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Abstract

Consider the bounded linear operator, L : F — Z, where Z C RV and F are
Hilbert spaces defined on a common field X. L is made up of a series of N
bounded linear evaluation functionals, L; : 7 — R. By the Riesz representation
theorem, there exist functions, k(z;,-) € F : L;f = (f, k(x;,-))#. The functions,
k(x;,-), are known as reproducing kernels and F is a reproducing kernel Hilbert
space (RKHS). This is a natural framework for approximating functions given
a discrete set of observations. In this paper the computational aspects of char-
acterising such approximations are described and a gradient method presented
for iterative solution. Such iterative solutions are desirable when N is large and
the matrix computations involved in the basic solution become infeasible. This
is also exactly the case where the problem becomes ill-conditioned. An iterative
approach to Tikhonov regularisation is therefore also introduced. Unlike itera-
tive solutions for the more general Hilbert space setting, the proofs presented
make use of the spectral representation of the kernel.



1 Introduction

In many cases of interest the approximation of a function is equivalent to an
inverse linear operator problem in Hilbert spaces. This is the case, for example,
when the function is observed indirectly, such as is represented by a Fredholm
integral equation of the first kind. In general, the mathematical treatment
is then concerned with the infinite-dimensional problem where it is assumed
that the function is observed over its whole domain. Numerical methods are
then applied to form some approximate solution to the problem. In practice
observations are often only available at a finite number of points in the function
domain. These observations may be directly of the function at particular points
or arise indirectly, such as in tomography (O’Sullivan 1986).

The solution of linear operator equations in Hilbert spaces is well known in
the general case (Groetsch 1977) and also more specifically in connection with
function approximation (Deutsch 2001). The case where the observation space is
finite dimensional is well known to simplify the analysis (Kreyszig 1978). A full
discussion of the solution of linear inverse problems with discrete observations
was first made in (Bertero, De Mol, and Pike 1985) and the case where both
the object and observation space are discrete is considered in (Hansen 1998).
In (Bertero, De Mol, and Pike 1985) examples were given where the function of
interest belongs to a reproducing kernel Hilbert space (RKHS). It is our opinion
that RKHS do not simply belong to the realm of examples, but provide a (or
even, the) natural framework for approximating functions given a discrete set
of observations.

The basic theory and properties of RKHS is attributable to Aronszajn (Aron-
szajn 1950). RKHS have found widespread application in the solution of differ-
ential and integral equations (Saitoh 1997) and provide a unified framework for
second-order stochastic processes and time series (Kailath 1971; Parzen 1961a).
Examples of the application of RKHS to data interpolation and smoothing in-
clude splines (Kimeldorf and Wahba 1971; Wahba 1990), wavelets (Daubechies
1992), Paley-Wiener spaces (Yao 1967) and radial basis function type net-
works (Girosi, Jones, and Poggio 1993).

A common theme in these applications of RKHS to data interpolation and
smoothing is the need to invert matrices which scale with the number of data. As
the number of data increase the problem becomes ill-conditioned. This problem
can be overcome by computing approximate regularised solutions (Hilgers 1976;
Wahba 1977; Wahba 1990). However, this does not circumvent the computa-
tional burden which can become infeasible for very large data sets. In such cases
it is necessary to use iterative approaches to solve the approximation problem.

In this paper we present iterative solutions, including complete proofs, to
the approximation of functions in RKHS from discrete observations. The ap-
proaches are based on iterating in the direction of the negative gradient of
the (regularised) error functional. This is an example of the method of suc-
cessive approximations for linear operator equations, also known as gradient
descent or weakest steepest descent (Groetsch 1977; Nashed 1970; Petryshyn
1962; Petryshyn 1963; Wolkowicz and Zlobec 1978). However, we present solu-



tions which are readily computable without the need for approximation. Our
approach to proving convergence is based on that introduced in (Parzen 1961b;
Weiner 1965). Note that the authors of (Parzen 1961b; Weiner 1965) were con-
cerned with a representation problem of continuous time series. In contrast,
we are interested in the approximation problem of a continuous function given
discrete data. The proofs make use of spectral results in RKHS which are not
applicable to the general Hilbert space setting. Unlike previous descriptions of
iterative approaches in Hilbert spaces we also generalise the method to solving
the regularisation problem.

In the next section the natural framework for approximation of functions in
RKHS from finite observations is presented. The generalised and regularised
solutions to the approximation are described in Section 3. Computationally
these solutions reduce to matrix computations in the case of finite observations
as demonstrated by the series of results introduced in Section 4. In Sections 5
and 6 the iterative solutions are presented, the latter section is also concerned
with the regularisation problem.

2 Function Approximation with Discrete Obser-
vations

Assume that we have some unknown function, f, of interest but that we are
able to observe its behaviour at some finite number of points in its domain. The
function belongs to some Hilbert space, F, defined on a parameter set, X'. This
set can be considered as an input set in the sense that for each z € X, f(x)
represents the evaluation of f at x.

A finite set of observations {z;}X¥ ; of the function is made corresponding to
inputs {z;}¥,. Neglecting the effects of errors, the observations arise as follows

Zi = Lif (1)

where {L;}¥, is a set of linear evaluation functionals, defined on F, which
associate real numbers to the function f. We can represent the complete set of

observations [z1,...,2n] in vector form as follows
N
z=Lf=Y (Lif)e; (2)
i=1

where e; € RY is the ith standard basis vector.

The approximation problem can then be formulated as follows (Bertero,
De Mol, and Pike 1985): given a class, F, of functions, and a set, {z;}}¥,, of
values of linear functionals, {L;} ,, defined on F, find in F a function, f, which
satisfies (1).

By assuming that F is a Hilbert space, and further, that the {L;}Y, are
continuous (hence bounded), it follows from the Riesz representation theorem
that we can express the observations as (Akhiezer and Glazman 1981)



where (-, )7 denotes the inner product in F. The {t;} | are a set of functions
each belonging to F and uniquely determined by the functionals, {L;} ;.

The approximation problem can now be stated as follows: given the Hilbert
space of functions, F, the set of functions, {1;}Y.; C F, and the observations,
{2}, find a function, f € F, such that (3) is satisfied.

A natural setting for such approximation problems is the case where F
is a reproducing kernel Hilbert space (RKHS). The functions, {1;}¥,, then
correspond to reproducing kernels. Formally a RKHS is a Hilbert space of
functions on some parameter set, X', with the property that, for each x € X,
the evaluation functional, L;, which associates f with f(z;), L;f — f(z;), is a
bounded linear functional (Wahba 1990). The boundedness means that there
exists a positive scalar M such that

|Lif] = |f(zi)] < M||f|l# for all f in the RKHS

where || - || is the norm in the Hilbert space. But, to satisfy the Riesz repre-
sentation theorem, the L; must be bounded, hence any Hilbert space satisfying
the Riesz theorem will be a RKHS.

We use k(zx;,-) to refer to ¢; (i-e. the evaluation of the function k(z;,-) = ¥,
at z; is k(z;,z;)). The inner product (k(z;,-), k(z;,-))r must equal k(z;,z;)
by the Riesz representation theorem. Hence, k(z;, ;) is positive definite since,
for any zy,...,2, € X, a4,...,a, € R,

Z aiajk(l'z'-wj) = z aiaj<k($i7 ')7 k(xﬁ )>]:

= X ekt >0

where || - || is the corresponding norm in the RKHS. We therefore have the
following result.

Theorem 2.1 (Aronszajn, 1950) To every RKHS there corresponds a unique
positive-definite function (the reproducing kernel) and conversely given a positive-
definite function k on X x X we can construct o unique RKHS of real-valued
functions on X with k as its reproducing kernel.

The following definition of a RKHS is equivalent to that given above based
on bounded linear functionals.

Definition 2.2 (Parzen, 1960) A Hilbert space, F, is said to be a reproduc-
ing kernel Hilbert space, with reproducing kernel, k, if the members of F are
functions on some set, X, and if there is a kernel k on X x X having the fol-
lowing two properties: for every x € X (where k(-,xz2) is the function defined
on X, with value at x1 in X equal to k(x1,22)):

1. k(-,z0) € F; and
2. (f, k(- 22))F = f(22)



for every f in F.

We can then associate with &(-,-) a unique collection of functions of the form
N

FO) =) cik(ai,-) (4)
i=1

for N € Z* and ¢; € R. A well defined inner product for this collection
is (Wahba 1990)

<Z aik(mia ')a Z bjk(wja )> = Z aibJ'(k(xia ')a k(mja )).7'- = Z aibjk(wia iL'j)-
i J F oG 1]
For this collection, norm convergence implies pointwise convergence and we
can therefore adjoin all limits of Cauchy sequences of functions which are well
defined as pointwise limits (Wahba 1990). The resulting Hilbert space is then
a RKHS.

Suppose that k(x1,zs) is continuous and

//kz(ml,xg)dxldm2<oo (5)
xJx

then there exists an orthonormal sequence of continuous eigenfunctions {¢;}2,
in Ly (X) with associated eigenvalues Ay > Ay > - -- > 0 such that (Wahba 1990)

/ k@, 2) 65 (ms)das = Nids(@), i=1,2,... (6)
x
k(w1 @2) = ) Niti(1) hi(w2), (7)
i=1
/ / k% (21, z2)dz 1 dzs = Z)\f < 0. (8)
xJx i=1
Note that in the finite dimensional case (6)-(8) become
K¢i = AXidi, 9)
K = TATrT, (10)
N
trace R? = Z)\f (11)
i=1

where K is the N x N matrix with ijth entry k(x;, x;), ¢; is the ith eigenvector,
A is the diagonal matrix with iith entry \;, and I is the orthogonal matrix with
ith column ¢;.

The following lemma then holds.



Lemma 2.3 (Wahba, 1990) Suppose (5) holds. If we let

i = i (z)de, 12
fi= [ r@te)is (12)
then f € F if and only if
00 o
> J;— < o0 (13)
i=1 "
and o
=32 (14)
i=1 "

We can also expand f in a Fourier series as

flz) = Z fidi(z). (15)

3 Generalised Inverses and Tikhonov Regulari-
sation

Returning to the approximation problem, this was shown to be equivalent to
the linear operator equation
Lf==z (16)

where f € F,z € Z CRN,L : F — Z and F is a RKHS with reproducing
kernel k(-,-). We assume throughout that the range, R(L), of L is closed. If the
operator L has an inverse then (16) always has the unique solution z = L' f.
More generally, we may have more than one solution (N(L) # {0}, where N (L)
is the null space of L) or no solution at all (z ¢ R(L)). We must therefore seek,
in some sense, a “best possible” solution, u, to the approximation problem.

Theorem 3.1 (Groetsch, 1977) Suppose L : F — Z has closed range and
z € Z, then the following conditions on u € F are equivalent:

(i) Lu = Pz;
(i) |Lu— 2|z < ||Lf — zllz for any f € F; and
(iii) L*Lu= L*2.

Here P denotes the projection of z onto R(L) and L* is the adjoint operator
to L defined by (Lf,2)z = (f, L*2) F.

We call a vector u € F which satisfies the equivalent conditions (i)-(iii) of
Theorem 3.1 a least squares solution of Lf = z.

Assuming R(L) is closed, a least squares solution of (16) always exists for
each z € Z. But, we may have N (L) # {0} (consider, for example, the case of
a function which is zero at each observation). Then there are infinitely many



least squares solutions of (16) since if u is a least squares solution so is u + v for
any v € N(L).
The set of least squares solutions can be written, by Theorem 3.1, as

{u€ F:L*Lu = L*z}. (17)

By the continuity and linearity of L and L* this set is a closed convex set which
contains a unique vector of minimal norm (Groetsch 1977). We then define the
generalised inverse of L as the mapping L : Z — F such that L'z = u, where
u is the least squares solution of minimal norm of the equation Lf = z. Note
that if L is invertible we have Lt = L~'. The associated least squares solution,
u, of minimal norm is the generalised solution, denoted f.

The following theorem and associated corollary are important for character-
ising generalised solutions in our case.

Theorem 3.2 (Groetsch, 1977) Suppose L : F — Z has closed range, then
Lt = (L*D)tL* = L*(LL*)t.

Since, in our case, Z is finite dimensional we have the following corollary.

Corollary 3.3 Suppose L : F — Z has closed range and Z is finite dimen-
sional, then LL* has a matriz representation and the computation of L' reduces
to the computation of the generalised inverse of a matriz.

In a strict mathematical sense, since Z is finite dimensional, we have the
following.

Theorem 3.4 (Bertero, 1985) The generalised solution L' depends contin-
uwously on the observations in the sense that if 6z is the error in the observations
and 6 f1 the induced error in f1, then ||6fF||7 — O when ||0z||z — 0.

The generalised solution is therefore well-posed (Kirsch 1996) (a unique so-
lution exists which depends continuously on the observations). However, a lack
of numerical stability is possible. This can be seen from the following rela-
tion (Bertero, De Mol, and Pike 1985)

15411 162112
< C(L 18
7 = COL (18)
where
o) = |

is the condition number of L.

If C(L) is large the problem of computing f! is ill-conditioned. The gener-
alised solution is therefore affected by numerical instability. Even small errors in
the observations can produce a completely different and unphysical generalised
solution. In such cases we must therefore seek some alternative stable solution.



Such solutions are generated by regularisation algorithms, of which many ex-
ist (Kirsch 1996). We consider the particular case of Tikhonov regularisation
which is closely related to our existing generalised solution (Groetsch 1984).
We have already seen that L'z is the vector, u € F, which minimises the
functional ||Lf — z|| and also has smallest norm amongst all such minimising
vectors. The method of Tikhonov regularisation is approximately to minimise
both the functional ||Lf — z||z and the norm || f|| by minimising the functional

o[f] =|ILf - zIIZ + ol flI (19)

where p > 0 is known as the regularisation parameter. Now, ®[f] is Fréchet
differentiable and we can therefore calculate the gradient V;®[f]. The minimum
of ®[f] occurs at the unique stationary point u of ® which satisfies V®[u] =
0 (Groetsch 1977). The gradient is given by

V,8[f] = 2(L*Lf — L*z) + 2pf. (20)
Hence the unique minimiser, freq, of (19) satisfies
freg = (oI + L*L)*L*2 (21)

or, equivalently,
freg = L*(pI + LL*) 2. (22)

where I is the appropriate identity operator. Finally, the following theorem
confirms a result which we would expect intuitively.

Theorem 3.5 (Groetsch, 1977) If L : F — Z has closed range, then

Lt = (pI + L*L)"'L*

lim
p—0t

uniformly.

4 Characterisation of Operators in RKHS

Consider the operator L : F — Z where Z is the N dimensional Euclidean space
with inner product (g, h)z = Zf;l gih;, for g,h € Z. Then, for z € Z,f € F
the adjoint operator L* is defined by

<Lf: Z>Z = <fa L*z)f (23)

and transforms the observation vector, z, into an element of F or, more precisely,
the finite dimensional subspace Fpy. In a RKHS the operator, L, acting on f
has the form Lf = Ef;l ei{f, k(xi,-))r, where e; € RV is the ith standard
basis vector. The following results apply to the operator, L, and its adjoint, L*.



Theorem 4.1 Given the operator L and its adjoint L* defined by (23) then, in
o RKHS with Lf = Zfil ei{f, k(x;,-))F, the adjoint L* is given by

N
L'z = Zzik(mi, ). (24)
i=1
Proof. Solving for the LHS of (23)
N N
=1 =1

By assumption we set L*z = Zil zik(z;,-) and solving for the RHS of (23)

i=1

N N
(f,L*2)5 = <f,2zik<xi, -)> =" zlf, k(zi, ) F (26)
F =1
the latter owing to the linearity property of the inner product. But this is simply
N
equal to > ;" ; zif(z;). O

Corollary 4.2 The representation of a function in a RKHS, (), for some
c € RV is equivalent to

() = L*e.
Theorem 4.3 For the operator LL* we have
N N
LL*z = Z Z k(wi,%-)ejzi.
j=11i=1

Proof. The operator LL* acting on z can be expressed, using the previous
results, as follows:

LL*z

N
L (Z zik (s, ))
N z:lN
Z< Ziejk(xia')ak(mja')>
1 F

j=1 \i=

using the definition of L. As z; € R we can write this as

N N
L'z = > > ziejk(xi,-), k(zj, )7
j=1 i=1
N
= Z z,-k(xi,xj)ej.

j=1i=1



Corollary 4.4 Since LL* : Z — Z has domain and range equal to a finite di-
mensional space we can express LL* as the matriz LL* = E;VZI SN k(i y)ejel.
This is equivalent to LL* = K where K is defined as the (Gram) matriz
[K)ij = (2, 2;)-

Theorem 4.5 The operator L*L is given by

N
L*Lf = Z f(zi)k(zi, ).

=1

Proof. Using the result in Theorem 4.1 and the definition of the operator, L,
we have

L*Lf

i=1

N
L (Z f(wi)ez-)

N
=1

L (Z ei(f, k(@i '))f)

f(@i)k(zi,-).

(2

O
Given the above results we are now in a position to provide computable
solutions to approximation in RKHS.

Corollary 4.6 For the linear operator equation Lf = z, where f € F,z € Z C
RN and F is a RKHS, the generalised solution, ft = L*(LL*)z, is given by

i) =kTK 12
where k is the vector [k(z,1),...,k(z,zn)].
Corollary 4.7 The associated regularisation solution, fr., = L*(pI+LL*) 'z,

is given by
freg(@) = kT (pI + K) 2.

5 TIterative Solutions

Consider now an iterative solution for f1, then, defining a sequence of estimates
as {f"}5°,, the method of successive approximations estimates f"*1 in terms
of f™ as ~

fn+1 — fn _ ’Ynf" (27)
where f0 € F, v, € Rt and f" is the residual

fr=L*Lf" - L*2. (28)



We motivate this iteration in terms of the negative gradient of the error func-
tional as follows.
Consider again the error functional

ILf™ = || (29)
Expanding we have

ILf" ~2II%

(Lf",Lf")z = 2(Lf" 2)z + (2, 2) 2
(fnaL*Lfn)f - 2<fn>L*z>-7‘- + <Z>Z)Z'

The gradient with respect to f™ is then given by
Vin||Lf™ — 2||% = 2L*Lf" — 2L*2 (30)

where the term (2, 2) z, being independent of f™ is treated as a constant. This
is simply twice the residual, i.e.

VL™ =2z =2/ (31)

In practice the iterations must be made on finite dimensional objects. Returning
to the basic solution in RKHS, (4), f™ can be expressed, using the adjoint
operator, as a linear combination of the c;

fm=L*c" (32)

where ¢® = [c7,...,c%]T. Also

ff=L*", & =LL*"-z. (33)

The method of successive approximations then finds estimates of the coefficients
as

L eRN, l=c"—q&" (34)
where the +,, are chosen as below. The function at each iteration is determined

by f* = L*c" = Eévzl cik(zj,-)-

To complete the iterative scheme we need to define a schedule for the param-
eters 7, and together with this prove convergence in the sense that ||f"||> — 0
when n — oo.

Theorem 5.1 Let {v,}52, satisfy:

(1) 0 < Y < 2/Amaz, for all n, where Apqy is the largest eigenvalue of
LL* = K; and

(2) Zfzozo Tn = 0.

Define the iteration f* = L*c" = Eiil cPk(zi,-) together with f© € F (i.e.
& € RN ) arbitrary, "' = ¢ — 4, ¢" = LL*c" — z, then

1£711% = [IL*e"[|% — 0.

as n — oo.

10



Proof. (a) Monotonicity.
f'n+1 — L*Lfn+1 —L*z (35)

but f**! = L*¢"! and "t = ¢ —,,é", therefore f*! = L*(c" —v,é") from
which

i = L*LL*(c™ — y,é™) — L*2
= L*Lf"—L*2—,L*Lf" = f* — 4, L*Lf".
Define
AllfME = IIJf"II? - IIJf"“II?r )
= /"% = 1" = v L L%
and thus
A% = IM1% = 115 — 2L Lf", L*Lf™) »

+29(f", L*Lf") 7 o
= 20{f", L°Lf") r — (L LI L' L") .

Since L is bounded it is also compact (Kreyszig 1978) then L* L is a non-negative
self-adjoint map and (Edmunds and Evans 1987; Groetsch 1984),

L*Lf" = Z FiNid; (36)
J

where A; and ¢;, as defined in (6), correspond to the eigenvalues and associated
eigenvectors of L*L ! and

- [ i@ ()ds
X
Using results (14) and (36) we also have

S Noofm2a, XN

(L*Lf* f)F = ZLJ; t=3 UM
j—l J j=1

. . 2’,\2 N

(L*Lf* L*LfYr = Z Z(f,”)%

Therefore N =
ry rs 2
(LLfr My 2= 37
= = = =N =
<L*Lf",L*Lf")]: Zj:1(fjn)2/\j
INote that L* L has the same positive eigenvalues as LL* with the same multiplicity (Bert-

ero, De Mol, and Pike 1985; Edmunds and Evans 1987). The main result of the theorem applies
t0 Amaz which is the same for both L*L and LL* (but is readily computable for LL* = K).

11



from which we have

AL o 2EL? 2 9
(L*Lf™ L* L™ 5~ Ao gy (F)?2 Amaz
But by assumption 7y, < 2/Amnaz, hence
A7 = 29", L* L") — 7 (L*Lf", L*Lf") 7 > 0. (39)
(b) Convergence.
It was shown above that the residuals satisfy
frt =L Lf" — 4 L*Lf" — L* 2. (40)
Hence
o= el Lft = (I -l D f
= JIT-wrD)f* =[] —wlL*L)g
k=0 k=0

where g = f0 € F which can be expanded in terms of the orthonormal basis of
eigenfunctions, ¢;, as (c.f. (15))

9= Zgi¢i($) (41)

where the g; are given by (12), and since L*L is self-adjoint (with L bounded)
(Groetsch 1984)

L*Lg = Zgz’)\iﬁi’i(ﬂf) (42)

where \; refers to the eigenvalues of L*L.
We can then write

n n
[T =L L)g =" g [](1—mAi)os (43)
k=0 1 k=0
and hence
N n 2 g2 n
1745 = | IIE =L Lygl| =3 o T[T —mr)? (44)
k=0 F i 7' k=0
where we have used (14) and (15).
Using the assumed inequality on g
1- <l—mAi<l=(1—mh)? <l (45)
)\maz

12



Then for any [ € Z+

l

2 n 2
in 9i 9;
TSRS D5 | ((EEEOED 95 (46)
k=0

i=1 i>1

For fixed [, let n — oo, and since Y .-, = oo (by assumption) and (1 —
YAi)? < 1, the first term tends to 0. Now let I — 00, g € F = Y. 97/ < 00
(Lemma 2.3), and therefore the second term is the tail of a convergent series
and therefore tends to 0. O

If we further define c® = 0 (and therefore fO = 0) then for any n, ||f"||r <
lf™*1||= and therefore ||f"||= < ||ft]|# (Bertero, De Mol, and Pike 1988). It
therefore follows that the method of successive approximations defines a regu-
larisation scheme where the inverse of the number of iterations plays the role of
the regularisation parameter.

6 Iterative Regularised Solutions

Consider now, instead, the regularised error functional

ILF™ = 201% + pll £ 115 (47)

Expanding

ILf" = 2l% + ol £11%

(Lf" Lf"yz = 2(Lf", 2)z + (2, 2)z + p{f", f")F
(f" L*Lf")r = 2(f", L*2)r + {2, 2)z + p(f", [") F

The gradient with respect to f™ is given by
Vi AILF" = 2% + pll f115} = 2L*Lf™ — 2L*z + 2pf" (48)

and therefore the direction of the gradient is L*L f™ — L*z + pf™ which is once
again the (now regularised) residual.

We now apply the method of successive approximations to estimate f™*! in
terms of f™ as

[ == fr (49)
where 0 € F, v, € R* and now f" is given by
"= (L*L+ pI)f* — L*=. (50)
Again, we express the f™ in terms of the adjoint operator as

fm = L*em (51)

Before proceeding with the basic theorem and proof we require the following
lemma.

13



Lemma 6.1 (Spectral Mapping Theorem) Consider a linear operator, T : F —
F, and p, a polynomial, then, for the spectrum, o,

o(p(T)) = p(o(T)) ={p(A) : A € o(T)}.

This simply states that the eigenvalues of a polynomial function of the linear
operator, T', are equal to the same polynomial applied to the eigenvalues of the
original operator, 7.

The gradient iteration for the regularised case is then summarised in the
following theorem.

Theorem 6.2 Let {v,} satisfy:

(1) 0 < v, < ﬁ, for all n, where A\pqp is the largest eigenvalue of

LL* =K; and

(2) XonZom = oo

Define the iteration, f* = L*c¢" = EN ck(z;,-), together with f° € F (i.e.

i=1 "1

& € RY ) arbitrary, "t = ¢" — v,&", & = (LL* + pI)c™ — z, then
1715 = IL*&"||% = 0
as n — 00.

Proof. (a) Monotonicity.

fr=(L*L+ph)f"—L*z (52)

but f*+t = L*¢"*t and "t = ¢" —4,é", therefore f"*! = L*(c" —v,¢") from
which
FrH = (LPL4 pD)LY (e = 308) — L2
= (L*L+ pI)f™ — L*2 — 4 (L*L + pI) "
= " =@ L+pD)f"
= (I—y(L*L+pI))f™.

Define
AllfME = IIf"IIZf — 17 1% i
= (/"% = I = m(L*L + pD) {5
which can be expanded, thus

AllfI% ||f"||3r~— 7™ 1% — 73(~(L*L +pD)f", (L*L+ pI) f") £
+2’7n~<f", (L*L +pI~)f")yr ] ]
29 (f", (L*L + pI) f") 7 = va((L*L + pI) f", (L*L + pI) f™") .
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Analogous to the proof in the previous section

(Fr,(L*L+ pD) ")

_ LA+ a Y
((L*L + pI) f7, (L*L + pI) f") 7

53
SN LA+ p)2 ()2 (3

where the A\; are again the eigenvalues of L*L and we have applied the Spectral
Mapping Theorem. Therefore

2/, (L°L + pI) f") 255 A0 + )
(L*L+ pD) f*, (L*L + pD) f™) 7 = (Amaz + 9) Xy NNy + ) ()2
where the latter term is simply equal to y—= -
)\mi > from which

(54)

But, by assumption 7,

Allf™N% = 29l f™ (L L+ pD) f*) 7 = vl (L*L + pD) f*, (L* L+ pI) f") 5 > 0
(b) Convergence.

Now, in general, the residuals satisfy
fn+1

(I =y (L*L + pD)) f
and therefore, by iteration

fr H (I —(L*L + pI))f°

H (I —(L*L + pI))g

where g = f**! € F. Again we can express g and L*Lg as

9= gi¢i(x)

(55)
and

L'Lg=_ gidigi(x)

(56)
Using the Spectral Mapping Theoremz
(L*L + pI)g Zgz (N + p)i(2) (57)
and therefore
ﬁ(l—vk(L*L+pI))g => g f[(l — 7 (Ni + p))bi- (58)
k=0 i k=0
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Hence

n

1[G = (@ L+ pD))g
k=0

n

ST ni+ ) (59)

2
% = =
F i 7 k=0

where we have, again, used (14) and (15).
Using the assumed inequality on g

i
1-2 ()\J) <L—mi+p) <1=(1-m(i+p)” <Ll (60)

max +p
Then, for any I € Z+
e =0 ) g2
177 < DTS T = e+ )+ 305 (61)
i 7' k=0 >t 7t

By similar arguments to the previous iteration proof, for fixed I, let n — oo,
and since .2 7; = oo (by assumption) and (1 — v (A; +p))? < 1 the first term
tends to zero. Now let | — o0, g € F = Y. g7/Xi < oo (Lemma 2.3), and the
second term is the tail of a convergent series and therefore tends to zero. [

7 Conclusions

A natural framework for approximating functions, given a discrete set of obser-
vations, has been presented. The function of interest belongs to a RKHS and
the observations arise as bounded linear functionals mapping to the reals. The
computational aspects of characterising such approximations were described and
a gradient method presented for iterative solution. Such iterative solutions are
desirable when the number of observations is large and the matrix computations
involved in the direct solution become infeasible. This is also exactly the case
where the problem becomes ill-conditioned. An iterative approach to Tikhonov
regularisation was therefore also presented. Detailed proofs were given for the
convergence of the iterative solutions. These iterative solutions are novel in
the context of approximating functions in RKHS with discrete data. Further,
the proofs of convergence are unique to RKHS in making use of a particular
eigenexpansion of the kernel.
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