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Abstract

Volterra series expansions are widely used in ana-
lyzing and solving the problems of non-linear dynami-
cal systems. However, the problem that the number of
terms to be determined increases exponentially with the
order of the expansion restricts its practical application.
In practice, Volterra series expansions are truncated
severely so that they may not give accurate represen-
tations of the original system. To address this problem,
kernel methods are shown to be deserving of exploration.

In this report, we make use of an existing result
from the theory of approximation in reproducing kernel
Hilbert space (RKHS) that has not yet been exploited in
the systems identification field. An exponential kernel
method, based on an RKHS called a generalized Fock
space, is introduced, to model non-linear dynamical sys-
tems and to specify the corresponding Volterra series
expansion. In this way a non-linear dynamical sys-
tem can be modelled using a finite memory length, infi-
nite degree Volterra series expansion, thus reducing the
source of approximation error solely to truncation in
time. We can also, in principle, recover any coefficient
in the Volterra series.

1 Introduction

Volterra series models are widely used in analyzing
and solving the problems of non-linear dynamical sys-
tems. The term Volterra series derives from the work
of Vito Volterra, an Italian mathematician, at the end
of the nineteenth century, the idea of which can be re-
garded as an extension of the linear convolution model.
Volterra series have been shown to provide a good rep-
resentation for a wide range of non-linear systems [2].
Without the involvement of the previous, predicted out-
put signals, such a model can give a relatively accurate
prediction of the output over the domain of interest
for systems of “fading memory” type [2], assuming we
can measure the input signals exactly. Because of this

and some other practical advantages such as their being
linear-in-the-parameters [9], much has been done in the
development and application of Volterra series models.
At the same time, a noticeable shortcoming restricts the
practical use of even truncated Volterra series because
they involve exponentially many parameters. Thus, in
practice, only “small” models have been found to be
useful with a concomitant loss of precision. The use of
kernel methods for finite degree, finite length Volterra
series estimation has already been addressed [8, 5, 3, 4].

This report is primarily concerned with discrete-
time, finite length, infinite degree Volterra series ex-
pansions. A method based on exponential kernels is
used to model non-linear dynamical systems and to de-
termine the parameters of the corresponding Volterra
series. The next section gives the theoretical basis of
the subsequent discussion. The particular Generalized
Fock (GF) space, F , and the corresponding kernel, k,
are constructed. Proof that k is a reproducing kernel
and F is its reproducing kernel Hilbert space (RKHS)
is given. In section 3 the method of computing infinite
degree Volterra series expansions using the kernel con-
structed in section 2, is discussed. The problem of how
to recover the original Volterra series from the kernel is
discussed in section 4, and, in section 5, two synthetic
system identification examples are given. Finally, we
discuss the limitations and potential of the method.

2 Generalized Fock Spaces

Consider a discrete-time, finite length1, infinite de-
gree Volterra series expansion

y (u) = h0 +

∞X
n=1

(
MX

m1=1

· · ·

MX
mn=1

hn (m1, . . . , mn)

nY
j=1

umj

)
,

(1)

1The use of a finite memory length method implies that the dy-
namics under consideration must be of the class of “fading mem-
ory” systems [2].



where
u = [u1, . . . , uM ]

T

and M is the memory length. A sufficient but not
necessary condition that guarantees the convergence of
Eq.(1) is that [9]:

M
∑

m1=1

M
∑

m2=1

· · ·

M
∑

mn=1

| hn (m1,m2, . . . ,mn) |< ∞ (2)

A GF space, F , can be constructed [6], consisting of
the elements, f ,

F : f = h
f
0 +

∞
∑

n=1

1

n!
fn, (3)

in which the fn, given by

fn (u) =

M
∑

m1=1

· · ·

M
∑

mn=1

hf
n (m1, . . .mn)

n
∏

j=1

umj
(4)

completely characterize f .
We then define the inner product [7] in the specified

GF space, F , as:

< f, g >F=

∞
∑

n=0

pn

n!
(fn, gn)n , (5)

where

(fn, gn)n = h
f
0h

g
0 (6)

+

M
∑

m1=1

M
∑

mn=1

hf
n (m1, . . . , mn)hg

n (m1, . . . , mn) .

In Eq.(5), P =
{

p0, p1, . . . , pn, . . . , p∞
}

denotes a set
of weighting constants, in which p is a constant chosen
according to prior knowledge and satisfying the con-
vergence condition given by Eq.(2). The relationship
between p and hn will be established later.

We then construct an exponential kernel

k (u, v) = exp

(

< u, v >l2

p

)

(7)

in which < u, v >l2 denotes a dot product in l2,

< u, v >l2= uT v =

M
∑

i=1

uivi. (8)

According to the theory of Taylor Series, we know

that ex =

∞
∑

n=0

xn

n!
. So the exponential kernel k can be

rewritten as

k (u, v) =

∞
∑

n=0

1

n!

(< u, v >l2)
n

pn
=

∞
∑

n=0

1

pnn!
(< u, v >l2)

n

(9)
We can now prove that k is a reproducing kernel in

F through the following two steps:

1. For a fixed input sequence, u, we substitute Eq.(8)
into Eq.(9) such that

k (u, v)

=

∞
∑

n=0

1

n!

(

∑M

i=1
uivi

)n

pn

= 1 +

∞
∑

n=1

1

n!





1

pn

M
∑

m1=1

· · ·

M
∑

mn=1





n
∏

j=1

umj

n
∏

j=1

vmj









= 1 +

∞
∑

n=1

1

n!

{

M
∑

m1=1

· · ·

M
∑

mn=1








1

pn

n
∏

j=1

umj





n
∏

j=1

vmj











(10)

where hk
n is defined as follows:

hk
n =

{

1 , n = 0;
1

pn

∏n

j=1
umj

, n = 1, 2, . . . ,∞.
(11)

Substituting Eq.(11) into Eq.(10), we get

k (u, v) =

∞
∑

n=0

1

n!
kn (v) (12)

in which

kn (v) = hk
0 +

M
∑

m1=1

· · ·

M
∑

mn=1

hk
n (m1 . . . mn)

n
∏

j=1

vmj
.

(13)

Eqs.(12), (13) are of the general forms, (3), (4),
which means k (u, .) ∈ F .

2. For every f ∈ F , we have

< k (u, .) , f (.) >F=

∞
∑

n=0

pn

n!
(kn, fn)n . (14)

If we replace (kn, fn)n in Eq.(14) with Eq.(7),
〈k (u, .) , f (.)〉

F
can be re-written as follows:

< k (u, .) , f (.) >F

=

∞
∑

n=0

pn

n!

(

hk
0h

f
0 +

M
∑

m1=1

· · ·

M
∑

mn=1

hk
nhf

n

)

= hk
0h

f
0 +

∞
∑

n=1

pn

n!





M
∑

m1=1

· · ·

M
∑

mn=1

1

pn

n
∏

j=1

umj
hf

n





= h
f
0 +

∞
∑

n=1

1

n!





M
∑

m1=1

· · ·

M
∑

mn=1

hf
n

n
∏

j=1

umj



 (15)

in which we have used hk
0 = 1. Recalling the defi-

nition of fn, (4), we can rewrite Eq.(15) as:



< k (u, .) , f (.) >F =
∞
∑

n=0

1

n!
fn (u)

= f (u) (16)

Eq.(16) demonstrates the reproducing property of
the kernel, k (u, v).

The function k : R
M × R

M → R+ having the above
two properties is called the “reproducing kernel” [1] of
the space F . Equipped with such a k, F is known as a
RKHS. The characteristic of such a kernel, k, is encom-
passed in the Moore-Aronszajn theorem:

Theorem 2.1 [10] To every RKHS there corresponds
a unique positive-definite function (the reproducing ker-
nel) and conversely given a positive-definite function, k,
on R

M we can construct a unique RKHS of real-valued
functions on R

M with k as its reproducing kernel.

Property 2 above is very useful and will be utilized in
the next section to get an important result.

Given that the kernel, k (u, .), belongs to the GF
space, F , functions in F corresponding to the infinite
degree Volterra series expansions, Eq.(3), can now be
expressed in terms of the kernels,

f (u) =

N
∑

i=1

aik (ui, u) (17)

where N is the number of samples and ai ∈ R.

3 The Best Approximation of The Orig-

inal Volterra Series Expansion

It is well known that, given (16), the best approxi-
mation, ŷ, of the original Volterra series expansion, y,
is given by the projection of y in the closed subspace
of F spanned by k (u1, .) , . . . , k (uN , .). Therefore, ŷ is
given by

ŷ (u) =
N

∑

i=1

aik (ui, u) (18)

where
ui = [ui1, . . . , uiM ]

T
.

In Eq.(18), a : a = [a1, . . . , aN ]
T

is the coefficient
vector that we need to specify. It can be obtained by
the following equations [7]:

a = K−1y, (19)

where
y = [y1, . . . , yN ]

T

and K is the kernel Gram matrix,

Kij = k
(

ui, uj

)

= exp

(

< ui, uj >l2

p

)

. (20)

Note that it has been proven [11] that, under some
restrictions, the kernel Gram matrix, K, is nonsingular,
providing a unique solution to (19).

Theorem 3.1 [11] If ui, i = 1, 2, . . . , N , are distinct
elements of R

M , then the N × N matrix K,

Kij = exp

(

< ui, uj >l2

p

)

, (21)

is nonsingular.

The above statements give the idea and the way to com-
pute the infinite degree Volterra model with the expo-
nential kernel, k, given by Eq.(7). In the following sec-
tion, we will discuss how to recover the terms of the
original infinite degree Volterra series model, which is
valuable for the analysis and interpretation of systems
in practice.

3.1 Numerical Considerations

We note that Theorem 3.1 gives a theoretical guar-
antee for the existence of a unique solution, ã, but,
in practice, even in the noise free case, numerical sen-
sitivity may present a problem and we often need to
solve Eq.(19) via the pseudo-inverse or by introducing
Tikhonov (ridge or weight decay) regularization (with

parameter, ρ), thus ã = (K + ρI)
−1

y. The reason for
this is that the kernel matrix, K, typically becomes ill-
conditioned as the number of samples becomes large.
It can be seen from Eq.(17) that the predicted out-
put, f (u), is the weighted sum of the kernels, k (ui, u).
As the sample size, N , increases, depending on the nu-
merical precision of the computer used to run the pro-
gramme, at least two rows of the kernel Gram matrix,
K, will tend to co-linearity. Since our ultimate pur-
pose is system identification in a noisy environment, we
adopt regularisation and accept a biased solution.

4 Recovery of The Infinite Degree

Volterra Model

Volterra series models are widely used in analyz-
ing non-linear systems because they contain important
characteristics of the physical systems and are qualita-
tively well-behaved, like linear finite impulse response
models. At the same time, an infinite degree Volterra
model can, in principle, give an arbitrarily accurate rep-
resentation for the corresponding fading memory, non-
linear system, so the recovery of the model is of great
importance for us in many cases.

Substituting Eq.(8) and (9) into (18), we have

ŷ (u) =

N
∑

i=1

aik (ui, u) =

N
∑

i=1

ai

[

∞
∑

n=0

1

n!pn

(

M
∑

m=1

uimum

)n]

.

(22)



We can expand the polynomial
(

∑M

m=1
uimum

)n

in

Eq.(22) to rewrite it as

ŷ (u) =
1

p0

N
∑

i=1

ai +

M
∑

m1=1

(

1

p1

N
∑

i=1

aiuim1

)

um1

+

M
∑

m1=1

M
∑

m2=1

(

1

2!p2

N
∑

i=1

aiuim1
uim2

)

um1
um2

+ · · · +

M
∑

m1=1

M
∑

m2=1

· · ·

M
∑

mn=1

(

1

n!pn

N
∑

i=1

aiuim1
. . . uimn

)

um1
. . . umn

+ . . . (23)

Given that

hn =
1

n!pn

N
∑

i=1

ai

n
∏

j=1

uimj
. (n = 0, 1, . . . ,∞) , (24)

Eq.(23) is equivalent to the following,

ŷ (u) = h0 +

∞X
n=1

(
MX

m1=1

· · ·

MX
mn=1

hn (m1, . . . , mn)

nY
j=1

umj

)
,

(25)

which is the same as the form of the infinite degree
Volterra series expansion, (1). Therefore, we find that
the original infinite degree Volterra series model can be
recovered from the kernel model. The coefficient of each
term, hn, is given by Eq.(24).

5 Example

We choose examples of two Wiener-type systems (see
figure 1) to illustrate the method. The first requires
a model of infinite polynomial degree but has a finite
memory length and is thus exactly matched to our so-
lution. The second has infinite memory length and the
same non-linearity. The linear block is designed, for il-
lustrative purposes, so that the number of sizeable com-
ponents of its impulse response function is small. We
only examine the first and second order generalised fre-
quency response functions.

5.1 Finite Memory, Infinite Degree Wiener
Model

G(z) f(v)

u(t) v(t) y(t)

Figure 1: Linear-Non-linear Wiener model

The process is given as

yt =
e−v2

t

1 + e−5vt
(26)

vt = 0.5ut + 2.5ut−1 + 1.7ut−2. (27)

i.e. M = 3. The Taylor series of yt in terms of vt is

yt = 0.5 + 1.25vt − 0.5v2
t + O

(

v3
t

)

. (28)

Substituting Eq.(27) into (28), we have

yt = 0.5 + 1.25 (0.5ut + 2.5ut−1 + 1.7ut−2)

−0.5 (0.5ut + 2.5ut−1 + 1.7ut−2)
2

+O
(

v3
t

)

. (29)

The corresponding first and second order Volterra
kernels are

h1 =
[

0.625 3.125 2.125
]

h2 = −





0.125 0.625 0.425
0.625 3.125 2.125
0.425 2.125 1.445



 .

Without introducing noise, the model was simulated
to generate (1998+2M) pairs2 of input-output samples
in which the input signal sequence, {ut}, was uniformly
distributed between 0 and 0.1. The regularization pa-
rameter, ρ, and the parameter, p, were chosen to be
1×10−9 and 0.009, respectively. This value of ρ was se-
lected as the smallest one that avoided ill-conditioning
of K. p was chosen because it led to the minimum dif-
ference between the Volterra kernels of the true and the
estimated model. Assuming M was known, we applied
the exponential kernel method to estimate the system.
The resulting performance of the simulation in the time
domain (not shown) has a mean square error on the
order of 10−11.

The estimated first and second order Volterra kernels
are

ĥ1 =
[

0.6246 3.1230 2.1236
]

ĥ2 = −





0.1272 0.6020 0.4048
0.6020 3.0123 2.0543
0.4048 2.0543 1.3943



 .

Theoretically, the infinite degree, finite length
Volterra series discussed in this paper can simulate the
target model exactly. The difference between the true
values and the estimated values was caused by machine
imprecision and bias incurred through regularization.
The corresponding first and second order generalised
frequency responses are shown as follows.

As shown in figure 2, the estimated gain and phase of
the first order frequency response are indistinguishable.
In the second order frequency response figures 4 − 6,
the maximum absolute errors in the gain and phase are
approximately 1.3dB and 11 degrees, respectively.

2Half of the data are used for training and the remainder for
testing, ensuring 1000 samples regardless of M .
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Figure 2: Target first order frequency response (‘–’)
specified in Eqs.(26), (27) and the estimate (‘- -’) with
M = 3, p = 0.009
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Figure 3: Target second order frequency response spec-
ified in Eqs.(26), (27)

0 1 2 3 4

0123
−5

0

5

w1w2

G
ai

n,
 d

B
(e

st
im

at
ed

)

0 1 2 3 4

0123
−400

−200

0

w1w2P
ha

se
, d

eg
re

es
(e

st
im

at
ed

)

Figure 4: Estimated second order frequency response
with M = 3, p = 0.009
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Figure 5: Differences between the true and the esti-
mated gain and phase of the second order frequency
response for the finite memory, infinite degree Wiener
model

5.2 Infinite Memory, Infinite Degree
Wiener Model

The structure of the model is the same as above. But
in this case, the linear process component is given as

vt = −0.5vt−1 − 0.1vt−2 + 0.5ut−1. (30)

Thus, theoretically, this model has infinite memory
length. But as shown in figure 6, the linear impulse
response sequence fades in 5 to 7 seconds.

Impulse Response

Time (sec)

A
m

pl
itu

de

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 6: The impulse response of the linear block spec-
ified by Eq.(30)

By substituting Eq.(30) into (28), the first and sec-
ond order Volterra kernels of the model can be com-
puted,

h1 =
[

0 0.625 −0.3125 0.0938 · · ·

· · · −0.0156 −0.0016 0.0023 −0.0010
]

.



h2 =

























0 0 0 0 · · ·
0 −0.1250 0.0625 −0.0188 · · ·
0 0.0625 −0.0313 0.0094 · · ·
0 −0.0188 0.0094 −0.0028 · · ·
0 0.0031 −0.0016 0.0005 · · ·
0 0.0003 −0.0002 0 · · ·
0 −0.0005 0.0002 −0.0001 · · ·
0 0.0002 −0.0001 0 · · ·

· · · 0 0 0 0
· · · 0.0031 0.0003 −0.0005 0.0002
· · · −0.0016 −0.0002 0.0002 −0.0001
· · · 0.0005 0 −0.0001 0
· · · −0.0001 0 0 0
· · · 0 0 0 0
· · · 0 0 0 0
· · · 0 0 0 0

























.

The input samples, {ut}, are uniformly distributed
between 0 and 1 and M = 5. The parameters, ρ and p,
are set to be 1 × 10−5 and 1, respectively. Again, the
parameter configuration was determined in terms of the
minimum difference between the Volterra kernels of the
true and the estimated model. Again excellent predic-
tive performance was obtained with a mean square error
on the order of 10−5.

The associated gain and phase of the first and sec-
ond order frequency response are shown in figures 7-9.
The resulting estimated first and second order Volterra
kernels are

ĥ1 =
[

0.0050 0.5912 −0.2937 0.0878 −0.0131
]

ĥ2 =













−0.0014 0 −0.0019 0.0010 −0.0015
0 −0.1233 0.0622 −0.0183 0.0043

−0.0019 0.0622 −0.0306 0.0096 −0.0004
0.0010 −0.0183 0.0096 −0.0043 0.0016
−0.0015 0.0043 −0.0004 0.0016 0.0047













.
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Figure 7: Target first order frequency ‘–’response spec-
ified in Eqs.(26), (30) and the estimate ‘- -’with M =
5, p = 1.
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Figure 8: Target second order frequency response spec-
ified in Eqs.(26), (30).
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Figure 9: Estimated second order frequency response
with M = 5, p = 1.
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Figure 10: The differences between the true and the
estimated gain and phase of the second order frequency
response for the infinite memory, infinite degree Wiener
model.



The error graphs are shown in figure 10.
As shown in figure 10, the maximum absolute error in

the gain and the phase of the second order frequency re-
sponse are approximately 0.7dB and 10 degrees, respec-
tively. The resulting Volterra model could not capture
the behavior of the original system when the memory
length, M , was set to be less than 5.

6 Conclusion

By using the exponential kernel method, we can, in
principle, approximate any system which can be repre-
sented by a finite memory, infinite degree Volterra series
to arbitrary accuracy. The original terms of the Volterra
series can also be recovered by using the algorithms in
section 4.

A key step in training such a model is to compute
the coefficient, a, in Eq.(17). As is shown in section 5,
even though a can be computed from Eq.(19) in prin-
ciple, it is often the case that regularization must be
employed to get the solution, ã, when the kernel Gram
matrix is poorly conditioned, which, of course, induces
bias. It should be noted that, despite this drawback, the
exponential kernel method has the potential to solve a
wide range of non-linear system identification problems
because the model that is used in this method is of infi-
nite degree and leaves only the finite memory length as
a source of approximation error. This maintains the re-
striction of the proposed methodology to systems with
“fading memory”. We note that, while regularization
introduces bias, its introduction does not appear un-
duly to harm the estimates.

A major advantage of the method is that the com-
putational burden associated with direct estimation of
Volterra series is made manageable and scales with sam-
ple size, N . This means that while the technique is
still restricted to fading memory systems, the memory
length imposes no particular limitation owing to the low
computational cost of the dot product in R

M .
Further work in the area is underway. In particular,

methods to reduce numerical sensitivity; direct compu-
tation of the generalised frequency response functions
from kernel representations, and the performance of the
method in noisy environments (input and output) are
under investigation.
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