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Abstract Excessive vibration, such as chatter, is a common problem in machining processes. Meanwhile,

numerous hard, brittle metals have been shown to form segmented chips, also known as sawtooth chips,

during machining. In the literature, a cyclic cutting force has been demonstrated where segmented chips are

formed, with the force cycle corresponding to the formation of segments. Segmented chip formation has

been shown to be linked to high vibration levels in turning and milling processes. Additionally, it has been

proposed that the amplitude of chatter vibrations can be limited by interference between the tool flank and

wavy workpiece surface, a phenomenon known as tool flank process damping.

In this contribution, a model is proposed to predict the amplitude of forced vibration arising due to the

formation of segmented chips during turning. The amplitude of vibration was calculated as a function of

cutting parameters. It was demonstrated that the model can be extended to account for the effect of tool

flank process damping. For validation, titanium Ti6Al4V alloy was turned using a flexible toolholder, with

surface speed ranging from 10 to 160m/min, feedrate from 0.1 to 0.7mm/rev and width of cut from 0.35 to

4mm.

In the experimental validation, 25 of 68 test cuts exhibited high amplitude vibration. In 16 of these cases,

the main cause was concluded to be chip segmentation, which can be predicted by the model. The model is

thus considered of practical value to machinists.
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1 Introduction and background literature

Excessive vibrations during machining can lead to a poor surface finish, increased tool wear, reduced ma-

chine life, and limited productivity. Consequently, there has been a great deal of research over the years

to understand, predict and mitigate machining vibrations. Much of this work has focussed on regenerative

chatter, which is arguably the most common problem in practice. However, the present contribution is re-

lated to improving the understanding and prediction of a type of machining vibration which corresponds to

the formation of segmented chips. To begin, the relevant literature is reviewed, and the aims of this paper

are then explained in the context of previous published work.

1.1 Machining vibrations

One of the most common forms of machining vibration is regenerative chatter, caused by unstable self-

excited vibrations between the cutting tool and workpiece [1,2]. This vibration is particularly relevant at

high cutting speeds. However, hard-to-cut materials such as titanium alloys exhibit high chemical reactivity

and low thermal conductivity [3], so they must be processed at lower cutting speeds to minimise tool wear. At

these lower cutting speeds a phenomenon known as process damping increases regenerative chatter stability.

Process damping is said to be caused by interaction of the machined-surface wave pattern and the flank of

the cutting tool, described further in Tlusty’s book [2]. Recently, there have been many studies to predict the

increased stability due to process damping [4,5,6,7], but one of the earliest studies was the work of Hooke

and Tobias [8]. They described the maximum amplitude of vibration, amax, for a sharp tool cutting a wavy

workpiece, assuming a sinusoidal vibration with no interference between the tool flank and workpiece:

amax =
V tan(α)

60ωc

(1)

Here α is the tool relief angle, ωc is the frequency of vibrations, and V is the turning surface speed in m/min.

The frequency of vibrations ωc is the frequency of regenerative chatter vibrations, and so Eq. (1) shows the

relationship between the process damping phenomenon and regenerative chatter. However, this assumes that

there is no interference or ploughing between the workpiece and tool [9], and consequently Eq. (1) can only

be used to give an approximate indication of the process-damped vibration amplitude.

Nevertheless, there are some scenarios where machining vibration is not dominated by regenerative

chatter or the associated process damping phenomenon, but is caused directly by the chip formation forces.

Consequently the relevant literature concerning chip formation will now be reviewed.

1.2 Chip formation effects

Vyas and Shaw [10] defined five types of chips occurring in metal cutting. These are (1) steady-state contin-

uous chips, (2) wavy chips, (3) built-up edge chips, (4) discontinuous chips and (5) sawtooth chips. As the
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Fig. 1 Schematic views of steady-state continuous chip formation, left, and segmented chip formation, right

name implies, chip type (1) gives rise to cutting conditions with minimal disturbances. Such a chip is found

in the cutting of ductile workpiece materials [11]. An example of a steady-state continuous chip is shown

on the left hand side of Fig. 1. At the opposite extreme to chip type (1), discontinuous chips crack during

cutting, forming sections which may or may not be bonded together. Brittle materials and materials with

hard inclusions or impurities form discontinuous chips when cut [11]. Sawtooth chips are recognisable by

the formation of sharp points on the free surface. Materials forming sawtooth chips are also relatively hard

and brittle. Additionally, the properties of low thermal conductivity and thermal softening make materials

susceptible to sawtooth chip formation. A notable example is titanium alloy. The formation of sawtooth

segments is initiated by cracking, and aided in part by highly-localised adiabatic shear [10]. Some authors

refer to sawtooth chips as segmented or serrated chips. The term segmentation (meaning the formation of

sawtooth chips) is used in this work. An example of a sawtooth, or segmented, chip is shown on the right

hand side of Fig. 1.

The vibration-inducing nature of segmented and discontinuous chip formation has been recognised for

many years, an early example being the work by Cook [12]. In another early example, Landberg [13] studied

the turning of carbon steel and brass. The frequency of chip segment formation was predicted as a function

of parameters including surface speed. Comparison with experiment showed that the frequency of dominant

vibrations as measured on the cutting tool was within a few percent of the predicted segmentation frequency

when cutting brass, with predictions being less accurate for the steel. Strong vibrations were reported where

the segmentation frequency was close to the natural frequency of a structural component in the cutting

system. This forced vibration was said to lead to roughness of the cut surface. A study by Jeelani and

Ramakrishnan [14] proposed that chip formation had a pronounced effect on the workpiece surface finish,

when turning the alloy Ti6Al2Sn4Zr2Mo.

Bayoumi and Xie’s data [15] showed that in turning of Ti6Al4V, the length of segments formed was

approximately proportional to the experimental feedrate. Surface speed was seen to have a less significant

effect on segment length. Komanduri and Von Turkovich [3] recorded images of chip formation for titanium

Ti6Al4V alloy, and described the stages of segment formation. Cutting forces and the velocity of the chip

relative to the tool were said to oscillate significantly as segments formed. Molinari et. al [16] showed
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amongst their other findings that for Ti6Al4V alloy, segmented chips formed at all surface speeds tested,

including speeds way in excess of 1000m/min. The uncut chip thickness was either 0.12 or 0.25mm in the

experiments performed.

Nurul Amin et al. [17] investigated the effect of segmented chip formation on vibration in end milling.

Ti6Al4V was end milled with feed 0.1mm/tooth and surface speed between 40 and 250m/min. Frequency

analysis of acceleration data showed that the tool, spindle, or both were excited to vibrate at high amplitude

during cutting, depending on the insert type and the surface speed during the cut. The evidence gathered

by Nurul Amin et al. points to the importance of segmentation-driven vibration in this particular milling

case. Sun et al. [18] conducted research in turning of Ti6Al4V, finding that the frequency of oscillation

of the cutting force at feedrates equal to or greater than 0.149mm/rev was proportional to surface speed,

inversely proportional to the feedrate and independent of width of cut. The cyclic fluctuation in cutting

force was said to be caused by the segmented chip formation process. Both Nurul Amin et al. and Sun et al.

discussed excitation of vibration of a significant amplitude where the segmentation frequency was close to

some integer multiple of the first vibration mode of the system. Nurul Amin et al. found that segmentation

at frequencies up to four times the first mode of a structural element could cause excessive vibration of that

element.

Doi and Ohhashi [19] took a modelling approach to the prediction of chip segmentation-driven vibration

in turning of two steels. The approach was based on parametric rather than forced excitation, using the

Mathieu equation to predict unstable cutting conditions. The model correctly identified surface speeds where

vibration levels were unusually high. Morehead et al. [20] also investigated segmented chip formation during

turning of steels.

Most recently, the authors of the current work analysed the frequency and amplitude of vibrations mea-

sured in turning of Ti6A4V alloy [4], to investigate the mechanisms of vibration excitation. A chip delay

effect model was developed [21], and the workpiece surface slope was calculated to analyse process damp-

ing at low speed. The authors concluded that chip segmentation could play an important role in exciting

vibration, and was deserving of further investigation.

1.3 Summary and aims for study

The literature to date shows that both regenerative chatter and chip formation mechanisms can lead to

significant vibration levels in turning and milling processes. Much of the research to date regarding vibration

driven by chip segmentation has been observational in nature. Although segmentation-driven vibration has

been observed in the cutting of titanium alloys, modelling of vibration driven by chip segmentation has

received little attention relative to the development of regenerative vibration theory. No process map has yet

been created for forced vibration driven by chip segmentation. Therefore, the aims in performing this study

were to:
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1. Develop a quantitative model of forced vibration arising due to the chip segmentation phenomenon in

machining.

2. Validate the above model by comparing model-derived vibration levels against experimentally-derived

vibration data, as a function of cutting parameters.

3. As part of the validation process, use frequency domain methods to distinguish between the occurrence

of segmentation-driven vibration and regenerative chatter in experimental results.

4. Identify the conditions for process damping in the case of vibration driven by chip segmentation.

2 Theory

In this section, a basic model is developed to predict the amplitude of vibrations that are caused by chip

segmentation. In addition, a method for predicting the influence of process damping is briefly summarised,

since process damping is likely to limit the amplitude of these vibrations.

2.1 Segmentation-driven vibration amplitude

The model aims to predict the amplitude of forced vibration due to chip segmentation during turning. Con-

sequently the following assumptions are made:

a) The cutting system is equivalent to an open loop block system (i.e. no regenerative effect), with the

cutting force as input and tool displacement as output.

b) Linear vibration in the feed direction x is considered. Nonlinearities due to variation of specific cutting

force with uncut chip thickness, and variation of tool stiffness and damping with displacement, are not

considered. The tool does not leave the cut due to vibration.

c) The cutting force oscillates sinusoidally around a mean value, at the frequency of the chip segmentation.

d) All chip segments are assumed uniform in length, so the segmentation frequency takes a single value.

For this cutting system, a linear relationship would be expected between the amplitude of cutting force

oscillation and the amplitude of vibration, for a given segmentation frequency. Having no feedback means

that the effect of the previously-cut surface is not considered by the model.

The starting point for the model is the empirical data from the literature [15,17,18], which leads to a

relationship between the cutting surface speed V , feedrate s, width of cut b, and segmentation frequency:

ωseg = f (V,s,b) (2)

Meanwhile, the segmentation wavelength λ is based on a well-known relationship:

λ =
2πV

ωseg

(3)

which is related to the spacing between the segments on the chip. As an approximation, the frequency is

assumed to be insensitive to the width of cut, and the segmentation wavelength is proportional to the feed
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rate or chip thickness, giving:

ωseg =
2πV

60λ0s
(4)

Here, ωseg has units of rad/s, V has units of m/min, and s has units of m/rev. The term λ0 is an empirical

dimensionless parameter referred to as the segmentation wavelength coefficient, which relates the physical

segmentation wavelength to the feed rate or chip thickness:

λ = λ0s (5)

Just like the classical ‘specific cutting force’ K [2], the segmentation wavelength coefficient is an empirical

value for a given workpiece and tool combination.

With reference to assumption (c), the cutting force is of the form:

fx(t) = f̄x +∆ fx sin(ωsegt) (6)

where f̄x is the mean cutting force and ∆ fx is the peak amplitude of the periodic cutting force. The accurate

measurement of the dynamic cutting forces due to segmentation can be difficult. In the absence of such data,

the periodic component of the cutting force is assumed to be proportional to the mean cutting force, i.e.:

∆ fx ≈
f̄x

n
(7)

Here, n is a calibration constant that accounts for the true amplitude of the periodic cutting force at the

segmentation frequency. The mean cutting force is obtained using the standard specific cutting force [2]:

f̄x = K(V )bs (8)

where K is the specific cutting force (in the direction normal to the surface) that is allowed to be an empirical

function of the surface speed V . Since the case of forced vibration is assumed, the amplitude of motion can

therefore be written as:

ax = G(ωseg)∆ fx(V,s,b) (9)

where G(ω) is the frequency response function (FRF) of the flexible structure in the feed direction. Substi-

tuting Eq. (4), Eq. (7), and Eq. (8) into Eq. (9) leads to:

ax = G

(

2πV

60λ0s

)

K(V )bs

n
(10)

Consequently the amplitude of vibration can be predicted based upon the cutting conditions (V,b,s) and the

following empirical data:

1. The segmentation wavelength coefficient, λ0

2. The calibration constant, n

3. The measured frequency response function, G(ω)

4. The specific cutting force versus surface speed, K(V )

Here, data requirements (3) and (4) are equivalent to the data used for traditional chatter stability anal-

ysis. (1) and (2) are new empirical relationships, which (as for (3) and (4)) must be obtained for particular

workpiece materials and tools.
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2.2 Tool-flank rubbing

In practice, the amplitude of segmentation-driven vibration will be limited due to the onset of interference

between the tool flank and the workpiece. This interference is similar to the process damping mechanisms

described in the literature, except that the cause of the vibrations is the oscillating chip generation force

rather than the regenerative effect.

It transpires that the model of Hooke and Tobias [8] (Eq. (1)) can be directly applied if the chatter

frequency ωc is replaced by the segmentation frequency ωseg:

amax =
V tan(α)

60ωseg

(11)

Substituting Eq. (4) into Eq. (11):

amax =
sλ0 tan(α)

2π
(12)

Recall that λ0 is the (empirical & dimensionless) segmentation wavelength coefficient, and α is the tool

relief angle. This means that the process damped vibration amplitude limit is independent of surface speed,

and proportional to the feed, for vibration driven directly by chip segmentation forces.

3 Experimental setup

The aim of this section is to describe two experiments: one designed to obtain the empirical constants (seg-

mentation wavelength coefficient λ0, specific cutting force K, and calibration constant n), and one designed

to test the model proposed by Eq. (10) and (12).

3.1 Workpiece, tooling and instrumentation specifications

The machine used in most of the cutting tests was a MAG Cincinnati Hawk 300 NC lathe. Some additional

tests were performed on a manual lathe, described in Section 3.2. Tests were conducted without coolant,

allowing the cutting process to be monitored visually. All data was acquired using a four-channel Spectral

Dynamics SigLab system, with a sampling frequency up to 51.2kHz.

The workpiece was a 150mm diameter bar of annealed titanium Ti6Al4V alloy. The bar’s constituents,

heat treatment and basic properties can be found in Table 1. Cutting was performed with grade H13A

uncoated carbide Sandvik Coromant inserts. These were supplied with blank N123K2-0720-0002-BG ge-

ometry, then rake and relief angles were applied by optical profile grinding. The rake angle was 7◦ in most

C Si Mn Mo Ti Al V Fe Cu

0.010 <0.01 <0.01 <0.01 Bal. 6.41 4.08 0.15 0.02

B Zr Y O N Sn Cr Ni H

< 0.001 <0.01 < 0.001 0.18 0.007 <0.01 <0.01 <0.01 .0014

Heat treatment: 704◦C for one hour

UTS: 945 MPa

Hardness: 33HRC

Table 1 Percentage constituents of titanium 6-4 workpiece, supplied by Maher Ltd, UK.
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cases, although 0◦, 10◦, and 15◦, angles were tried in additional tests. Relief angles specified were 3.5◦ and

7◦. Profilometry confirmed the ground angles to be within 0.3◦ of the nominal value. The tool edge condition

was sharp.

The operating frequency range of the measurement transducers is now considered. This is particularly

important for segmentation-driven vibration, as the segmentation frequency varies over such a large range.

The modal testing hammer used had an upper frequency limit of 9.5kHz, while the accelerometers gave

their most accurate response up to 10kHz with a reasonably accurate response at up to 25kHz. The displace-

ment probe had an operating limit of 10kHz. These transducers are all fit for purpose regarding operating

frequency range. For the dynamometer used in cutting force tests, modal testing showed that the dynamome-

ter and toolholder combination used had a first and second mode of vibration at 1160 and 3400Hz. Con-

sequently the frequency and amplitude of periodic forces (due to chip segmentation) may be difficult to

measure.

3.2 Empirical calibration measurements

To determine the required empirical data (specific cutting force versus surface speed, and the amplitude

and frequency of cutting force oscillations), a series of rings was created and cut orthogonally. The 7◦ rake

and 7◦ relief angle inserts described above were held in a high-stiffness toolholder, which was mounted

in a Kistler 9121 dynamometer fitted with a machine VDI interface. Rings were cut to avoid the influence

of the tool corner radius on cutting forces. Each section of insert edge was used only once, to avoid the

effects of wear and workpiece material build-up. The width of cut was 0.35mm, and the feedrate selected

was 0.3mm/rev. Under these conditions, the integrity of the tool edge was sometimes lost when cutting with

surface speeds above 160m/min, even for the purposes of short cutting force tests. Therefore surface speeds

ranged between 10 and 160m/min in these tests. Each test constituted up to 20 revolutions, and acquired

data was monitored to check that the length of cut was sufficient for a steady, repeating pattern of cutting

forces to be obtained.

Whilst the Dynamometer measurement is a standard approach for obtaining the specific cutting force,

the bandwidth of the sensor makes its use for high frequency measurements questionable. Consequently,

additional tests performed using a standard shank tool holder (Sandvik RF123K08-2020C) instrumented

with an accelerometer, with no dynomometer platform. Modal testing was performed to identify the natural

frequencies of the shank tool mounted on the lathe. For these tests, cutting was performed on a Colchester

triumph 2000 lathe at feed 0.15mm/rev and width of cut 2mm, to determine the dominant tool vibration

frequencies directly from the accelerometer data. This approach was also used to test three tool rake an-

gles, to see the effect on the chip segmentation frequency. Care was taken to avoid excitation of the tool’s

natural frequencies, thereby ensuring that high segmentation frequencies could be measured without sensor

bandwidth issues. This approach was also used to test three different tool rake angles.
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3.3 Model validation tests

To test the model predictions, a custom-built flexible toolholder assembly was used in model validation tests

[4]. A schematic diagram and photograph of this assembly can be found in Fig. 2. The inserts were held in

a Sandvik Coromant blade-style holder, which was welded to a T-shaped monolithic flexure arm. The web

of the flexure arm had a cross-section 4.5 by 60mm in the x and y directions of Fig. 2 respectively, which

made the assembly much more flexible in the feed (x) direction than in the cutting speed (y) direction. The

overhang of the assembly (‘OH’ on Fig. 2a) was set to 25mm by sliding the flexure arm relative to the base

plate, then tightening two large bolts to clamp the arm.

Three transducers were fitted to the toolholder assembly for vibration measurement and modal testing.

A Lion Precision eddy current probe sensed the displacement of the flexure arm in the x direction, via a

mounted aluminium target. An earth cable was attached to the flexure arm, which resulted in less than ±4mV

(±0.2µm displacement) of noise in the displacement signal with the lathe running. PCB accelerometers

were mounted on the flexure arm to measure acceleration in the x and y orientations.

Frequency response functions were obtained for the toolholder and workpiece by applying a modal

hammer at the cutting position, and measuring the accelerometers’ and probe’s response. The receptance

of the toolholder and workpiece were recorded, data for the toolholder can be found in Fig. 3. In the x

direction,the dominant resonant frequency was 550Hz. Flexibility in the y direction was 100 times lower

than in x. Meanwhile, the workpiece was modally tested using the hammer and accelerometer, showing

z

feed, x 

1

2

3

9

8

7
4

1.   workpiece with ring feature       6.   x, y accelerometers 

2.   lathe chuck         7.   flexure arm 

3.   cutting insert in blade holder       8.   base plate, VDI interface 

4.   displacement probe        9.   turret, probe bracket 

5.   aluminium target 

5

(cutting speed 

y, out of page) 

6

OH

3

67

8

9(b) 

(a) 

Fig. 2 Experimental hardware for turning vibration tests. a) schematic and b) photo.
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Fig. 3 Receptance frequency response functions, toolholder at 25mm overhang. First 1500Hz shown.

that the maximum flexibility in x was 50 times lower than the toolholder. Consequently, the first mode of

vibration of the toolholder in x was by far the most flexible mode of the cutting system.

In the cutting tests, vibration of the toolholder was monitored for a range of cutting parameters: surface

speed 10 to 160m/min, feedrate 0.1 to 0.7mm/rev and width of cut 0.35 to 4mm. All cutting was performed

orthogonally on rings, with a new section of cutting edge for each test. The accelerometer signals in x and y

directions were recorded throughout cutting, as was the probe signal in the x direction. A steady, repeating

pattern of vibration displacement against time was achieved in each test.

4 Results

In this section, the empirical data used for model calibration is first presented. Then, a signal processing pro-

cedure is described in order to compare model predictions with experimental behaviour. From this analysis,

the model’s accuracy is summarised.

4.1 Empirical measurements

Section 3.2 described the experimental setup that was used to measure the specific cutting force, along with

the chip segmentation forcing frequency and amplitude.

The vibration being studied occurs in the feed direction x, so from the dynamometer data acquired,

the steady repeating section of force in the x direction was analysed. Power spectral density (PSD) plots

were generated via Welch’s method, to see the frequency components in the cutting force and determine the

corresponding segmentation frequency.

Fig. 4a shows the segmentation frequency as measured from the x-direction dynamometer measure-

ments. The segmentation frequency is observed to vary with feed and speed. A line of best fit shows that

the parameter λ0 in Eq. (4) is equal to 1.176. Data from the model validation tests are also shown on Fig.

4a, to validate the relationship between segmentation wavelength and chip thickness. Although these results
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Dynamometer, 0.3mm/rev

Empirical fit, λ
0
=1.176

Validation test, 0.1mm/rev

Validation test, 0.3mm/rev

Validation test, 0.7mm/rev

Eq. (4), λ
0
=1.176, s=0.1mm/rev

Eq. (4), λ
0
=1.176, s=0.7mm/rev (c)
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Fig. 4 Model calibration results. a) measured and calculated segmentation-driven vibration frequency; b) measured feed-direction

cutting forces against speed, for b = 0.35mm and s = 0.3mm/rev; c) additional tests using an accelerometer to measure segmentation

frequency (b=2mm, s = 0.15mm/rev).

will be discussed later, it can be seen that the segmentation frequency is properly predicted by the empirical

model given by Eq. (4).

To investigate the cutting forces, the mean value of cutting force was extracted from steady repeating

x-direction force data for each test cut. This data is shown in Fig. 4b. A third-order polynomial curve has

been fitted to the mean cutting force, giving:

f̄x(V ) =−2.4616× 10−5V 3 + 0.010329V2
− 0.88134V + 64.565 (13)

where f̄x and V are expressed in N and m/min respectively.

To explore the measured cutting force amplitude, the Hilbert transform was applied to the measured

force data so as to obtain the instantaneous amplitude of the signal. This was then plotted as a histogram in

order to determine the statistical mode of the periodic amplitude. The ‘statistical maximum’ was obtained as

the mean force plus the mode of the periodic force. The ‘statistical minimum’ was obtained as the mean force

minus the mode of the periodic force. These values are all plotted on Fig. 4b. These maximum/minimum

values give an indication of the average range of measured forces for each test.
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It can be seen that there is a significant variation in the range of the measured forces. At low speeds, the

periodic force (indicated by the red max/min markers) is small compared to the mean (constant) force. This

could be due to process damping behaviour which might act to limit the amplitude of the periodic forces at

lower speeds. In any case, at the lowest surface speeds the frequencies associated with this periodic force

are within the measurement capabilities of the dynamometer and so this suggests that the periodic forces are

at least 5 times smaller than the mean force in this region.

However at high speeds the periodic force becomes greater than the mean force, which suggests that the

cutting force becomes negative during some parts of each vibration cycle. This may seem counter-intuitive,

but it should be pointed out that the frequency of these periodic forces is up to 25kHz - way beyond the first

natural frequency of the dynamometer. Consequently, Fig. 4b serves to illustrate the problems associated

with quantitative measurements of the chip segmentation forces, but does not help to accurately determine

the value of ∆ fx in Eq. (6). With reference to Eq. (7) the value of n appears to be greater than 5 based upon

the low surface speed measurements.

Results from the additional calibration tests are plotted in Fig. 4c. Here, three different rake angles are

shown, to illustrate that the segmentation frequency is only moderately sensitive to this tool geometry. In

addition, the data was obtained using an accelerometer rather than the dynamometer. Comparing Fig. 4a

and c, the similar behaviour demonstrates that the dynamometer was still able to predict the segmentation

frequency, even if the dynamometer amplitude could not be trusted at higher frequencies.

To summarise, the empirical approach has allowed the specific cutting force (Eq. (8)) to be identified as

a 3rd order polynomial (Eq. (13)), whilst the segmentation wavelength coefficient (Eq. (4)) is 1.176 for the

7◦ rake tool (Fig. 4a). As expected the amplitude n of the mean cutting force to the periodic cutting force

(Eq. (7)) is not easily measured but appears to be more than 5, based upon low speeds where more accurate

measurements are possible.

4.2 Model validation tests

The empirical data allows Eq. (10) to be used to predict the vibration amplitude when machining with a

flexible workpiece or tool. To validate this, a flexible toolholder was designed and tested as described in

Section 3.3. A set of data processing functions were used to extract frequency and amplitude information

from the toolholder displacement measurements. Fig. 5 illustrates the displacement data processing methods

and presents a photo of some interesting cases. Power spectral density (PSD) plots were created, to see the

frequency components in each displacement signal. The Hilbert transform was then used to extract the

instantaneous vibration amplitude. This was then plotted on a histogram to find the statistical mode of

vibration amplitude, amod . Three examples of displacement data versus time are shown in Fig. 5b, with the

resulting PSD plots, and amplitude histograms with the mode values marked.

Classification of vibration requires that a boundary value be set, beyond which the level of vibration

is unacceptable. In practice, the boundary value is usually chosen according to the specification for the
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Fig. 5 Example test results. a) surface finish after cutting and b) typical data analysis

machined part. In this work, the condition for excessive vibration is based on amod being equal to or greater

than 5µm. Where amod is in the range 4.5 to 5µm, vibration is considered borderline. Case iii in Fig. 5a

shows the surface finish for what is considered a borderline-acceptable (amod 4.8µm) cut.

Three interesting vibration examples have been selected for examination in Fig. 5b. The top row of

plots shows the displacement signal against time, the middle row of plots shows frequency components

from the PSD analysis, and the bottom row shows a vibration amplitude histogram derived using the Hilbert

transform. In case iv, a high level of vibration occurred at a relatively low width of cut and surface speed, due

to excitation of resonant vibration. This result agrees well with the model predictions, since the segmentation

frequency is close to the natural frequency of the toolholder. In case iii, borderline acceptable vibration
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occurred at a relatively high width of cut and surface speed. Multiple frequency components are present

in the PSD plot, but it should be noted that the amplitude of these vibrations is quite small. In case ii,

segmentation vibration was expected to occur at 1.13 kHz, but the vibrations occurred at a frequency of

approximately 1.8-2kHz. This is an example which is not predicted accurately by the model.

Returning to Fig. 4a, PSD results from the model validation tests have been included using data for

feedrates of 0.1, 0.3,and 0.7 mm/rev. This serves to demonstrate that the observed segmentation frequency

generally matches the trends predicted by Eq. (4), despite the behaviour observed for case ii.

The results of vibration amplitude analysis indicate that in no case did the tool leave the cut due to

vibration, as required for assumption (b) made in Section 2.1. In all cases, the maximum vibration amplitude

was less than half of the uncut chip thickness.

The validity of Eq. (12) is explored in Fig. 6a. Here, three tool geometry and feed scenarios are presented.

A tool relief angle of 7◦ leads to a larger clearance between the tool and the just-cut surface, so that Eq. (12)

predicts a larger vibration amplitude (amax) before interference starts to occur. This amplitude is proportional

to the feed rate s so a lower amax is expected for a feed of 0.4 mm/rev compared to 0.5 mm/rev. Changing the

relief angle to 3.5◦ results in an even lower amax. The experimental data show that at low surface speeds all

three test conditions cause high vibration amplitudes. In each case the vibration amplitude becomes limited

at a value close to that predicted by Eq. (12). Given the approximations involved in Eq. (11) and (12), in

particular the assumption of no interference or ploughing, the agreement between observed and predicted

behaviour is good.

At higher surface speeds the observed vibration amplitude becomes smaller. This can be explained by

Eq. (10), but as previously mentioned, the value of the n is difficult to quantify. Using a value of n = 8 leads

to model predictions that are close to the experimentally observed behaviour, as shown in Fig. 6b.

To summarise, the results so far have suggested that the amplitude of vibration can be predicted by

a combination of forced vibration due to chip segmentation, and tool-flank interference (which limits the

maximum amplitude). The frequency of the forced vibration due to chip segmentation (Fig. 4a) can be

predicted reasonably well from empirical data, which agrees with previous findings [15,18]. However, the

amplitude of vibration is more difficult to quantify because it is difficult to measure the periodic component

of the cutting force for empirical calibration purposes.

Despite this drawback, it transpires that a relative prediction of vibration amplitude is still possible. For

lightly damped structures the vibration amplitude increases so drastically around the resonant frequencies

that regions of high amplitude vibration can be easily identified based upon Eq. (10), even when the param-

eter n is not accurately known. Before illustrating this, a classification method will be introduced so that all

of the experimental data can be categorised.

4.3 Classification and summary of results

The experimental vibration data was classified according to the following criteria:
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Fig. 6 Cutting test data compared to model predictions for width of cut b = 0.6mm. a) comparison against process damping amplitude

limits predicted by Eq. (12) for three example feed rates / geometries; b) comparison against predicted segmentation and process

damping amplitudes (Eq. (10) and (12)) for four example feed rates, using n = 8 in Eq. (10).
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1. When the mode of the vibration amplitude was below 4.5µm the cut was classified as ‘acceptable’.

2. When the mode of the vibration amplitude was between 4.5µm and 5.0µm the cut was classified as

‘borderline’.

3. When the mode of the vibration amplitude was above 5µm the cut was classified as follows:

(a) Where the PSD showed a dominant frequency between 550 and 600 Hz the cut was classified as

‘regenerative chatter’. This classification was based upon the study described in [4], which used the

same flexible toolholder configuration.

(b) Where the PSD showed a dominant frequency within 15% of that predicted by Eq. (4) the cut was

classified as ‘segmentation-driven vibration’.

(c) Where neither of these was the case, the cut was deemed ‘Unclassified’.

Note that with this classification, there is a small region where both 3(a) and 3(b) can be satisfied simulta-

neously. This occurs when the frequency of forced vibration due to chip segmentation is very close to the

minimum in the real part of the receptance FRF (Fig. 3). Under such conditions it becomes impossible to

distinguish between segmentation and regenerative vibrations.

Results for a feed rate of 0.4 mm/rev are displayed in Fig. 7. To simplify the illustration, predicted

amplitudes are based solely on Eq. (10), rather than including the process damping behaviour from Eq. (12).

It can be seen that the cuts classified as ‘segmentation-driven vibration’ are all concentrated within a small

region of the figure. This coincides with a high amplitude predicted from Eq. (10). On Fig. 7, the calibration

coefficient n is set to unity (i.e. the peak amplitude of the periodic force is assumed equal to the mean force).

This results in predicted amplitudes that are 5-10 times higher than the experimentally observed behaviour.

However, the result is still useful from a machining process design perspective. From the point of view of

choosing appropriate speeds and widths of cut, it is quite clear from Fig. 7 that higher surface speeds are

needed (>30 m/min) if a high width of cut is required, whilst lower speeds (>20m/min) can be used if the

width of cut is very small.

This form of presentation suffers from the drawback that as the feed rate is changed, the predicted

regions of high vibration magnitude will move, because the segmentation frequency changes. In contrast,

Eq. (10) predicts a linear relationship between vibration amplitude and width of cut b. This makes it more

appropriate to plot the predicted amplitude in terms of the surface speed and the feed rate. Such a result is

shown in Fig. 8, for a width of cut of b = 0.6mm. It should be reiterated that the calibration coefficient n

is not known, and therefore the vibration amplitude is only predicted in relative terms. Meanwhile, because

the amplitude is proportional to the width of cut, the shape of the vibration amplitude contours will be

unaffected by changes in the width of cut. This makes Fig. 8 a more effective way to illustrate the predicted

regions of high amplitude vibration.

To summarise the experimental validation, 25 of 68 test cuts exhibited high amplitude vibration, and in

16 of these cases, the main cause was concluded to be chip segmentation, which can be predicted by the

model.
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Fig. 7 Model validation: width of cut versus speed, feed rate s = 0.4mm/rev. A close-up of the data around V = 15m/min, b = 0.6mm

is included.

5 Discussion

A number of points are worthy of further discussion at this stage.

First, the experiment data can be compared to previous literature where the segmentation effect has been

observed. In comparison to the data of Sun et. al [18] who also performed dry turning of Ti6Al4V, the

equivalent chip segmentation wavelength coefficient is a factor of three from that found in the current work.

This could be due in part to the chip thinning effect from a 45◦ side cutting edge angle. Other material and

tool parameters may also be significant. A different form of Eq. (4) might be required where the surface

speed changes over several orders of magnitude [16], but for typical applications, a linear relationship is

sufficient.

It should be noted that in the present study, a controlled experiment was performed to validate the

model. This involved the design of a flexible tool holder that was very stiff in the y (surface speed) direction.
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However, the modelling approach could be readily extended to consider vibration in other orientations. This

will be the subject of further work.

Finally, based on findings of this work, some recommendations for industrial practice can be made. To

acheive low vibration and high productivity in turning Ti6Al4V, standard practice would be as follows:

– work in a high-speed machining stability lobe, to select a width of cut below the regenerative chatter

stability limit or,

– work in the low-speed process damped region to avoid regenerative chatter.

The present results suggest that this latter approach could be less effective unless chip segmentation be-

haviour is properly considered. In particular, Fig. 8 shows that even without a quantitative prediction of vi-

bration amplitude, suitable feed rates and surface speeds can be selected so as to avoid segmentation driven

vibration, whilst still operating within a process damped region to enhance regenerative chatter stability.
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Fig. 9 Example LabVIEW graphical user interface for illustrating regions of segmentation-driven vibration.

This is further illustrated in Fig. 9, which shows an equivalent figure created using prototype commercial

software, programmed in LabVIEW[22].

6 Conclusions

The present study has proposed a methodology for predicting the onset of high-amplitude vibrations due to

chip segmentation effects. This undesirable behaviour has been referred to as segmentation-driven vibration.

It has been demonstrated that the pattern of behaviour for segmentation-driven vibration can be predicted,

given empirical measurements that are similar to those required for classical regenerative chatter. Further-

more, it has been shown that at some surface speeds the maximum vibration amplitude becomes limited due

to process damping behaviour, and this level of vibration agrees well with the approach proposed by Hooke

and Tobias [8].

The chip segmentation model was verified via turning tests on titanium Ti6Al4V alloy. A total of 68 cuts

were made and the 16 cases of segmentation-driven vibration all occurred within or adjacent to the predicted

region. In order to quantitatively predict the vibration amplitude, a greater understanding is required of the

periodic cutting forces during segmented chip formation. This requires novel experimental approaches [10]

since standard dynamometers are ineffective at the higher frequencies sometimes required. Despite this

drawback, the present contribution has demonstrated that segmentation-driven vibration can be predicted

satisfactorily for the purposes of machining process design. In addition, this prediction can be acheived with

the standard measurement equipment that is used for regenerative chatter analysis.
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ax vibration amplitude in feed direction x

amax limit value of a due to process damping

amod statistical mode value of a

b width of cut

blim maximum stable width of cut

ωc chatter frequency

ωseg segmentation frequency

fx(t) instantaneous cutting force in x direction

f̄x average (mean) value of fx(t)
∆ fx peak amplitude of oscillation of fx(t)

G(ω) x direction receptance frequency response function

K specific cutting force in x direction

n vibration amplitude calibration coefficient

s feedrate (feed per rev)

V surface speed

x displacement in feed direction

α tool relief angle

λ chatter wavelength

λ0 segmentation wavelength coefficient

Nomenclature
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