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The Deduction Theorem for

Strong Propositional Proof Systems⋆

Olaf Beyersdorff

Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de

Abstract. This paper focuses on the deduction theorem for proposi-
tional logic. We define and investigate different deduction properties and
show that the presence of these deduction properties for strong proof
systems is powerful enough to characterize the existence of optimal and
even polynomially bounded proof systems. We also exhibit a similar,
but apparently weaker condition that implies the existence of complete
disjoint NP-pairs. In particular, this yields a sufficient condition for the
completeness of the canonical pair of Frege systems and provides a gen-
eral framework for the search for complete NP-pairs.

1 Introduction

The classical deduction theorem for propositional logic explains how a proof of a
formula ψ from an extra hypothesis ϕ is transformed to a proof of ϕ → ψ. While
this property has been analysed in detail and is known to hold for Frege systems
[5, 6], the situation is more intricate for stronger systems such as extensions of
Frege systems. On the one hand, formulating extended Frege systems EF as
Frege systems where the size of the proof is measured by the number of steps in
the proof, the deduction theorem again holds for extended Frege systems (as the
number of steps in Frege systems is polynomially related to the proof size in EF ).
On the other hand, in the usual formulation, neither EF nor substitution Frege
systems SF satisfy the classical deduction theorem, as neither the extension nor
the substitution rule is sound (in the sense that every satisfying assignment for
the premises also satisfies the conclusion of these rules). Thus, another approach
for the deduction theorem in EF or SF is to limit the use of the extension or
substitution rule in the systems. Yet, as a third alternative, we can take the full
systems EF and SF , but consider weakened versions of the deduction property.

In this paper we aim to clarify the relations between these different ap-
proaches. In particular, we concentrate on the third alternative and show that
even restricted notions of deduction are very powerful for strong systems, as
they have unlikely consequences. More concretely, we relax the condition from

⋆ An extended abstract of this paper appeared in the proceedings of the conference
FSTTCS 2007 [2]. Part of this work was done while at Humboldt-University Berlin,
where the author was supported by DFG grant KO 1053/5-1.



the classical deduction theorem by requiring the extra hypothesis ϕ to be tauto-
logical. In this way we arrive at two weaker versions of the deduction property,
for which we ask whether they are valid for strong proof systems with natural
properties. It turns out that even these weaker versions of deduction are very
powerful properties for strong proof systems as they allow the characterization
of the existence of optimal and even polynomially bounded proof systems.

These characterizations are interesting as they relate two important concepts
from different areas. The problem of the existence of polynomially bounded proof
systems is known to be equivalent to the NP versus coNP question [9], while
the question of the existence of optimal proof systems, asking for a strongest
propositional proof system, is a famous and well-studied problem in proof com-
plexity, posed by Kraj́ıček and Pudlák [19], and with implications for a number
of promise complexity classes (cf. [17, 22]). In particular, Sadowski [22] obtained
different characterizations for the existence of optimal proof systems in terms of
optimal acceptors and enumerability conditions for easy subsets of TAUT. Ear-
lier, Kraj́ıček and Pudlák [19] established NE = coNE as a sufficient condition for
the existence of optimal proof systems, while Köbler, Messner, and Torán [17]
showed that optimal proof systems imply complete sets for a number of other
complexity classes like NP ∩ coNP and BPP.

On the other hand, we show that weak deduction combined with suitable
closure properties of the underlying proof system implies the existence of com-
plete disjoint NP-pairs. Although disjoint NP-pairs were already introduced into
complexity theory in the 80’s by Grollmann and Selman [15], it was only during
recent years that disjoint NP-pairs have fully come into the focus of complexity-
theoretic research [20, 11–14, 1, 4]. This interest mainly stems from the appli-
cation of disjoint NP-pairs to such different areas as cryptography [15, 16] and
propositional proof complexity [21, 20, 1].

Similarly as for other promise classes it is not known whether the class of
all disjoint NP-pairs contains pairs that are complete under the appropriate
reductions. This question, posed by Razborov [21], is one of the most prominent
open problems in the field. On the positive side, it is known that the existence
of optimal proof systems suffices to guarantee the existence of complete pairs
[21]. More towards the negative, a body of sophisticated relativization results
underlines the difficulty of the problem. Glaßer, Selman, Sengupta, and Zhang
[12] provided an oracle under which complete disjoint NP-pairs do not exist. On
the other hand, in [12] they also constructed an oracle relative to which there
exist complete pairs, while optimal proof systems do not exist.

Further information on the problem is provided by a number of different
characterizations. Glaßer, Selman, and Sengupta [11] obtained a condition in
terms of uniform enumerations of machines and also proved that the question
of the existence of complete pairs receives the same answer under reductions of
different strength. Additionally, in [4] the problem was characterized by prov-
ability conditions in propositional proof systems. Namely, there exist complete
NP-pairs if and only if there exists a propositional proof system which proves the
disjointness of all pairs with respect to suitable propositional representations of
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their components. It was also shown in [4] that increasing the number of com-
ponents from two to arbitrary constants does not change the difficulty of the
problem, i.e., complete disjoint NP-pairs exist if and only if complete disjoint
k-tuples of NP-sets exist for every k ≥ 2.

In this paper we exhibit several sufficient conditions for the existence of
complete disjoint NP-pairs which involve properties of concrete proof systems
such as Frege systems and their extensions. These results fall under a general
paradigm for the search for complete NP-pairs, that asks for the existence of proof
systems satisfying a weak version of the deduction theorem and moderate closure
conditions. In particular, we provide two conditions that imply the completeness
of the canonical pair of Frege systems and demonstrate that the existence of
complete NP-pairs is tightly connected with the question whether EF is indeed
more powerful than ordinary Frege systems.

The paper is organized as follows. In Sect. 2 we provide some background
information on propositional proof systems and disjoint NP-pairs. In Sect. 3 we
discuss various extensions of Frege systems which we will investigate in Sect. 4
with respect to different versions of the deduction property. Section 5 contains
the results connecting the deduction property for strong systems with the ex-
istence of complete NP-pairs. Finally, in Sect. 6 we conclude with some open
problems.

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in
a very general way by Cook and Reckhow [9] as polynomial-time computable
functions P which have as their range the set of all tautologies. A string π with
P (π) = ϕ is called a P -proof of the tautology ϕ. The size of a proof π is the
number of symbols |π| in the proof. By P ⊢≤m ϕ we indicate that there is a
P -proof of ϕ of size ≤ m. We write P ⊢∗ ϕn if ϕn is a sequence of tautologies
with polynomial-size P -proofs. A propositional proof system P is polynomially
bounded if all tautologies have polynomial size P -proofs.

Proof systems are compared according to their strength by simulations as
introduced in [9] and [19]. A proof system S simulates a proof system P (denoted
by P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and P -
proofs π of ϕ there is an S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof π′

can even be computed from π in polynomial time we say that S p-simulates P

and denote this by P ≤p S. If the systems P and S mutually (p-)simulate each
other, they are called (p-)equivalent, denoted by P ≡(p) S. A proof system is
called optimal if it simulates all proof systems.

In the following sections, simple closure properties of propositional proof
systems will play an important role. We say that a proof system P is closed
under modus ponens if there exists a polynomial p such that for all numbers k

and all propositional formulas ϕ1, . . . , ϕk+1 the following holds. If P ⊢≤n ϕi for
i = 1, . . . , k and P ⊢≤n ϕ1 → ϕ2 → · · · → ϕk+1, then we get P ⊢≤p(n) ϕk+1. This
definition not only allows to use modus ponens once with polynomial increase in
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the proof size, but in fact a polynomial number of times (cf. [3] for a discussion
of this and the following closure properties).

Similarly, we say that P is closed under substitutions of variables with respect
to the polynomial q if P ⊢≤m ϕ(x̄) implies P ⊢≤q(m) ϕ(ȳ) for all formulas
ϕ(x̄) and propositional variables ȳ that are distinct from x̄. Not specifying the
polynomial explicitly, we say that P is closed under substitutions of variables
if there exists a polynomial q with this property. Likewise, P is closed under
substitutions by constants if there exists a polynomial q such that P ⊢≤m ϕ(x̄, ȳ)
implies P ⊢≤q(m) ϕ(ā, ȳ) for all formulas ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|.

Disjoint NP-Pairs. A pair (A, B) is called a disjoint NP-pair if A,B ∈ NP and
A ∩ B = ∅. Grollmann and Selman [15] first defined the notion of a many-one
reduction between disjoint NP-pairs, which can be equivalently stated as follows
(cf. [20]): a disjoint NP-pair (A,B) many-one reduces to a pair (C, D), denoted
(A,B) ≤p (C, D), if there exists a polynomial-time computable function f such
that f(A) ⊆ C and f(B) ⊆ D. A disjoint NP-pair is complete if every disjoint
NP-pair reduces to it.

The connection between disjoint NP-pairs and propositional proof systems
was established by Razborov [21], who associated a canonical disjoint NP-pair
(Ref(P ), SAT∗) with a proof system P , where the first component Ref(P ) =
{(ϕ, 1m) | P ⊢≤m ϕ} contains information about proof lengths in P and the
second component SAT∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT} is a padded version of SAT.
This canonical pair is linked to the automatizability and the reflection property
of the proof system [20]. More information on the connection between disjoint
NP-pairs and propositional proof systems can be found in [20, 1, 13].

3 Extensions of Frege Systems

A prominent example of a class of proof systems is provided by Frege systems
which are usual textbook proof systems based on axioms and rules. In the context
of propositional proof complexity these systems were first studied by Cook and
Reckhow [9] and it was proven there that all Frege systems, i.e., systems using
different axiomatizations and rules, are p-equivalent.

In addition to Frege systems the extended Frege proof system EF can ab-
breviate complex formulas by propositional variables by the following extension
rule: if q is a new propositional variable, neither occurring in the previous proof
steps nor in the proven formula, then q ≡ ϕ is an admissible proof step for
arbitrary formulas ϕ not containing q. The variable q is an extension variable,
which from now on abbreviates the formula ϕ. Note that q ≡ ϕ is in general
not tautological, and therefore q must not appear in the proven formula. This
extension rule might further reduce the proof size, but it is not known whether
EF is really stronger than ordinary Frege systems. Both Frege and the extended
Frege system are very strong systems for which no non-trivial lower bounds to
the proof size are currently known (cf. [7]).
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Another way to enhance the power of Frege systems is to allow substitutions
not only for axioms but also for all formulas that have been derived in Frege
proofs. Augmenting Frege systems by this substitution rule leads to the substitu-
tion Frege system SF . The extensions EF and SF were introduced by Cook and
Reckhow [9]. While it was already proven there that EF is simulated by SF , the
converse simulation is considerably more involved and was shown independently
by Dowd [10] and Kraj́ıček and Pudlák [19]. For more detailed information on
Frege systems and their extensions we refer to the monograph [18].

Under the notion of Hilbert-style proof systems we subsume all proof systems
that have as proofs sequences of formulas, and formulas in such a sequence
are derived from earlier formulas in the sequence by the rules available in the
proof system. In particular, Frege systems and its extensions are Hilbert-style
systems. Hilbert-style proof systems P can be enhanced by additional axioms in
two different ways. Namely, we can form a proof system P +Φ augmenting P by
a polynomial-time computable set Φ of tautologies as new axiom schemes. This
means that formulas from Φ as well as substitution instances of these formulas
can be freely introduced as new lines in P +Φ -proofs. In contrast to this we use
the notation P ∪Φ for the proof system that extends P only by formulas from Φ

but not by their substitution instances as new axioms. In our applications the set
Φ will mostly be printable, meaning that Φ can both be decided and generated
in polynomial time.

For EF there are two canonical ways how to define the extensions EF ∪Φ and
EF + Φ, where these two possibilities differ in the use of the extension axioms.
In principle, this yields four possible types of extensions of EF . Although some
of these systems are not very natural, we will briefly discuss all of them, as
the actual usage of the extension variables will turn out to be crucial for the
deduction properties of EF . In the first method we will allow the introduction
of extension axioms p ≡ ϕ only for extension variables p not occurring in Φ,
whereas in the second method we can freely use extension axioms that also
involve variables from Φ. For the first weaker notion we will use the notation
EF− ∪ Φ and EF− + Φ, whereas the stronger second way is indicated by the
usual notation EF ∪ Φ and EF + Φ. When investigating deduction properties,
we will frequently extend EF by different sets of tautologies Φ which are not
always made explicit. Therefore, we will also use the notation EF− for the base
system EF . Hence EF and EF− are the same system, but the different notation
indicates, how the system is augmented by further axioms. We will use the same
notation (EF + Ψ)− when we use an extension EF + Ψ as the base system and
augment this with further axioms Φ to systems (EF + Ψ)− ∪ Φ.

As already mentioned, we obtain four possible types of extensions of EF , but
it is easily seen that the distinction between EF and EF− becomes irrelevant
when we augment these systems by axiom schemes Φ:

Proposition 1. Let Φ be a polynomial-time decidable set of tautologies. Then
the proof systems EF + Φ and EF− + Φ are p-equivalent.

Proof. By definition, the system EF + Φ p-simulates the system EF− + Φ. For
the converse simulation let π be an EF +Φ-proof of a formula ϕ. Without loss of
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generality, we assume that there is an infinite set of propositional variables which
neither appear in the proof π nor in Φ. In order to convert π into an EF− + Φ-
proof we only have to check, whether π contains extension axioms p ≡ θ with
extension variables p that occur in the axiom set Φ. If this is not the case, then
π is already an EF− + Φ-proof. Otherwise, we just rename every occurrence of
p in π to a new variable q, which neither appears in π nor in Φ. Performing this
step for every extension atom in π, we already arrive at an EF− + Φ-proof of
ϕ. This is correct, because the proven formula ϕ may not contain any extension
variables, and renaming variables in axioms from Φ in the proof still results in
valid substitution instances of Φ, which we are permitted to use in EF− + Φ-
proofs. ⊓⊔

By Proposition 1, there is only one canonical way how to define extensions of
EF that use all substitution instances of the extra axioms. These extensions are
particularly important as every proof system P is p-simulated by a proof system
of the form EF + Φ where the axioms Φ provide a propositional description of
the reflection principle of P , expressing a strong form of the consistency of P

(cf. [18] for details).
In addition, also the systems EF ∪ Φ and EF + Φ appear to be very close

to each other, as also EF ∪ Φ can use substitution instances of Φ in its proofs.
Namely, if ϕ(p1, . . . , pn) is a formula from Φ and θ1(q̄), . . . , θn(q̄) are propo-
sitional formulas in the variables q̄ that are disjoint from p̄, then we can de-
duce ϕ(θ1, . . . , θn) in EF ∪ Φ as follows: we start with the extension axioms
p1 ≡ θ1(q̄), . . . , pn ≡ θn(q̄) and use these formulas to show the equivalence
ϕ(p1, . . . , pn) ≡ ϕ(θ1, . . . , θn) by induction on the formula ϕ. Using the original
axiom ϕ(p1, . . . , pn) from Φ we arrive with modus ponens at the substitution
instance ϕ(θ1, . . . , θn). We leave it open, whether this idea can be extended to a
full simulation of EF +Φ by EF∪Φ, but the argument shows that also the system
EF ∪Φ is quite natural, as it is equivalent to the proof system P = EF +Φ where
formulas from Φ use pairwise distinct variables and each P -proof may contain
at most one substitution instance of each formula from Φ.

For SF the situation becomes even simpler, as there is only one sensible
way to define extensions of SF . Namely, because SF can immediately generate
substitution instances, we have SF ∪Φ ≡p SF +Φ. In total, the following picture
of possible extension of Frege systems emerges:

Proof system Extensions by polynomial-time decidable axioms Φ

F F ∪ Φ ≤p F + Φ

EF EF− ∪ Φ ≤p EF ∪ Φ ≤p EF− + Φ ≡p EF + Φ

SF SF ∪ Φ ≡p SF + Φ

Probably not all these extensions lead to natural systems.1 As the table indi-
cates, only F ∪Φ, F +Φ, EF− ∪Φ, EF ∪Φ, and EF +Φ remain as possible (and

1 I am grateful to one of the anonymous referees for helpful comments on this point.
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presumably different) systems. From this list, the systems F ∪ Φ, F + Φ, and
EF + Φ seem natural. For EF− ∪Φ and EF ∪Φ the situation is probably not so
clear. One criticism against EF ∪Φ is that, as in the ”∪” setting, the variables in
Φ cannot be arbitrarily substituted, it might not be natural to then define them
by extension axioms. On the other hand, the systems EF ∪ Φ naturally appear
in the investigation of deduction properties, and, after all, lead to interesting
consequences (Theorems 8 and 9). Finally, it is even possible that the systems
EF ∪Φ and EF +Φ are in fact equivalent (cf. the second paragraph after Propo-
sition 1), and thence, EF ∪ Φ would just be a reformulation of a natural proof
system.

In the above table all shown simulation relations are probably strict in each
line (except for EF ∪ Φ ≤p EF + Φ as mentioned above), because the converse
simulations (even for ≤) have unlikely consequences, as we will show in the
sequel of this paper, or easily follows from known results. The next table gives
an overview of these consequences, ranging in strength from the existence of
complete disjoint NP-pairs to the existence of optimal proof systems.

Assumption Consequence

F ≡ F ∪ Φ *) EF is optimal (Theorem 2)

F ∪ Φ ≡ F + Φ *) Complete disjoint NP-pairs exist (Corollary 15)

EF ≡ EF− ∪ Φ *) EF is optimal (Theorem 2)

EF− ∪ Φ ≡ EF ∪ Φ *) EF is optimal (Theorem 8)

SF ≡ SF ∪ Φ *) SF is optimal (Theorem 2)

*) for all polynomial-time decidable sets of tautologies Φ

The implications in lines 2 and 4 follow from Corollary 15 and Theorem 8
below. All other implications can be derived from the following result:

Theorem 2 (Kraj́ıček, Pudlák [19]). Let P ≥ EF be a proof system that is
closed under substitutions and modus ponens. Then P is optimal if and only if
P ⊢∗ ϕn for all printable sequences ϕn of tautologies.

To derive the first line from the above table, assume that F ≡ F ∪ Φ for
all polynomial-time decidable sets of tautologies Φ. In particular, this means
F ⊢∗ ϕn for all printable sequences ϕn, and hence also EF ⊢∗ ϕn. As EF
has the necessary closure properties, the optimality of EF follows by the above
theorem. Lines 3 and 5 are deduced analogously.

In contrast to these conditional separations, we do not seem to have such
indication for separating the systems in the vertical columns of the first table,
as even the relation between F and EF ≡p SF is not settled.

4 Deduction Properties for Frege Systems

The deduction theorem of propositional logic states that in a Frege system F a
formula ψ is provable from a formula ϕ if and only if ϕ → ψ is provable in F .
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Because proof complexity is focusing on the length of proofs it is interesting to
analyse how the proof length is changing in the deduction theorem. An F -proof
of ϕ → ψ together with the axiom ϕ immediately yields the formula ψ with
one application of modus ponens. Therefore it is only interesting to ask for the
increase in proof length when constructing a proof of ϕ → ψ from an F -proof of
ψ with the extra axiom ϕ. This was analysed in detail in [5, 6].

The main application of the deduction property is to simplify proofs of com-
plex formulas. Namely, to prove an implication ϕ → ψ it suffices to construct a
proof of ψ from ϕ. In particular, ϕ can be any formula and is not necessarily a
tautology. It is clear that such a deduction property is doomed to fail for strong
systems like EF or SF that can immediately produce substitution instances from
ϕ. For instance, by one application of the substitution rule we get SF ∪ {p} ⊢ q,
whereas p → q is not even a tautology. Similarly, we get EF ∪ {p} ⊢ q by in-
troducing the extension axiom p ≡ q with extension variable p as the first line
of the proof, and then derive q by modus ponens. This example, however, does
not work for EF− as we have used the variable p from the extra assumption as
an extension variable. In fact, such an example cannot be found as the classical
deduction theorem is valid for EF− (Theorem 4).

Aiming in particular at strong proof systems like EF we therefore restrict ϕ

to tautologies and make the following general definition.

Definition 3 (Efficient/classical deduction property). A Hilbert-style proof
system P allows efficient deduction if there exists a polynomial p such that for
all finite sets Φ of tautologies,

P ∪ Φ ⊢≤m ψ implies P ⊢≤p(m+m′) (
∧

ϕ∈Φ

ϕ) → ψ

where m′ = |
∧

ϕ∈Φ ϕ|.
If this even holds for all finite sets Φ of propositional formulas, then we say

that P has the classical deduction property.

This classical deduction property is known to hold for Frege systems (cf. [5,
6]), but actually almost the same proof also holds for the presumably stronger
system EF−.

Theorem 4 (Deduction theorem for Frege systems). Let Ψ be a polynomial-
time decidable set of tautologies. Then every Frege system F + Ψ and every ex-
tension Frege system of the form (EF +Ψ)− has the classical deduction property.

Proof. For every F -rule

Ri =
ψ1 . . . ψr

ψ

we fix an F -proof πi of the tautology

((q → ψ1) ∧ · · · ∧ (q → ψr)) → (q → ψ)

where q is a new propositional variable. In particular, for r = 0 this also includes
the case that Ri is an axiom scheme.
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Let ϕ1, . . . , ϕn be arbitrary propositional formulas and let (θ1, . . . , θk) be
a proof of ψ of size m in the system P ∪ {ϕ1, . . . , ϕn}, where P is F + Ψ or
(EF +Ψ)−. Let m′ =

∑n

i=1 |ϕi|. By induction on j we construct P -proofs of the
implications

(

n∧

i=1

ϕi) → θj .

We distinguish three cases on how the formula θj was derived.
If θj is one of the formulas from {ϕ1, . . . , ϕn} or a substitution instance from

Ψ , then we get (
∧n

i=1 ϕi) → θj in a proof of size O(m′ + |θj |).
If θj was inferred from θj1 , . . . , θjr

by the F -rule Ri, then we can get from πi

an F -proof of size O(m′ + |θj | +
∑r

l=1 |θjl
|) of the tautology

((

n∧

i=1

ϕi) → θj1) ∧ · · · ∧ ((

n∧

i=1

ϕi) → θjr
) → ((

n∧

i=1

ϕi) → θj).

Combining all the earlier proved implications (
∧n

i=1 ϕi) → θjl
, l = 1, . . . , r by

conjunctions and using modus ponens, we get the desired implication (
∧n

i=1 ϕi) →
θj . Hence the already existing P -proofs of (

∧n

i=1 ϕi) → θk for k < j are prolonged
by a P -proof of size O(m + m′).

If in the case of (EF +Ψ)− the formula θj was derived by the extension rule,
i.e.,

θj = (q ≡ θ)

with a new variable q, then we can also use the extension rule to get q ≡ θ and
derive

(

n∨

i=1

¬ϕi) ∨ (q ≡ θ) = (

n∧

i=1

ϕi) → (q ≡ θ)

in a proof of size O(m′ + |θ|). Here it is important that by the definition of
(EF+Ψ)− the extension variable q does not occur in the formulas ϕi, as otherwise
we would not be able to use q as an extension variable in an (EF + Ψ)−-proof
of (

∧n

i=1 ϕi) → θk. ⊓⊔

A still weaker form of the deduction property is given in the next definition.

Definition 5 (Weak deduction property). A Hilbert-style proof system P

allows weak deduction if the following condition holds. For all printable sets
Φ ⊆ TAUT there exists a polynomial p such that for all finite subsets Φ0 ⊆ Φ

we can infer from P ∪ Φ0 ⊢≤m ψ that P ⊢≤p(m+m′) (
∧

ϕ∈Φ0
ϕ) → ψ where

m′ = |
∧

ϕ∈Φ0
ϕ|.

In Definition 3 we allowed a fixed polynomial increase for the proof size in
the transformation of a proof from ψ to the implication (

∧
ϕ∈Φ0

ϕ) → ψ, whereas
in the weak deduction property this polynomial might depend on the choice of
the extra axioms Φ. This weakening of the deduction property allows us to show
the following proposition.
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Proposition 6. Optimal Hilbert-style proof systems have the weak deduction
property. Similarly, polynomially bounded Hilbert-style proof systems have the
efficient deduction property.

Proof. Let P be an optimal Hilbert-style proof system and let Φ be a printable
set of tautologies. Then P ∪ Φ is a well defined proof system which by the
optimality of P is simulated by P . Hence we have polynomial-size P -proofs of
all formulas from Φ. Given a finite set Φ0 and a P ∪ Φ0-proof π of a formula ψ

we can therefore first derive all formulas from Φ0 in polynomial-size P -proofs
and concatenate this with π. This results in a polynomial-size P -proof of ψ from
which we easily obtain a polynomial-size P -proof of (

∧
ϕ∈Φ0

ϕ) → ψ.
If P is polynomially bounded, then all tautologies have polynomial-size P -

proofs. Hence in particular, there is a polynomial bound on the proof size of the
formulas (

∧
ϕ∈Φ0

ϕ) → ψ which is independent of Φ. ⊓⊔

The following theorem provides a form of a converse to the last proposition.
This shows that the efficient and even the weak deduction property are very
strong assumptions for proof systems satisfying basic closure properties.

Theorem 7. Let P ≥ EF be a Hilbert-style proof system that fulfills the follow-
ing two conditions:

1. P is closed under modus ponens and substitutions by constants.
2. For all printable sets of tautologies Φ the proof system P ∪Φ is closed under

substitutions of variables.

Then the following implications hold. If P has the weak deduction property, then
P is an optimal proof system. If P even has the efficient deduction property
and item 2 holds for some fixed polynomial p, not depending on Φ, then P is a
polynomially bounded proof system.

Proof. Let us argue for the first implication. To obtain the optimality of a proof
system P ≥ EF that is closed under modus ponens, it suffices to show P ⊢∗ ϕn

for all printable sequences of tautologies ϕn by Theorem 2. Let ϕn(p̄) be a print-
able sequence in the variables p̄, and let q̄ be a sequence of propositional variables
that is disjoint from p̄. We consider the proof system P ′ = P ∪ {ϕn(q̄) | n ≥ 0},
where the variables p̄ from ϕn(p̄) are substituted by q̄. By assumption, P ′

is closed under substitutions of variables and hence we have P ′ ⊢∗ ϕn(p̄).
By the weak deduction property for P we get P ⊢∗

∧
i∈I ϕi(q̄) → ϕn(p̄) for

some finite set I. Using closure under substitutions by constants we derive
P ⊢∗

∧
i∈I ϕi(1, . . . , 1) → ϕn(p̄), where we have substituted all variables q̄ in

ϕi(q̄) by constants 1. Because all ϕi are tautologies, the formulas ϕi(1, . . . , 1) are
true formulas without variables and therefore admit polynomial-size P -proofs,
as P ≥ EF . Using modus ponens for P we arrive at polynomial-size P -proofs of
ϕn(p̄), as desired.

For the second implication we use the following characterization: a proof
system P is polynomially bounded if and only if P ⊢≤p(n) ϕn for all printable
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sequences of tautologies ϕn and a fixed polynomial p. In the definition of the effi-
cient deduction property and the other closure properties we have also bounded
the increase in the proof length by fixed polynomials. Hence an easy modification
of the above argument yields the second implication. ⊓⊔

Theorem 7 tells us that, for a non-optimal Hilbert-style proof system P

satisfying the natural closure properties from item 1, either P does not have
weak deduction or P ∪ Φ is not closed under substitutions of variables for some
choice of Φ. Examining the situation for extensions of EF we obtain the following
result.

Theorem 8. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the weak deduction property.
2. EF + Ψ is an optimal proof system.
3. For all polynomial-time decidable sets Φ ⊂ TAUT the systems (EF +Ψ)−∪Φ

and (EF + Ψ) ∪ Φ are equivalent.
4. For all polynomial-time decidable sets Φ ⊂ TAUT the proof system (EF +

Ψ)− ∪ Φ is closed under substitutions of variables.

Proof. We will prove the implications 1 ⇔ 2, 2 ⇒ 3, 3 ⇒ 4, and 4 ⇒ 2.
To prove item 2 from item 1, let us assume that EF + Ψ has the weak

deduction property. By definition, the system EF + Ψ is closed under modus
ponens and under substitutions by constants. In order to conclude the optimality
of the proof system by Theorem 7, it remains to verify the closure of (EF +Ψ)∪Φ

under substitutions of variables for arbitrary printable sets Φ of tautologies.
Going back to the proof of Theorem 7, we observe that instead of proving closure
under substitutions of variables, it actually suffices to derive formulas ϕ(q̄) from
Φ in arbitrary variables q̄. For this assume that Φ contains the formula ϕ(p̄), and
we want to derive the formula ϕ(q̄). This can be done as follows: we introduce the
extension axioms p1 ≡ q1, . . . , pk ≡ qk for all variables pi in p̄. By induction on
the formula ϕ we then prove the equivalence ϕ(p̄) ≡ ϕ(q̄) with polynomial-size
EF -proofs and finally use modus ponens to conclude with ϕ(q̄).

The implication 2 ⇒ 1 was proven in Proposition 6.
Clearly, item 2 implies item 3.
Now we prove the implication 3 ⇒ 4. Let us denote the system (EF +Ψ)−∪Φ

by P− and the system (EF +Ψ)∪Φ by P . Assuming the equivalence of P− and
P , it suffices to prove closure under substitutions of variables for the system
P , as this property is preserved inside the degree of a proof system. Let π be
a P -proof of the formula ϕ(p̄), and let q̄ be a set of variables distinct from
p̄. By the equivalence of P and P− we have a P−-proof π− of ϕ(p̄) that is
only polynomially longer than π. From π− we will devise a P -proof of ϕ(q̄) as
follows: If there is an extension axiom q ≡ θ in π− with extension variable q

from q̄, then we rename q in the entire proof π− to a new variable which neither
occurs in π− nor in q̄. This does not affect axioms from Φ, as P−-proofs must
not use variables from Φ as extension atoms. Let us call this transformed proof

11



π′. Now we construct the proof π of ϕ(q̄): π starts with the extension axioms
p1 ≡ q1, . . . pk ≡ qk, introducing the original variables p̄ as extension atoms. This
is followed by the proof π′. By induction on the formula ϕ we then prove the
equivalence ϕ(p̄) ≡ ϕ(q̄) with polynomial-size EF -proofs and finally use modus
ponens to conclude with ϕ(q̄).

The final implication 4 ⇒ 2 follows from Theorem 7 as the systems (EF +Ψ)−

even have the classical deduction property by Theorem 4. ⊓⊔

In particular, the last theorem yields two seemingly unrelated characteriza-
tions for the optimality of EF , namely weak deduction for EF and closure of
EF− ∪ Φ under substitutions of variables for arbitrary tautologies Φ.

Similarly, we obtain the following characterizations for the efficient deduction
property of extensions of EF .

Theorem 9. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the efficient deduction property.
2. EF + Ψ is polynomially bounded.
3. There exists a polynomial p such that for all polynomial-time decidable sets

Φ ⊂ TAUT the proof system (EF + Ψ)− ∪ Φ is closed under substitutions
with respect to p.

While one might have objections on extending the systems EF +Ψ to systems
(EF + Ψ) ∪ Φ for the deduction properties (cf. the discussion after Footnote 1),
the same results are also valid for substitution Frege systems. In particular, as
SF fulfills the conditions required in Theorem 7, we immediately obtain from
Proposition 6 and Theorem 7 the following characterizations.

Corollary 10. Let Ψ be a polynomial-time decidable set of tautologies. Then
the proof system SF +Ψ is optimal if and only if SF +Ψ has the weak deduction
property. Further, the system SF + Ψ is polynomially bounded if and only if
SF + Ψ has the efficient deduction property.

As we know that every proof system P is simulated by a proof system of
the form EF + Ψ with printable Ψ ⊂ TAUT (for instance we can take Ψ as
translations of the reflection principle of P ), we can deduce the following char-
acterization of the existence of optimal proof systems.

Corollary 11. There exists an optimal proof system if and only if there exists
a polynomial-time decidable set Ψ ⊂ TAUT such that EF + Ψ has the weak
deduction property.

Similarly, we can characterize the existence of polynomially bounded proof
systems by the efficient deduction property.

Corollary 12. There exists a polynomially bounded proof system if and only if
there exists a polynomial-time decidable set Ψ ⊂ TAUT such that EF + Ψ has
the efficient deduction property.
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5 Deduction Properties and Complete NP-Pairs

In this section we link the deduction property to the problem of the existence
of complete disjoint NP-pairs. In this analysis properties of proof systems are
transferred to properties of the corresponding canonical pairs of the systems.

Augmenting Hilbert-style proof systems P by additional axioms Φ will usu-
ally enhance the power of the proof system. The following lemma shows, however,
that if P has the weak deduction property, then the canonical pair of P ∪Φ will
not be more difficult than the canonical P -pair. In particular, combined with
Theorem 4 the next lemma shows that the canonical pairs of F and its exten-
sions F ∪ Φ are equivalent for printable sets Φ ⊆ TAUT.

Lemma 13. Let Φ be a printable set of tautologies and let P be a proof system
with the weak deduction property. Then (Ref(P ∪Φ),SAT∗) ≤p (Ref(P ), SAT∗).

Proof. Let Φ be printable and let p be the polynomial from the weak deduction
property for P and Φ. Because Φ is printable there exists a polynomial q such
that for each number m the set Φ contains at most q(m) tautologies of length
≤ m. Let Φm = Φ ∩ Σ≤m be the set of these tautologies.

Then (Ref(P ∪ Φ), SAT∗) reduces to (Ref(P ), SAT∗) via the function

(ψ, 1m) 7→ ( (
∧

ϕ∈Φm

ϕ) → ψ, 1p(mq(m)+m)) .

To verify the claim assume that (ψ, 1m) ∈ Ref(P ∪ Φ). Let π be a P ∪ Φ-proof
of ψ of length ≤ m. This proof π can use only formulas of length ≤ m from Φ

of which there are only ≤ q(m) many. Hence the tautologies used in the proof π

are contained in
∧

ϕ∈Φm
ϕ. Therefore we know that π is also a proof for ψ in the

proof system P ∪Φm. Using the weak deduction property of P we get a P -proof
of size ≤ p(mq(m) + m) of (

∧
ϕ∈Φm

ϕ) → ψ.
Now assume (ψ, 1m) ∈ SAT∗. Then ¬ψ is satisfiable and therefore

¬((
∧

ϕ∈Φm

ϕ) → ψ) = (
∧

ϕ∈Φm

ϕ) ∧ ¬ψ

is also satisfiable because (
∧

ϕ∈Φm
ϕ) is a tautology. ⊓⊔

In the next theorem we formulate a sufficient condition for the existence
of complete NP-pairs. The hypotheses in this theorem are very similar to the
hypotheses in Theorem 7, which gave a sufficient condition for the existence of
optimal proof systems. The decisive difference between the two theorems is that
in Theorem 7 we needed closure of P∪Φ under substitutions of variables, whereas
in the following theorem closure under substitutions by constants suffices.

Theorem 14. Let P be a Hilbert-style proof system that simulates the truth-
table system and fulfills the following three conditions:

1. P is closed under modus ponens.
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2. For all printable sets of tautologies Φ the proof system P ∪Φ is closed under
substitutions by constants.

3. P has the weak deduction property.

Then the canonical pair of P is a complete disjoint NP-pair.

Proof. Let (A,B) be a disjoint NP-pair. Similarly as in Cook’s proof of the
NP-completeness of SAT [8], we can construct in polynomial time propositional
formulas ψn(x̄, ȳ) such that ψn(ā, ȳ) is satisfiable if and only if ā ∈ A. Similarly,
we build such propositional formulas θn(x̄, z̄) for B. We choose the variables of
ψn(x̄, ȳ) and θn(x̄, z̄) in such a way that the input variables x̄ are the common
variables of ψn and θn, and the auxiliary variables ȳ and z̄ are distinct. We define
the sequence ϕn as

ϕn = ψn(x̄, ȳ) → ¬θn(x̄, z̄) .

Let P ′ denote the system P ∪ {ϕn | n ≥ 0}. We first claim that the reduction
from (A, B) to the canonical pair of P ′ is given by

a 7→ (¬θ|a|(ā, z̄), 1p(|a|))

for some suitable polynomial p. To see the correctness of the reduction let first
a be an element from A of length n. As ψn represents A there exists a witness b̄

such that ψn(ā, b̄) is a tautological formula. The P ′-proof of ¬θn(ā, z̄) proceeds as
follows. First we use the axiom ψn(x̄, ȳ) → ¬θn(x̄, z̄) and substitute the variables
x̄ and ȳ by ā and b̄, respectively, obtaining

ψn(ā, b̄) → ¬θn(ā, z̄) .

As ψn(ā, b̄) is a true propositional formula without variables we can provide a
polynomial-size P -proof for it. This is possible as by assumption P simulates the
truth-table system. An application of modus ponens gives a P -proof of ¬θn(ā, z̄),
as desired.

Assume now a ∈ B. Then ¬¬θ|a|(ā, z̄) = θ|a|(ā, z̄) is satisfiable and hence

(¬θ|a|(ā, z̄), 1p(|a|)) ∈ SAT∗.
By Lemma 13 the canonical pair of P ′ reduces to the canonical pair of P ,

hence (A,B) is ≤p-reducible to (Ref(P ),SAT∗). ⊓⊔

The decisive hypotheses in Theorem 14 are assumptions 2 and 3. For Frege
systems property 3 of Theorem 14 is fulfilled, but property 2 is not clear. For
EF and SF , however, we have property 2, but whether property 3 holds is open.
To find out whether some strong proof system fulfills both conditions 2 and 3
remains as a challenging task.

Instantiating Theorem 14 for Frege systems leads to the following corollary
which asks, in principle, whether the systems F ∪ Φ and F + Φ are equivalent.

Corollary 15. Assume that for all printable sets of tautologies Φ the system
F ∪Φ is closed under substitutions by constants. Then the canonical F -pair is a
complete disjoint NP-pair.
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By Theorem 4 and Lemma 13 the same corollary also holds for the proof
system EF−.

Our last result shows that the existence of complete NP-pairs is tightly con-
nected with the question whether F and EF are indeed proof systems of different
strength.

Corollary 16. Assume that for all printable sequences Φ of tautologies the proof
systems F ∪ Φ and EF ∪ Φ are equivalent. Then the canonical pair of the Frege
proof system is complete for the class of all disjoint NP-pairs.

Proof. To apply Theorem 14 we need to show that F ∪ Φ is closed under sub-
stitutions by constants for all printable sets of tautologies Φ. By assumption
F ∪ Φ is equivalent to EF ∪ Φ, hence it suffices to show this closure prop-
erty for EF ∪ Φ. Given a formula ϕ(p̄, q̄) and an EF ∪ Φ-proof for it, we con-
struct an EF ∪ Φ-proof of an instance ϕ(p̄, ā) with constants a1, . . . , ak substi-
tuted for the variables q1, . . . , qk as follows: First we use the extension axioms
q1 ≡ a1, . . . , qk ≡ ak, then we repeat the proof of ϕ(p̄, q̄), and finally we show
the equivalence ϕ(p̄, q̄) ≡ ϕ(p̄, ā) by induction on the formula ϕ and using the
formulas qi ≡ ai. This yields the EF ∪ Φ-proof of ϕ(p̄, ā). ⊓⊔

In Table 1 we have summarized the different deduction properties and their
implications for the existence of complete NP-pairs for Frege systems and their
extensions.

Proof system P Frege/EF− EF/SF

classical deduction yes no
no,

efficient deduction yes
unless P is optimal
no, unless P is

weak deduction yes
pol. bounded

weakest known condition closure of P ∪ Φ under
for the completeness of substitutions by constants optimality of P

the canonical pair of P for all printable Φ

Table 1. Deduction properties for different types of proof systems

6 Conclusion

In this paper we have brought attention to the question whether strong proof sys-
tems such as extensions of Frege systems have some kind of deduction property.
On the one hand, we have shown that optimal proof systems can be characterized
by the weak deduction property. On the other hand, weak deduction combined
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with a moderate amount of closure properties yields complete disjoint NP-pairs.
It therefore seems to be interesting to investigate the following problem:

Problem 17. Are there natural strong proof systems besides Frege systems that
satisfy the weak deduction property?

Given the implications above, we expect, however, that neither proving nor
disproving this question will be an easy task.

It would also be interesting to know whether the condition in Corollary 15
also characterizes the completeness of the canonical Frege pair, similarly as in
Corollaries 11 and 12. A more general program is to determine which conse-
quences of the completeness of the canonical pair of some proof system P are to
expect for the system P itself.
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56. Birkhäuser, 1995.

8. S. A. Cook. The complexity of theorem proving procedures. In Proc. 3rd Annual

ACM Symposium on Theory of Computing, pages 151–158, 1971.
9. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof

systems. The Journal of Symbolic Logic, 44:36–50, 1979.
10. M. Dowd. Model-theoretic aspects of P 6=NP. Unpublished manuscript, 1985.
11. C. Glaßer, A. L. Selman, and S. Sengupta. Reductions between disjoint NP-pairs.

Information and Computation, 200(2):247–267, 2005.

16



12. C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM

Journal on Computing, 33(6):1369–1416, 2004.
13. C. Glaßer, A. L. Selman, and L. Zhang. Survey of disjoint NP-pairs and relations to

propositional proof systems. In O. Goldreich, A. L. Rosenberg, and A. L. Selman,
editors, Essays in Theoretical Computer Science in Memory of Shimon Even, pages
241–253. Springer-Verlag, Berlin Heidelberg, 2006.

14. C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of proposi-
tional proof systems. Theoretical Computer Science, 370:60–73, 2007.

15. J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosys-
tems. SIAM Journal on Computing, 17(2):309–335, 1988.

16. S. Homer and A. L. Selman. Oracles for structural properties: The isomorphism
problem and public-key cryptography. Journal of Computer and System Sciences,
44(2):287–301, 1992.
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