k) = Z(k) = Z(k) — P.(k)3 (58)
where (k) = (e(k,1),---,e(k, N))T and Z(k) = (2(k,1),---,2(k, N))T. By performing the

k
bootstrap resampling theory, a bootstrap sample {e*(k, 1), --,e*(k, N)} will be obtained. The
bootstrap response (output) of the system is defined to be

Z*(k) = Z(k) + pe* (k) (59)

where p is a weighting coefficient satisfying 0 < u < 1. Note that the regression matrix P(k)
contains the spatial derivatives of z(k, n), to apply the bootstrap method they must be updated
too. This is achieved according to the following formula
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e* (k)
Azt

Z0 (k) = Z9(k) + 6 (60)

where Z(® are the estimated or smoothed i-th spatial derivatives and Az is the spatial sampling
interval. Using (59) and (60), the updated P;(k) can be obtained. Corresponding to the above
bootstrap observations, a bootstrap estimate of # can be obtained by applying standard least
square algorithm again with the bootstrap output vector Z* and the corresponding bootstrap
regression matrix P (k). Denote this bootstrap estimate by M. This procedure will be repeated
L times. Let S be the bootstrap estimate at step [ for { = 1,2, -+, L. Define

B = (B, )" (61)

where j =1/LY[, AU, The bootstrap estimate (61) will be used to replace the original
estimate 3.

The obtained final model and parameters need to be assessed. A commonly used approach to
check the validity of the identified model is to use higher order statistical correlation analysis
(Billings and Voon 1986, Billings and Zhu 1994). An alternative is to check both the short and
the long term predictive ability of the model or some quantitative invariants such as Lyapunov
exponents and correlation dimensions etc. If the performance of the obtained model is not
satisfied, the whole identification procedure needs to be repeated to improve the performance.

6 Numerical simulation and analysis

6.1 Example 1: A reaction-diffusion system

Consider the following nonlinear reaction-diffusion system

Oy (z,1) 0%y (z,t)

—a dy oz TY (z,t)* — y1(2,t)® — yo(x,t) (62)
Oy (z,1) 0%y (1)

o do 922 + 0y1 (2, 1) — yy2(z, t)

with z € Q = [0, 1], and initial conditions

y1(z,0) = yo(x,0) = sin(mrx) (63)

and Dirichlet boundary conditions, that is, y1(0,¢) = y1(1,¢) = y2(0,¢) = y2(1,¢) = 0.
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Variables Terms Estimates ERR STD

(ko + 1) — yi(k,n) ya(k,m) ~0.9965e-01 9.8306e-01 3.5675e-03
y1(k,m)? 9.9914e-01  1.0310e-02 2.6301e-03

i (k, n) -9.9925e-01  6.6341e-03  1.8192e-05

y'(k, 5.8700e-04  2.8424e-07 6.2970e-06

yQ(k n)2 -3.3997e-05 2.6646e-08 4.4351e-06

yo(k,n)yh(k,m)  7.2338e-05  7.7779e-09  3.3983¢-06
1 (k,n)yz(k,n)?  1.8113e-05 3.0238¢-09 2.9070e-06

yo(kyn + 1) — yo(k, n) 1 (k, n) 3.9987c+01 9.9913¢-01 6.1911e-03
yo (K, n) 2.0002e-01  9.7398¢-04 6.1450e-05
vl (k, n) 6.1831e-04  8.8796e-08 1.3261e-05

Table 1: The terms and parameters of the final model for Example 1 from data without noise

For the purpose of identification using the proposed approach, the PDEs (62) with parameters
dy = dy = 0.0006188,5 = 40 and v = —0.2, were numerically solved by linearised §-methods
(Ramos 1997) with the time step At = 0.01, space step Az = 0.02, and # = 1/2. To test the
proposed derivative estimation and signal denoising methods, white noise then was added to the
output signals so that the SNR of the corrupted data is 37.7437DB for y; and 33.7121DB for ys.
The noisy data are plotted in Fig.(1) and Fig.(2).

For the purpose of comparison, the identification algorithm was applied for both data with and
without noise. A set of 100 spatio-temporal observations randomly selected among the data
set was used for the identification. In the simulation, the highest order of the derivatives with
respect to the spatial variables was set to be 2. To estimate these spatial derivatives from
the noisy data, the proposed denoising and derivative estimation methods were used using the
following parameters: the resolution level for the B-spline expansion of the data was 3, the order
of the B-spline function was set to be 6, and the hard thresolding value of the wavelet filter was
0.01. Typical denoised data and estimated derivatives are shown in Figs.(5-10).

The 3rd Adams-Bashforth integration formula was used and a polynomial expansion of order 3
for the nonlinear function f was used. The identified terms and parameters from noise-free data
using the OFR are listed in Tables (1), where ERR denotes the Error Reduction Ratio and STD
denotes the standard deviations.

It can be seen that the Estimates and ERR in Tables (1) suggests that the terms yo(k,n)?,
yo(k,n)yb(k,n), yi(k,n)ys(k, n)? make insignificant contributions to the reduction of the total er-
rors (note that the reduction ratios can be regarded as an equivalent representation of correlation
coefficients) and therefore can be removed. After removing those three terms, the parameters are
recalculated using the OFR algorithm again, which results in the following identified continuous
spatio-temporal dynamical model for the noise-free case
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Variables Terms Estimates ERR STD
y1(k,n+1) —yi(k,n)  ya(k,n)  -9.9957e-01  9.7671e-01 4.0821e-03
y1(k, n)2 1.0075e+00 1.7012e-02 2.6256e-03
)?

yi(k,n)* -L0132e+00  6.2687e-03  1.1782-04

y(k,n)  2.9715e-03  7.7078e-07 1.1422¢-04

wo(kn+1) —yo(kin)  ya(kn) 40149401 9.9902e-01 6.5227e-03
yo(kym)  1.9398e-01  9.7732e-04  2.9484e-04

y!(k,n)  9.5253e-05  1.8226e-07 2.8099e-04

Table 2: The terms and parameters of the final model for Example 1 from noisy data after
removing the uncertain and insignificant terms

Oy (, t 0%y, (w, t
% = 0.0005806% +0.99867y, (z,t)* — 0.99868y, (z,t)* — 0.99966y,(x, t)(64)
X
Oya(, t 0%ys(x, t
% = 0.00061305% + 39987y, (z, ) + 0.19988y, (x, )
T

which indicates an excellent identified result.

In the case that the data contains noise, the terms and parameters of the final model from noisy
data after removing the uncertain and insignificant terms are listed in Table (2). Comparing the
results in Table (2) with the true model eqn. (62) it can be observed that some of the parameters
are biased, in particular, the bias of the parameters corresponding to the second order spatial
derivatives are quite large, although the terms selected are correct. These results show that the
proposed approach did not change the correlations between variables but did introduce some
corruption of the original signals through the filtering procedure. These parameters were then
tuned using the bootstrap method with L = 20 and the obtained model is as follows

0 t 0 t _ -

% 0'00031% + 1.0032y, (2, 1)* — 1.0194y, (z,1)° — 0.9996y,(x, )  (65)
0 t O ya(z, ¢

% - 0. 00048% + 40.0246y; (z, t) + 0.2086yy(x, t)

It can be observed that the bias of the parameters has now been significantly reduced.

6.2 Example 2: Two-dimensional Swift-Hohenberg equation

In this section, the two dimensional Swift-Hohenberg equation is considered (Swift and Hohen-
berg 1977). The model is of the
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Figure 3: Example 1: The estimated spatial derivatives y;(x,t) (left: from finite difference
method; right: estimated from the proposed method)
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Figure 4: Example 1: The estimated spatial derivatives ys(x,t) (left: from finite difference
method; right: estimated from the proposed method)
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Figure 7: Example 1:Estimated second order spatial derivatives of y;(x, )
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Figure 10: Example 1:Estimated second order spatial derivatives of y,(x, )

following form

ou=(r—(V*4+k))u—u® = (r —k"u—u® — 2k*(0pe + Oyy )t — (Opzzz + Oyyyy + 2000yy)u (66)

For the purpose of identification using the proposed approach, the PDEs (66) with parameters
r = 0.1,k = 1, were numerically solved using a Runge-Kutta integration method with space
step Az = Ay = 0.15 and periodic boundary conditions. The initial conditions were chosen as
uniformly distributed independent random numbers within the interval [—10, 10]. The obtained
solution was sampled at a time intervalA¢ = 0.01. Some snapshots are plotted in Fig.(11).

A set of 100 spatio-temporal observations randomly selected among the data set with additive
white noise of SNR = 62.7437DB was used for the identification. In the simulation, the highest
order of the derivatives with respect to the spatial variables was set to be 4. To calculate these
spatial derivatives using the proposed denoising and derivative estimation methods, the following
parameters were used: the resolution level for the B-spline expansion of the data was 4, the orders
of the B-spline functions were set to be 6 and 7, and the hard thresolding value of the wavelet
filter was 0.001. The 4th Adams-Bashforth integration formula was used and the polynomial
expansion of order 3 of the nonlinear function f was used. The identified terms and parameters
using estimated derivatives and the orthogonal least squares algorithm are listed in Table (3),
where ERR denotes the Error Reduction Ratio and STD denotes the standard deviations. After
removing the insignificant terms according to the values of the ERRs and the estimates and
applying the bootstrap algorithm, the final PDE model was obtained as follows

Bru = —0.91269u — 0.99852u® — 1.94618,,u — 1.95178,yu — 0.988078,ppztt — 0.9888yyytt — 1.97610,4yu  (67)
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Terms Estimates ERR STD
Uz (T, Y, 1) -1.9537e+00 4.8455e-01 5.1899e-02
Uyy (T, Y, 1) -1.9209e+00 2.3845e-01 3.8081e-02
wex,y, t) -7.0723e-01  2.4130e-02  3.6330e-02
Ugayy (T, Y, 1) -1.9960e+00 1.0319e-02 3.5585e-02
Uyyyy (7,7, 1) 10.9479e-01  2.85560-02  3.3428e-02
Ugzza (T, Y, t) -9.9787e-01  9.1663e-02 2.5307e-02
i, y, t)? 21.0221e4+00  8.3810e-03  2.4423¢-02
Uy (2, Y, 1) Pty (7, 7, F) -4.0302e-03  8.9614e-05 2.4413e-02
Uyy (T, Y, ) Uy (T, Yy O) Uy (T, y, 1) -1.9533e-03  4.4761e-05 2.4408e-02
Uyyy (T, Yy ) Uy (T, Y, )2 -9.5217e-04  1.7198e-04 2.4390e-02
Ugzzs (T, Yy O)Uyy (T, Y, ) Uyyyy (2,y,)  -1.0148e-03  5.1941e-05 2.4384e-02
Ugwwr (T, Yy O)Uyy (T, Y, O)Uyyyy (z,y,1)  -6.4276e-03  4.7234e-05 2.4379¢-02
constant 3.9068e-02  2.7782e-05 2.4378e-02

Table 3: The terms and parameters of the final model

From the simulation results of Examples 1 and 2, the following observations can be made

e The proposed approach works better for data with a higher SNR. This is because the

filtering procedure can introduce some error on the data and this error is generally larger
for data with a lower SNR, and this is therefore more likely to change the correlations
between the variables. The OFR algorithm basically works according to the correlation
coefficients of the data and may not produce the correct structure of the model if the
correlations have been changed. In this case, the structure and parameters of the obtained
PDE model can be quite different from the original although the model itself may work
well for predictions.

It has been found that there is an advantage of the proposed derivative estimation approach
over a finite difference approximation method. That is that the proposed approach works
better with a high sampling frequency because the estimation can be performed in a higher
resolution level which will produce more accurate approximation when noise is present.

Experience on simulation studies shows that the data for identification have to have a
sufficient variability in both the spatial and time domains. In this way the identification
results are much better than that just using the data from one specific spatial location.
This is why the data for identification in our simulations were generated randomly among
space and time. This is to be expected and is equivalent to persistently exciting data
concepts in temporal model estimation.
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7 Conclusions

A new approach for the identification of both the model terms or structure and the unknown pa-
rameters in PDE models of continuous spatio-temporal dynamical systems has been introduced.
It has been shown that by combining the Adams integration and the OFR algorithm, a system
of PDEs for the underlying continuous spatio-temporal system can be obtained. By using B-
spline wavelet multi-resolution analysis and a B-spline biorthogonal wavelet filtering technique,
the measured signals are denoised and represented as a series of B-spline functions. Then the
higher derivatives can be calculated from this series expansion directly. The proposed method
was tested on simulated Data and was shown to perform very well.
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