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QUASI-INVARIANTS OF COMPLEX REFLECTION GROUPS

YURI BEREST AND OLEG CHALYKH

Abstract. We introduce quasi-invariant polynomials for an arbitrary finite

complex reflection group W . Unlike in the Coxeter case, the space of quasi-
invariants of a given multiplicity is not, in general, an algebra but a module Qk

over the coordinate ring of some (singular) affine variety Xk. We extend the
main results of [BEG] to this setting: in particular, we show that the variety Xk

and the module Qk are Cohen-Macaulay, and the rings of differential operators
on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(C) ,
where n = dim Xk . Our approach relies on representation theory of complex
Cherednik algebras introduced in [DO] and is parallel to that of [BEG]. As an
application, we prove the existence of shift operators for an arbitrary complex
reflection group, confirming a conjecture of Dunkl and Opdam [DO]. Another
result is a proof of a conjecture of Opdam [O2], concerning certain operations

(KZ twists) on the set of irreducible representations of W .

1. Introduction

The notion of a quasi-invariant polynomial for a finite Coxeter group was intro-
duced by A. Veselov and one of the authors in [CV]. Although quasi-invariants were
natural generalization of invariants, they first appeared in a slightly disguised form
(as symbols of commuting differential operators). More recently, the rings of quasi-
invariants and associated varieties have been studied by means of representation
theory [FV, EG1, BEG] and found applications in other areas, including noncom-
mutative algebra [BEG], mathematical physics [Be, CFV, FV1] and combinatorics
[GW, GW1, BM].

The aim of the present paper is to define quasi-invariants for an arbitrary complex
reflection group and give new applications. We begin with a brief overview of our
definition, referring the reader to Section 2 for details. Let W be a finite complex
reflection group acting in its reflection representation V . Denote by A = {H} the
set of reflection hyperplanes of W and write WH for the (pointwise) stabilizer of
H ∈ A in W . Each WH is a cyclic subgroup of W of order nH ≥ 2, whose group
algebra CWH ⊆ CW is spanned by the idempotents

eH, i =
1

nH

∑

w∈WH

(det w)i w , i = 0, 1, . . . , nH − 1 ,

where det : W → C× is the determinant character of W on V . The group W acts
naturally on the polynomial algebra C[V ], and the invariant polynomials f ∈ C[V ]W
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satisfy the equations

(1.1) eH, i(f) = 0 , i = 1, . . . , nH − 1 .

More precisely, we have that f ∈ C[V ]W if and only if (1.1) hold for all H ∈ A .
Now, to define quasi-invariants we relax (1.1) in the following way. For each

H ∈ A, we fix a linear form αH ∈ V ∗, such that H = KerαH , and choose nH − 1
non-negative multiplicities kH,i ∈ Z , assuming kH,i = kH′,i whenever H and H ′

are in the same orbit of W in A. Then, we replace equations (1.1) by

(1.2) eH, i(f) ≡ 0 mod 〈αH〉nHkH,i , i = 1, . . . , nH − 1 ,

where 〈αH〉 is the ideal in C[V ] generated by αH . Letting k := {kH,i}, we call
f ∈ C[V ] a k-quasi-invariant of W if it satisfies (1.2) for all H ∈ A . It is easy
to see that this agrees with the earlier definition of quasi-invariants in the Coxeter
case (cf. Example 2.2); however, unlike in that case, the subspace Qk(W ) ⊆ C[V ]
of k-quasi-invariants is not necessarily a ring. Still, Qk(W ) contains C[V ]W , and
the following remarkable property holds.

Theorem 1.1. Qk(W ) is a free module over C[V ]W of rank |W |.

Since Q0(W ) = C[V ] , Theorem 1.1 can be viewed as a generalization of a classic
result of Chevalley and Serre (see [C]); equivalently, it can be stated by saying that
Qk(W ) is a Cohen-Macaulay module. For the Coxeter groups, this was conjectured
by Feigin and Veselov in [FV] and proved, by different methods, in [EG1] and [BEG].
It is worth mentioning that the elementary argument of [C] and its refinement in
[B] (see loc. cit, Ch. V, § 5, Theorem 1) do not work for nonzero k.

We will prove Theorem 1.1 (in fact, the more precise Theorem 8.2) by extend-
ing the approach of [BEG], which is based on representation theory of Cherednik
algebras. We will also generalize another important result of [BEG] concerning the
ring D(Qk) of differential operators on quasi-invariants.

Theorem 1.2. D(Qk) is a simple ring, Morita equivalent to D(V ).

By a general result of Van den Bergh [VdB] (see also [BN]), Theorem 1.2 is
actually a strengthening of Theorem 1.1; in this paper, however, we will prove
these two theorems by independent arguments, without using [VdB] and [BN].

Although most of the elementary properties of quasi-invariants generalize easily
to the complex case, the proofs of Theorem 1.1 and Theorem 1.2 do not. A key
observation of [BEG] linking quasi-invariants Qk to the rational Cherednik algebra
Hk is the fact that Qk is a module over the spherical subalgebra Uk = eHke of Hk,
and Uk is isomorphic to the ring D(Qk)W of invariant differential operators on Qk.
We will see that a similar result holds for an arbitrary complex reflection group;
however, unlike in the Coxeter case (cf. [BEG], Lemma 6.4), this can hardly be
proved by direct calculation, working with generators of Uk. The problem is that
the ring of invariants C[V ]W of a complex refection group contains no quadratic
polynomial, which makes explicit calculations with generators virtually impossible1.
To remedy this problem, we will work with the Cherednik algebra itself, lifting
quasi-invariants at the level of CW -valued polynomials. More precisely, in Section 3,
we will define quasi-invariants Qk(τ) with values in an arbitrary representation τ
of W as a module over the Cherednik algebra Hk. (Checking that Qk(τ) is indeed

1In fact, skimming the classification table in [ST] shows that there is an exceptional complex
group with minimal fundamental degree as large as 60.
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an Hk-module is easy, since Hk is generated by linear forms and first order (Dunkl)
operators.) The main observation (Theorem 3.4) is that the usual quasi-invariants
Qk are obtained by symmetrizing the τ -valued ones, Qk(τ), with τ being the regular
representation CW . The existence of a natural Uk-module structure on Qk is a
simple consequence of this construction and the fact that Hk and Uk are Morita
equivalent algebras for integral k. As we will see in Section 4 (Proposition 4.3), the
key isomorphism Uk

∼= D(Qk)W also follows easily from this, and Theorem 1.2 (see
Section 4.3) can then be proven similarly to [BEG].

In Section 5, we will use quasi-invariants to show the existence of Heckman-
Opdam shift operators for an arbitrary complex reflection group. In the Coxeter
case, this result was established by an elegant argument by G. Heckman [H], using
Dunkl operators. Heckman’s proof involves explicit calculations with second order
invariant operators, which do not generalize to the complex case (exactly for the
reason mentioned above). Still, Dunkl and Opdam [DO] have managed to extend
Heckman’s construction to the infinite family of complex groups of type G(m, p,N)
and conjectured the existence of shift operators in general. Theorem 5.7 proves
this conjecture of [DO]. The idea behind the proof is to study symmetries of the
family of quasi-invariants {Qk(τ)} under certain transformations of multiplicities
k, which induce the identity at the level of spherical algebra.

Section 6 reviews the definition and basic properties of the category O for rational
Cherednik algebras. This category was introduced and studied in [DO], [BEG]
and [GGOR] as an analogue of the homonymous category of representations of a
semisimple complex Lie algebra. In Section 6, we gather together results on the
category O needed for the rest of the paper. Most of these results are either directly
borrowed or can be deduced from the above references (in the last case, for reader’s
convenience, we provide proofs).

In Section 7, we develop some aspects of representation theory of Cherednik
algebras, which may be of independent interest. First, in Section 7.1, we introduce
a shift functor Tk→k′ : Ok → Ok′ , relating representation categories of Cherednik
algebras with different values of multiplicities. This functor is analogous to the
Enright completion in Lie theory (see [J]) and closely related to other types of shift
functors appeared in the literature. (Some of these relations will be discussed in
Section 7.4.)

Next, in Section 7.2, we will study a certain family of permutations {kzk}k∈Z

on the set Irr(W ) of (isomorphism classes of) irreducible representations of W .
These permuations (called KZ twists) were orginally defined by E. Opdam in terms
of Knizhnik-Zamolodchikov equations and studied using the finite Hecke algebra
Hk(W ) (see [O1, O2, O3]). In [O1], Opdam explicitly described KZ twists for all
Coxeter groups; he also discovered the remarkable additivity property:

kzk ◦ kzk′ = kzk+k′

which holds for all integral k and k′. However, the key arguments in [O1] involve
continuous deformations in parameter k and work only under the assumption that
dim Hk = |W |, which still remains a conjecture for some exceptional groups in
the complex case (see [BMR]). We will derive basic properties of kzk , including
the above additivity, from the properties of the category Ok; thus, we will give a
complete case-free proof of Opdam’s results (see Theorem 7.11 and Corollary 7.12).

The link to quasi-invariants is explained by Proposition 7.13, which says that,
for any τ ∈ Irr(W ) , the Hk-module Qk(τ) is isomorphic to the so-called standard
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module Mk(τ ′) taken, however, with a twist2: τ ′ = kz−k(τ). We would also like
to draw reader’s attention to formula (7.2), which gives an intrinsic description
of the module Qk(τ) and should be taken, perhaps, as a conceptual definition of
quasi-invariants (see Remark 7.14).

In Section 8, we will use the above description of quasi-invariants to prove The-
orem 1.1 and find a decomposition of Qk as a module over the spherical algebra
Uk = eHke. In addition, we compute the Poincaré series of Qk, generalizing the
earlier results of [FV1], [EG1] and [BEG] to the complex case. As an application,
we give a simple proof of a theorem of Opdam on symmetries of fake degrees of
complex reflection groups.

The paper ends with an Appendix, which links our results to the original setting
of [CV]. For a general complex reflection group W and W -invariant integral multi-
plicities k = {kH, i} , we define the Baker-Akhiezer function ψ(λ, x) and establish
its basic properties. Although this function is not used in the main body of the
paper, it is certainly worth studying.

Acknowledgement. A preliminary version of this paper has circulated among
the experts for several years. We are especially indebted to Eric Opdam who has
carefully read that preliminary version and made many useful suggestions. Thanks
to his effort, many proofs are now considerably shorter, and the whole exposition
has greatly improved. We are also very grateful to Toby Stafford and Michel Van
den Bergh for sharing with us their private notes [SV]. The main results of this
paper – Theorems 1.1 and 1.2 – have been independently established in [SV] for
the complex reflection groups of type G(m, p,N). In addition, we would like to
thank C. Dunkl, P. Etingof, V. Ginzburg, I. Gordon, R. Rouquier and A. Veselov
for interesting discussions and comments.

The first author is grateful to the London Mathematical Society for a travel grant
and the Mathematics Department of Leeds University for its hospitality during his
visit in March 2007.

2. Definition of Quasi-invariants

2.1. Complex reflection groups. Let V be a finite-dimensional vector space over
C, and let W be a finite subgroup of GL(V ) generated by complex reflections. We
recall that an element s ∈ GL(V ) is a complex reflection if it acts as identity on
some hyperplane Hs in V . Since W is finite, there is a positive definite Hermitian
form ( · , · ) on V , which is invariant under the action of W . We fix such a form,
once and for all, and regard W as a subgroup of the corresponding unitary group
U(V ). We assume that ( · , · ) is antilinear in its first argument and linear in the
second: if x ∈ V , we write x∗ ∈ V ∗ for the linear form: V → C , v 7→ (x, v) .

The assignment x 7→ x∗ defines then an antilinear isomorphism V
∼
→ V ∗, which

extends to an antilinear isomorphism of the symmetric algebras C[V ∗] and C[V ].
Let A denote the set {Hs} of reflection hyperplanes of W , corresponding to the

reflections s ∈ W . The group W acts on A by permutations, and we write A/W
for the set of orbits of W in A. If H ∈ A, the (pointwise) stabilizer of H in W is a
cyclic subgroup WH ⊆W of order nH , which depends only on the orbit CH ∈ A/W
of H in A. We fix a vector vH ∈ V , normal to H with respect to ( · , · ), and a

2This result corrects an error in [BEG] (cf. Remark 8.3 in Section 8).
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covector αH ∈ V ∗, annihilating H in V ∗. With above identification, we may (and
often will) assume that αH = v∗H .

Now, we write det : W → C× for the character of W obtained by restricting
the determinant character of GL(V ). Then, under the natural action of W , the
elements

(2.1) δ :=
∏

H∈A

αH ∈ C[V ] , δ∗ :=
∏

H∈A

vH ∈ C[V ∗] ,

transform as relative invariants with characters det−1 and det, respectively. For
each H ∈ A, the characters of WH form a cyclic group of order nH generated by
det |WH

. We write

(2.2) eH,i :=
1

nH

∑

w∈WH

(det w)−iw

for the corresponding idempotents in the group algebra CWH ⊆ CW .
More generally, for any orbit C ∈ A/W , we define

(2.3) δC :=
∏

H∈C

αH ∈ C[V ] , δ∗C :=
∏

H∈C

vH ∈ C[V ∗] .

These are also relative invariants of W , whose characters will be denoted by det−1
C

and detC . Note that detC(s) = det(s) for any reflection s ∈ W with Hs ∈ C,
while detC(s) = 1 for all other reflections. The whole group of characters of W is
generated by detC for various C ∈ A/W .

Throughout the paper, we will use the following conventions.

1. A W -invariant function on A and the corresponding function on A/W will
be denoted by the same symbol: for example, if C is the orbit of H in A, we will
often write nC , kC , . . . instead of nH , kH , etc.

2. The index set {0, 1, 2, . . . , nH − 1} will be identified with Z/nHZ: thus
we will often assume {eH,i} , {kC,i} , . . . to be indexed by all integers with under-
standing that eH,i = eH, i+nH

, kC,i = kC, i+nC
, etc.

2.2. Quasi-invariants. For each C ∈ A/W , we fix a sequence of non-negative
integers kC = {kC,i}

nC−1
i=0 , with kC,0 = 0, and let k := {kC}C∈A/W . Following our

convention, we will think of k as a collection of multiplicities {kH,i} assigned to
the reflection hyperplanes of W .

Definition 2.1. A k-quasi-invariant of W is a polynomial f ∈ C[V ] satisfying

(2.4) eH,−i(f) ≡ 0 mod 〈αH〉nHkH,i

for all H ∈ A and i = 0, 1, . . . , nH − 1 . Here 〈αH〉 stands for the principal ideal
of C[V ] generated by αH . (Note that (2.4) holds automatically for i = 0, as we
assumed kH,0 = 0 for all H ∈ A.)

We write Qk(W ) for the set of all k-quasi-invariants of W : clearly, this is a linear
subspace of C[V ].

Example 2.2 (“The Coxeter case”). Let W be a finite Coxeter group. Then each
WH is generated by a real reflection sH of order nH = 2 , and the corresponding
idempotents (2.2) are given by eH,0 = (1 + sH)/2 and eH,1 = (1 − sH)/2 . As
kH,0 = 0 , we have only one (nontrivial) condition (2.4) for each H ∈ A, defining
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quasi-invariants: namely, sH(f) ≡ f mod 〈αH〉2kH , with kH = kH,1. This agrees
with the original definition of quasi-invariants for the Coxeter groups (cf. [FV]).

Example 2.3 (“The one-dimensional case”). Fix an integer n ≥ 2, and let W
be Z/nZ acting on V = C by multiplication by the n-th roots of unity. In this
case, we have only one reflection “hyperplane” – the origin – with multiplicities
k = {k0 = 0, k1, . . . , kn−1}. Identifying C[V ] ∼= C[x], it is easy to see that

(2.5) Qk(W ) =
n−1⊕

i=0

xnki+i C[xn] .

Observe that the first summand in (2.5) (with i = 0) is C[xn] = C[V ]W , the ring
of invariants of W in C[V ]. Observe also that Qk contains all sufficiently large
powers of x and hence the ideal 〈x〉N ⊂ C[V ] for some N ≫ 0. In general, Qk is
not a ring: it is not closed under multiplication in C[V ]. However, we can define
Ak := {p ∈ C[x] : pQk ⊆ Qk} , which is obviously a graded subring of C[V ],
Qk being a graded Ak-module. It is easy to see that Ak also consists of quasi-
invariants of W , corresponding to different multiplicities (cf. Lemma 2.4 below).
LettingXk := Spec(Ak) , we note thatXk is a rational cuspidal curve, with a unique
singular point “at the origin.” The space Qk can be thought of geometrically, as
the space of sections of a rank one torsion-free coherent sheaf on Xk. As a C[V ]W -
module, Qk is freely generated by the monomials {xnki+i}, i = 0, . . . , n− 1.

2.3. Elementary properties of quasi-invariants. We now describe some prop-
erties of quasi-invariants, which follow easily from Definition 2.1. First, as in Ex-
ample 2.3 above, we fix k = {kH,i} and set

(2.6) Ak := {p ∈ C[V ] : pQk ⊆ Qk} .

The following lemma is a generalization of [BEG], Lemma 6.3.

Lemma 2.4.
(i) Ak = Qk′(W ) for some k′ = {k′H,i}. In particular, both Qk and Ak contain

C[V ]W and are stable under the action of W .
(ii) Ak is a finitely generated graded subalgebra of C[V ], and Qk is a finitely

generated graded module over Ak of rank 1.
(iii) The field of fractions of Ak is C(V ) , and the integral closure of Ak in

C(V ) is C[V ] .

Proof. For a polynomial f ∈ C[V ], we define its normal expansion along a hyper-
plane H ∈ A by

f(x+ tvH) =
∑

s≥0

cH, s(x) t
s , x ∈ H .

It is then easy to see that f satisfies (2.4) if and only if cH, s(x) = 0 for all
s ∈ Z+\ S , where

S =

nH−1⋃

i=0

{i+ nHkH,i + nHZ+} .

Now, letting R := {r ∈ Z : r+S ⊆ S} , we observe that p ∈ Ak if and only if, for
each H ∈ A, the normal expansion of p along H contains no terms tr with r 6∈ R .
To prove (i) it suffices to note that R can be written in the same form as S , maybe
with different k’s. Indeed, S ⊂ Z can be characterized by the property that it is
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invariant under translation by nH and contains all integers s ≫ 0. Clearly, R has
the same property and, therefore, a similar description.

To prove (ii) and (iii), we can argue as in [BEG], Lemma 6.3. Since C[V ]W ⊆
Ak ⊆ C[V ] , the Hilbert-Noether Lemma implies that Ak is a finitely generated
algebra, and C[V ] is a finite module over Ak. Being a submodule of C[V ], Qk is
then also finite over Ak. Now, both Ak and Qk contain the ideal of C[V ] generated
by a power of δ ∈ C[V ]. Hence, Ak and C[V ] have the same field of fractions,
namely C(V ) , and the integral closure of Ak in C(V ) is C[V ]. This also implies
that dimC(V )[Qk ⊗Ak

C(V )] = 1 , and thus Qk is a rank 1 module over Ak. �

It is convenient to state some properties of quasi-invariants in geometric terms.
To this end, we write Xk = Spec(Ak) and let Ox = Ox(Xk) denote the local
ring of Xk at a point x ∈ Xk. This local ring can be identified with a subring of
C(V ) by localizing the algebra embedding Ak →֒ C[V ]. To the module Qk we can
then associate a torsion-free coherent sheaf on Xk, with fibres (Qk)x = Qk ⊗O Ox.
Our definition of quasi-invariants generalizes to this local setting if we require (2.4)
to hold for the stabilizer Wx of x under the natural action of W on Xk. This
makes sense, since by a theorem of Steinberg [St], Wx is also generated by complex
reflections.

Lemma 2.5 (cf. [BEG], Lemma 7.3). Let An := Spec C[V ].

(i) Xk is an irreducible affine variety, with normalization X̃k = An.
(ii) The normalization map πk : An → Xk is bijective.
(iii) If we identify the (closed) points of Xk and An via πk, then for each x ∈

An, (Qk)x is the space of k-quasi-invariants in C(V ) with respect to the subgroup
Wx ⊆W .

Proof. The proof given in [BEG] in the case of Coxeter groups (see [BEG], Lemma 7.3)
works, mutatis mutandis, for all complex reflection groups. We leave this as a (triv-
ial) exercise to the reader. �

3. Quasi-invariants and Cherednik Algebras

3.1. The rational Cherednik algebra. We begin by reviewing the definition of
Cherednik algebras associated to a complex reflection group. For more details and
proofs, we refer the reader to [DO] and [GGOR]. In this section, unless stated
otherwise, the multiplicities kC,i are assumed to be arbitrary complex numbers.

We set Vreg := V \
⋃

H∈AH and let C[Vreg] and D(Vreg) denote the rings of
regular functions and regular differential operators on Vreg, respectively. The action
of W on V restricts to Vreg, so W acts naturally on C[Vreg] and D(Vreg) by algebra
automorphisms. We form the crossed products C[Vreg] ∗W and D(Vreg) ∗W and
denote DW := D(Vreg)∗W . As an algebra, DW is generated by its two subalgebras
CW and D[Vreg], and hence, by the elements of W , C[Vreg] and the derivations
∂ξ , ξ ∈ V .

Following [DO], we now define the Dunkl operators Tξ ∈ DW by

(3.1) Tξ := ∂ξ −
∑

H∈A

αH(ξ)

αH

nH−1∑

i=0

nHkH,ieH,i , ξ ∈ V .

Note that the operators (3.1) depend on k = {kH,i} , and we sometimes write
Tξ,k to emphasize this dependence. The basic properties of Dunkl operators are
gathered in the following lemma.



8 YURI BEREST AND OLEG CHALYKH

Lemma 3.1 (see [D, DO]). For all ξ, η ∈ V and w ∈W , we have
(i) commutativity: Tξ,k Tη,k − Tη,k Tξ,k = 0 ,
(ii) W -equivariance: wTξ = Tw(ξ) w ,
(iii) homogeneity: Tξ is a homogeneous operator of degree −1 with respect to the

natural (differential) grading on DW .

Properties (ii) and (iii) of Lemma 3.1 follow easily from the definition of Dunkl
operators. On the other hand, the commutativity (i) is far from being obvious: it
was first proved in [D] in the Coxeter case, and then in [DO] in full generality (loc.
cit., Theorem 2.12).

In view of Lemma 3.1, the assignment ξ 7→ Tξ extends to an injective algebra
homomorphism

(3.2) C[V ∗] →֒ DW , p 7→ Tp .

Identifying C[V ∗] with its image in DW under (3.2), we now define the rational
Cherednik algebra Hk = Hk(W ) as the subalgebra of DW generated by C[V ], C[V ∗]
and CW .

The Cherednik algebras can be also defined directly, in terms of generators and
relations, see [EG, BEG, GGOR]. To be precise, Hk is generated by the elements
x ∈ V ∗, ξ ∈ V and w ∈W subject to the following relations

[x, x′] = 0 , [ξ, ξ′] = 0 , w xw−1 = w(x) , w ξ w−1 = w(ξ) ,

[ξ, x] = 〈ξ, x〉 +
∑

H∈A

〈αH , ξ〉 〈x, vH〉

〈αH , vH〉

nH−1∑

i=0

nH(kH,i − kH,i+1) eH,i .

The family {Hk} can be viewed as a deformation (in fact, the universal deformation)
of the crossed product H0 = D(V ) ∗W (see [EG], Theorem 2.16). The embedding
of Hk →֒ DW is given by w 7→ w , x 7→ x and ξ 7→ Tξ and referred to as
the Dunkl representation of Hk. The existence of such a representation implies the
Poincaré–Birkhoff–Witt (PBW) property forHk, which says that the multiplication
map

(3.3) C[V ] ⊗ CW ⊗ C[V ∗]
∼
→ Hk

is an isomorphism of vector spaces (see [EG])3.
The algebra DW = D(Vreg) ∗W carries two natural filtrations: one is defined

by taking deg(x) = deg(ξ) = 1 and deg(w) = 0, and the other is defined by
deg(x) = 0, deg(ξ) = 1 and deg(w) = 0 for all x ∈ V ∗, ξ ∈ V and w ∈W . We refer
to the first filtration as standard and to the second as differential. Through the
Dunkl representation, these two filtrations induce filtrations on Hk for all k. It is
easy to see that the associated graded rings grHk are isomorphic to C[V ×V ∗]∗W
in both cases; in particular, they are independent of k.

Note that {1, δ, δ2, . . .}, with δ defined in (2.1), is a localizing (Ore) subset in
Hk: we write Hreg := Hk[δ−1] for the corresponding localization. Since δ is a unit
in DW , the Dunkl embedding Hk →֒ DW induces the canonical map Hreg → DW .

Proposition 3.2 (see [EG], Prop. 4.5; [GGOR], Theorem 5.6). The map Hreg →
DW is an isomorphism of algebras.

3The PBW property is proven in [EG] for a more general class of symplectic reflection algebras.
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Despite its modest appearance, Proposition 3.2 plays an important rôle in repre-
sentation theory of Cherednik algebras. In particular, it justifies our notation Hreg

for the localization of Hk (as Hreg is indeed independent of k).
Next, we introduce the spherical subalgebra Uk of Hk: by definition, Uk :=

eHk e , where e := |W |−1
∑

w∈W w is the symmetrizing idempotent in CW ⊂ Hk.

For k = 0, we have U0 = e[D(V ) ∗ W ]e ∼= D(V )W ; thus, the family {Uk} is a
deformation (in fact, the universal deformation) of the ring of invariant differential
operators on V . The standard and differential filtrations on Hk induce filtrations
on Uk, and we have grUk

∼= C[V × V ∗]W in both cases.
The relation between Hk and Uk depends drastically on multiplicity values. In

the present paper, we will be mostly concerned with integral k’s, in which case we
have the following result.

Theorem 3.3. If k is integral, i. e. kC,i ∈ Z for all C ∈ A/W , then Hk and Uk

are simple algebras, Morita equivalent to each other.

Proof. There is a natural functor relating the module categories of Hk and Uk :

(3.4) Mod(Hk) → Mod(Uk) , M 7→ eM ,

where eM := eHk⊗Hk
M . By standard Morita theory (see, e. g, [MR], Prop. 3.5.6),

this functor is an equivalence if (and only if) HkeHk = Hk. The last condition
holds automatically if Hk is simple. So one needs only to prove the simplicity of
Hk. In the Coxeter case, this is the result of [BEG], Theorem 3.1. In general, the
simplicity of Hk can be deduced from the semi-simplicity of the category OHk

for
integral k’s, which, in turn, follows from general results of [GGOR]. We discuss
this in detail in Section 6 (see Theorem 6.6 below). �

The restriction of the Dunkl representation Hk →֒ DW to eHke ⊂ Hk yields
an embedding Uk →֒ eDWe , which is a homomorphism of unital algebras. If we
combine this with (the inverse of) the isomorphism D(Vreg)

W ∼
→ eDWe , D 7→

eDe = eD = De , we get an algebra map

(3.5) Res : Uk →֒ D(Vreg)
W ,

representing Uk by invariant differential operators on Vreg (cf. [H]). We will refer
to (3.5) as the Dunkl representation for the spherical subalgebra Uk.

3.2. CW -valued quasi-invariants. The algebra DW can be viewed as a ring
of W -equivariant differential operators on Vreg, and as such it acts naturally on
the space of CW -valued functions. More precisely, using the canonical inclusion
C[Vreg] ⊗ CW →֒ DW , we can identify C[Vreg] ⊗ CW with the cyclic DW -module
DW/J , where J is the left ideal of DW generated by ∂ξ ∈ DW , ξ ∈ V . Explicitly,
in terms of generators, DW acts on C[Vreg] ⊗ CW by

g(f ⊗ u) = gf ⊗ u , g ∈ C[Vreg] ,

∂ξ(f ⊗ u) = ∂ξf ⊗ u , ξ ∈ V ,(3.6)

w(f ⊗ u) = fw ⊗ wu , w ∈W .

Now, the restriction of scalars via the Dunkl representation Hk(W ) →֒ DW
makes C[Vreg] ⊗ CW an Hk(W )-module. We will call the corresponding action
of Hk the differential action. It turns out that, in the case of integral k’s, the
differential action of Hk is intimately related to quasi-invariants Qk = Qk(W ).



10 YURI BEREST AND OLEG CHALYKH

Theorem 3.4. If k is integral, then C[Vreg]⊗CW contains a unique Hk-submodule
Qk = Qk(W ), such that Qk is finite over C[V ] ⊂ Hk and

(3.7) eQk = e(Qk ⊗ 1) in C[Vreg] ⊗ CW .

We prove Theorem 3.4 in several steps. First, we construct Qk as a subspace of
C[Vreg]⊗CW and verify (3.7). Then we show that Qk is stable under the differential
action of Hk, and finally we prove its uniqueness.

Besides the diagonal action (3.6), we will use another action of W on C[Vreg] ⊗
CW , which is trivial on the first factor : i. e., f ⊗ s 7→ f ⊗ ws , where w ∈W and
f ⊗ s ∈ C[Vreg] ⊗ CW . We denote this action by 1 ⊗ w .

Now, we define Qk to be the subspace of C[Vreg]⊗CW spanned by the elements
ϕ satisfying

(3.8) (1 ⊗ eH,i)ϕ ≡ 0 mod 〈αH〉nHkH,i ⊗ CW ,

for all H ∈ A and i = 0, 1, . . . , nH − 1 . Here, as in Definition 2.4, 〈αH〉 stands
for the ideal of C[V ] generated by αH .

It is immediate from (3.8) that Qk ⊆ C[V ]⊗CW , and Qk is closed in C[V ]⊗CW
under the natural action of C[V ]. Hence, as W is finite and C[V ] is Noetherian,
Qk is a finitely generated C[V ]-module.

Lemma 3.5. Qk satisfies (3.7).

Proof. We need to show that e(f ⊗ 1) ∈ eQk if and only if f ∈ Qk . First, for any
f ∈ C[V ] and s ∈W , we compute

(1 ⊗ s)[e(f ⊗ 1)] =
1

|W |

∑

w∈W

fw ⊗ sw =
1

|W |

∑

w∈W

fs−1w ⊗ w .

Now, multiplying this by appropriate characters and summing up over all s ∈WH ,
we get

(1 ⊗ eH,i)[e(f ⊗ 1)] =
1

|W |

∑

w∈W

eH,−i(f
w) ⊗ w .

It follows from (3.8) that e(f ⊗ 1) ∈ eQk if and only if fw ∈ Qk for all w ∈ W .
The latter is equivalent to f ∈ Qk, since Qk is W -stable. �

Lemma 3.6. Qk is stable under the differential action of Hk.

Proof. As already mentioned above, Qk is closed under the action of C[V ] ⊂ Hk .
To see that Qk is stable under the diagonal action of W , we observe that

w (1 ⊗ eH,i) = w ⊗ weH,i = (1 ⊗ ewH,i)w

as endomorphisms of C[Vreg] ⊗ CW . Since (3.8) hold for each H ∈ A and kH,i’s
depend only on the orbit of H in A, we have wQk ⊆ Qk for all w ∈W .

Thus, we need only to check that Qk is preserved by the Dunkl operators (3.1).
For each H ∈ A , let QH

k denote the subspace of C[Vreg] ⊗ CW spanned by all
ϕ’s satisfying (3.8) only for the given H. Clearly Qk =

⋂
H∈A QH

k , so it suffices to
show that

(3.9) Tξ(Qk) ⊆ QH
k for all H ∈ A .
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Writing Tξ = T0 + T1 with

T0 := ∂ξ −
αH(ξ)

αH

nH−1∑

i=0

nHkH,ieH,i ,

T1 :=
∑

H′ 6=H

αH′(ξ)

αH′

nH′−1∑

i=0

nH′kH′,ieH′,i ,

we will verify (3.9) separately for T0 and T1.
Since Qk is W -stable, eH′,i(Qk) ⊆ Qk ⊆ QH

k . Next, α−1
H′ ∈ C[Vreg] is regular

along H, therefore, α−1
H′ QH

k ⊆ QH
k . Combining these two facts together, we get

α−1
H′ eH′,i(Qk) ⊆ QH

k , and hence T1(Qk) ⊆ QH
k .

It remains to show that T0(Qk) ⊆ QH
k . In fact, we have Qk ⊆ QH

k , so it suffices
to show that T0(Q

H
k ) ⊆ QH

k . Note that the definition of both QH
k and T0 involve

only one hyperplane H and the group WH , so the statement can be checked in
dimension one, in which case it is straightforward, see Example 3.9 below. �

Lemma 3.7. If k is integral, there exists at most one Hk-submodule Qk ⊂ C[Vreg]⊗
CW , satisfying (3.7).

Proof. Suppose that Qk and Q′
k are two such submodules. Replacing one of them

by their sum, we may assume that Qk ⊂ Q′
k, with eQk = eQ′

k. Setting M :=
Q′

k/Qk, we get eM = 0. This forces M = 0 , since (3.4) is a fully faithful functor
by Theorem 3.3. Thus Q′

k = Qk, as required. �

Lemmas 3.5, 3.6 and 3.7 combined together imply Theorem 3.4. As a simple
consequence of this theorem, we get

Corollary 3.8. Qk is stable under the action of Uk on C[Vreg] via the Dunkl
representation (3.5). Thus Qk is a Uk-module, with Uk acting on Qk by invariant
differential operators.

Proof. Theorem 3.4 implies that eHke(eQk) ⊆ eQk. Recall that for every element
eLe ∈ eHke we have eLe = eResL, by the definition of the map (3.5). As a
result,

e (ResL[Qk] ⊗ 1) = eResL [Qk ⊗ 1] = (eL e)[Qk] ⊆ eQk = e(Qk ⊗ 1) .

It follows that (ResL)[Qk] ⊆ Qk , since e (f ⊗ 1) = 0 in C[Vreg] ⊗ CW forces
f = 0 . �

Example 3.9. We illustrate Theorem 3.4 in the one-dimensional case. Let W =
Z/nZ and k = (k0, . . . , kn−1) be as in Example 2.3. Then

(3.10) Qk =
n−1⊕

i=0

xnkiC[x] ⊗ ei , ei =
1

n

∑

w∈W

(detw)−iw .

Clearly, Qk is stable under the action of W and C[x]. On the other hand, if ki ∈ Z ,

a trivial calculation shows that the Dunkl operator T := ∂x − x−1
∑n−1

i=0 nkiei

annihilates the elements xnki ⊗ ei, and hence preserves Qk as well. Now, acting on
Qk by e = e0 and using (2.5), we get

(3.11) eQk =
n−1⊕

i=0

xnki+iC[xn] ⊗ ei =
n−1⊕

i=0

e (xnki+iC[xn] ⊗ 1) = e (Qk ⊗ 1) ,
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which agrees with Theorem 3.4.

3.3. Generalized quasi-invariants. In our construction of quasi-invariants, the
regular representation CW played a distinguished rôle. We now outline a gen-
eralization, in which CW is replaced by an arbitrary W -module τ . For a more
conceptual definition of quasi-invariants in terms of shift functors, we refer the
reader to Section 7 (see Remark 7.14).

First, we observe that the left ideal J of DW generated by the derivations ∂ξ,
ξ ∈ V , is stable under right multiplication by the elements of CW ⊂ DW . Hence
DW/J is naturally a DW -CW -bimodule. For any W -module τ , we can form then
the left DW -module DW/J⊗CW τ ∼= C[Vreg]⊗τ . The action of DW on C[Vreg]⊗τ
is given by the same formulas (3.6), with w ∈ W acting now in representation τ ,
and Hk operates via its Dunkl representation. Now, generalizing (3.8), we define
the module Qk(τ) of τ -valued quasi-invariants as the span of all ϕ ∈ C[Vreg] ⊗ τ
satisfying

(3.12) (1 ⊗ eH,i)ϕ ≡ 0 mod 〈αH〉nHkH,i ⊗ τ

for all H ∈ A and i = 0, 1, . . . , nH − 1 . It is convenient to write Qk(τ) as the
intersection of subspaces corresponding to the reflection hyperplanes H ∈ A :

(3.13) Qk(τ) =
⋂

H∈A

QH
k (τ) , QH

k (τ) :=

nH−1⊕

i=0

〈αH〉nHkH,i ⊗ eH,iτ .

The same argument as in Lemma 3.6 above proves the following

Proposition 3.10. The space Qk(τ) ⊂ C[Vreg] ⊗ τ is stable under the action of
Hk. The subspace eQk(τ) of W -invariant elements in Qk(τ) is then a module over
the spherical subalgebra eHke.

In addition, we have

Lemma 3.11. Let QH
k (τ) be as in (3.13), and let eH,0 := 1

nH

∑
w∈WH

w . Then

(3.14) eQk(τ) =
⋂

H∈A

eH,0 QH
k (τ) .

Proof. First, it is clear that the right-hand side of (3.14) lies in the intersection
(3.13) and thus belongs to Qk(τ). Furthermore, it is contained in eH,0Q

H
k (τ) and

therefore stable under the action of WH . Since H is arbitrary, this proves that the
right-hand side of (3.14) is stable under the whole of W and hence contained in
the left-hand side. The opposite inclusion follows from eQk(τ) ⊆ eH,0Qk(τ) ⊆
eH,0Q

H
k (τ) . �

We can decompose each subspace eH,0Q
H
k (τ) in (3.14) as in the one-dimensional

case (see Example 3.9, (3.11)). To be precise, let C[V H
reg] denote the subring of

functions in C[Vreg] that are regular along H. This ring carries a natural action of
WH , so we write C[V H

reg]
WH for its subring of invariants. With this notation, we

have

(3.15) eH,0Q
H
k (τ) =

nH−1⊕

i=0

α
nHkH,i+i
H C[V H

reg]
WH ⊗ eH,iτ .

We close this section with a few remarks.
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1. As an immediate consequence of the definition (3.12), we have

(3.16) δrC[V ] ⊗ τ ⊂ Qk(τ) ⊂ δ−rC[V ] ⊗ τ ,

where r > 0 is sufficiently large (precisely, r > max{nHkH,i}). More generally, for
integral k, k′, it is easy to show that

(3.17) δrQk(τ) ⊆ Qk′(τ) ⊆ δ−rQk(τ) ,

where r ≫ 0 depends only on the difference k′ − k.
2. If τ is a direct sum of W -modules, say τi, then C[Vreg] ⊗ τ and Qk(τ) are

also direct sums of C[Vreg] ⊗ τi and Qk(τi), respectively. In particular, replacing τ
by CW =

∑
τ∈Irr(W ) τ ⊗ τ∗, we get

(3.18) Qk =
∑

τ∈Irr(W )

Qk(τ) ⊗ τ∗ .

Thus, the structure of Qk is determined by the modules Qk(τ) associated to irre-
ducible representations of W . We will study these modules in detail in Section 8.

3. As was mentioned already, on the space C[Vreg] ⊗ CW one has yet another
(left) W -action sending f ⊗ u to f ⊗ uw−1. It is clear from the definitions, that it
commutes with the action of DW and preserves both Qk and eQk. Note that this
action preserves each summand in (3.18), acting on τ∗. Under (3.7), it translates
into the standard action of W on Qk ⊂ C[V ].

4. Differential Operators on Quasi-invariants

4.1. Rings of differential operators. We briefly recall the definition of differen-
tial operators in the algebro-geometric setting (see [Gr] or [MR], Chap. 15).

Let A be a commutative algebra over C, and let M be an A-module. The filtered
ring of (linear) differential operators on M is defined by

DA(M) :=
⋃

n≥0

Dn
A(M) ⊆ EndC(M) ,

where D0
A(M) := EndA(M) and Dn

A(M) , with n ≥ 1, are given inductively:

Dn
A(M) := {D ∈ EndC(M) | [D, a ] ∈ Dn−1

A (M) for all a ∈ A} .

The elements of Dn
A(M) \ Dn−1

A (M) are called differential operators of order n on
M . Note that the commutator of two operators in Dn

A(M) of orders n and m
has order at most n + m − 1. Hence the associated graded ring grDA(M) :=⊕

n≥0 D
n
A(M)/Dn−1

A (M) is a commutative algebra.

If X is an affine variety with coordinate ring A = O(X), we denote DA(A) by
D(X) and call it the ring of differential operators on X. If X is irreducible, then
each differential operator on X has a unique extension to a differential operator on
K := C(X), the field of rational functions of X, and thus we can identify (see [MR],
Theorem 15.5.5):

D(X) = {D ∈ D(K) | D(f) ∈ O(X) for all f ∈ O(X) } .

Slightly more generally, we have

Lemma 4.1 (cf. [BW], Prop. 2.6). Suppose that M ⊆ K is a (nonzero) A-
submodule of K. Then

DA(M) = {D ∈ D(K) | D(f) ∈M for all f ∈M } .
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We apply these concepts in case when A = Ak and M = Qk , denoting DA(M)
in this case by D(Qk). By Lemma 2.4(iii), Xk = Spec(Ak) is an irreducible variety
with K = C(V ), so, by Lemma 4.1, we have

(4.1) D(Qk) = {D ∈ D(K) |D(f) ⊆ Qk for all f ∈ Qk } .

Note that the differential filtration on D(Qk) is induced from the differential filtra-
tion on D(K). Thus (4.1) yields a canonical inclusion grD(Qk) ⊆ grD(K) , with
D0(Qk) = Ak , see (2.6). In particular, if k = {0} , then Qk = C[V ] and (4.1)
becomes the standard realization of D(V ) as a subring of D(K) .

Apart from Qk, we may also apply Lemma 4.1 to C[Vreg], which is naturally a
subalgebra of K = C(V ). This gives the identification

(4.2) D(Vreg) = {D ∈ D(K) |D(f) ⊆ C[Vreg] for all f ∈ C[Vreg] } .

Lemma 4.2. With identifications (4.1) and (4.2), we have

(i) D(Qk) ⊆ D(Vreg) and (ii) grD(Qk) ⊆ grD(V ) .

Proof. This can be deduced from general results of [SS] or [BEG] (see, e.g., [BEG],
Lemma A.1). However, for reader’s convenience, we give a shorter argument here.
First, recall that δNC[V ] ⊆ Qk ⊆ C[V ] for some N ≥ 1 . Hence, for any D ∈
D(Qk) , we have

D δN (C[V ]) ⊆ D(Qk) ⊆ Qk ⊆ C[V ] .

It follows that DδN ∈ D(V ) for all D ∈ D(Qk) and D(Qk) ⊆ D(V ) δ−N proving
the first claim of the lemma. The last inclusion also implies that grD(Qk) ⊆
δ−NgrD(V ) . Since grD(Qk) is closed under multiplication, this is possible only if
grD(Qk) ⊆ grD(V ), which is the second claim of the lemma. �

4.2. Invariant differential operators. Recall that, by Lemma 2.4, Qk is stable
under the action of W on C[Vreg]. Hence W acts naturally on D(Qk), and this
action is compatible with the inclusion of Lemma 4.2(i). It follows that D(Qk)W ⊆
D(Vreg)

W . Now, we recall the algebra embedding (3.5), which defines the Dunkl
representation for the spherical subalgebra of Hk.

Proposition 4.3. The image of Res : Uk →֒ D(Vreg)
W coincides with D(Qk)W .

Thus the Dunkl representation of Uk yields an algebra isomorphism Uk
∼= D(Qk)W .

Proof. In the Coxeter case, this is the result of [BEG], Proposition 7.22. In general,
the proof is similar, provided the results of the previous section are available. Indeed,
by Corollary 3.8, the image of Res is contained in D(Qk)W . So we need only to
see that the map Res : Uk → D(Qk)W is surjective. Passing to the associated
graded algebras, we first note that grD(Qk)W ⊆ grD(V )W by Lemma 4.2 (ii).
On the other hand, by the PBW property (3.3) of Hk, the Dunkl representation
induces an isomorphism grUk

∼= grD(V )W . Hence, the associated graded map
grUk → grD(Qk)W is surjective, and so is the map Uk → D(Qk)W . �

Corollary 4.4. grD(V ) is a finite module over grD(Qk) . Consequently grD(Qk)
is a finitely generated (and hence, Noetherian) commutative C-algebra.

Proof. We have already seen that grD(Qk)W ⊆ grD(Qk) ⊆ grD(V ) . On the other
hand, by Proposition 4.3, grD(Qk)W = grUk = grU0 = grD(V )W = [grD(V )]W .
Since W is finite, grD(V ) is a finite module over [grD(V )]W , and hence a fortiori
over grD(Qk). This proves the first claim of the corollary. The second claim follows
from the first by the Hilbert-Noether Lemma. �
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Remark 4.5. Following [Kn], let us say that an algebra A ⊆ D(K) is graded cofi-
nite in D(V ) if grA ⊆ grD(V ) and grD(V ) is a finite module over grA. Under
the assumption that A ⊆ D(V ) , such algebras are described in [Kn]. Corollary 4.4
shows that D(Qk) is graded cofinite in D(V ), although it is actually not a subal-
gebra of D(V ). It might be interesting to see whether the geometric description of
graded cofinite algebras given in [Kn] extends to our more general situation. An-
other interesting problem is to study the structure of grD(Qk) as a module over
grD(Qk)W . This is a natural “double” of the C[V ]W -module Qk. In contrast to
Theorem 1.1, the module grD(Qk) is not free over grD(Qk)W and consequently
D(Qk) is not free over D(Qk)W , although the latter module is projective (see
Corollary 4.6 below).

4.3. Simplicity and Morita equivalence. We now prove Theorem 1.2 from the
Introduction, which is a generalization of [BEG], Theorem 9.7. Our proof is similar
to that of [BEG], except for the fact that Qk may not be a ring in general. We give
some details for completeness.

Proof of Theorem 1.2. First, by Theorem 3.3, Uk is a simple ring, and hence so is
D(Qk)W , by Proposition 4.3. An easy argument (see [BEG], p. 319) shows that
C[V ]W ∩ I 6= {0} for any nonzero two-sided ideal I of D(Qk) . Since C[V ]W =
QW

k ⊂ D(Qk)W , we have D(Qk)W ∩ I 6= {0} and therefore (by simplicity of
D(Qk)W ) 1 ∈ I . This proves the simplicity of D(Qk) .

Now, letting P := {D ∈ D(K) | D(f) ∈ Qk for all f ∈ C[V ] } , we note that
P ⊂ D(V ) is a right ideal of D(V ), with EndD(V ) P ∼= D(Qk) . To see the latter,
we can argue as in [SS], Proposition 3.3. First, it is clear that P is closed under
the left multiplication by the elements of D(Qk) in D(K): this gives an embedding
D(Qk) ⊆ EndD(V ) P . On the other hand, P(C[V ]) = Qk , since the D(Qk)-module
Qk/P(C[V ]) has a nonzero annihilator (containing P), and hence, must be 0, by
simplicity of D(Qk). Identifying now EndD(V ) P ∼= {D ∈ D(K) | D.P ⊆ P } ,
we have D(Qk) = DP(C[V ]) ⊆ P(C[V ]) = Qk for any D ∈ EndD(V ) P , whence
EndD(V ) P ⊆ D(Qk) .

Finally, since D(V ) and D(Qk) are both simple rings, EndD(V ) P ∼= D(Qk)
implies that P is a progenerator in the category of right D(V )-modules, and D(V )
and D(Qk) are Morita equivalent rings. �

As a simple consequence of Proposition 4.3 and Theorem 1.2, we get

Corollary 4.6. D(Qk) is a (right) projective module over D(Qk)W .

Proof. Since D(Qk)W and D(Qk) are simple rings, EndD(Qk)W D(Qk) ∼= D(Qk) ∗

W is a simple ring, Morita equivalent to D(Qk)W (see [M], Theorem 2.4). It
follows that D(Qk) is a progenerator in the category of right D(Qk)W -modules; in
particular, D(Qk) is f. g. projective over D(Qk)W . �

5. Shift Operators

5.1. Automorphisms of DW . We start by describing certain automorphisms of
the algebra DW and their action on the subalgebras Hk and Uk = eHke. Recall
that DW is generated by the elements w ∈ W , x ∈ V ∗ and ξ ∈ V , so any
automorphism of DW is determined by its action on these elements.

Given a one-dimensional character χ of W , we define our first automorphism by

(5.1) w 7→ χ(w)w , x 7→ x , ∂ξ 7→ ∂ξ .
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Under (5.1), the subalgebras Hk and Uk transform to Hk′ and eχHk′eχ, where
eχ ∈ CW is the idempotent corresponding to χ, and k′H,i := kH,i+aH

with aH ∈ Z

determined by χ|WH
= (det)aH .

To define the second automorphism we fix a W -orbit C ⊆ A and a W -invariant
closed 1-form ω on Vreg:

(5.2) ω = λ d log δC = λ
∑

H∈C

dαH

αH
, λ ∈ C .

Then, regarding ξ ∈ V as a constant vector field on Vreg, we define

(5.3) w 7→ w , x 7→ x , ∂ξ 7→ ∂ξ + ω(ξ) ,

This automorphism maps the algebras Hk and Uk to Hk′ and Uk′ , where k′ is given
by k′C,i = kC,i − λ/nC and k′C′,i = kC′,i for C ′ 6= C.

Finally, for a fixed C ∈ A/W , we consider the automorphism u 7→ δCu δ
−1
C

given by conjugation by the element (2.3). It is easy to see that this automorphism is
the composition of the automorphism (5.1), with χ = detC , and the automorphism
(5.3), with λ = −1. Therefore, it maps Hk, Uk to Hk′ and ǫC Hk′ǫC , where

(5.4) ǫC = δC e δ−1
C = |W |−1

∑

w∈W

(detCw)w ,

and k′ is related to k by

(5.5) k′C,i = kC,i+1 + 1/nC and k′C′,i = kC′,i for C ′ 6= C .

5.2. Twisted quasi-invariants. For the purposes of this section, we redefine
quasi-invariants in a slightly greater generality to allow fractional multiplicities.
Precisely, we fix a W -invariant function a : A → Z and choose kC,i ∈ Q so that

(5.6) kC,i ≡ aC/nC mod Z .

(In particular, a = 0 corresponds to the case of integral k’s.) For such k, we take
Qk to be the subspace of all f ∈ C[Vreg] satisfying

(5.7) eH,−i−aH
(f) ≡ 0 mod 〈α

nHkH,i

H 〉

for all H ∈ A and i = 0, 1, . . . , nH − 1. In the case of negative multiplicities,

〈α
nHkH,i

H 〉 should be understood as the span of rational functions f ∈ C[Vreg] for

which f ·α
−nHkH,i

H is regular along H (although it may still have poles along other
hyperplanes).

The proof of Theorem 3.4 will work in this more general situation, if we modify
the definition of Qk ⊂ C[Vreg] ⊗ CW in the following way, cf. (3.8):

(5.8) ϕ ∈ Qk ⇐⇒ (1 ⊗ eH,i+aH
)ϕ ≡ 0 mod 〈α

nHkH,i

H 〉 ⊗ CW

for all H ∈ A and i = 0, 1, . . . , nH − 1.

Example 5.1. Let W = Z/nZ and suppose that ki ≡ a/n (mod Z). In that case,
we have

(5.9) Qk =
n−1⊕

i=0

xnkiC[x]ei+a , ei =
1

n

∑

w∈W

(detw)−iw .
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On the other hand, it is easy to see that the subspace Qk ⊆ C[V ] is still described
by formula (2.5), which is actually independent of a. As a consequence, for different
values of k, we may get the same Qk. For example, if we take k′ to be

(5.10) k′i = ki−1 −
1

n
for i = 1, . . . , n− 1 , k′0 = kn−1 −

1

n
+ 1 ,

then the formula (2.5) gives that Qk′ = Qk . More generally, this holds for all
iterations of (5.10), which form a cyclic group of order n. In the next section, we
extend this observation to an arbitrary group W .

5.3. Symmetries of the Dunkl representation. The Dunkl representation de-
fines a flat family of subalgebras {Uk} of D(Vreg)

W , with gr(Uk) = C[V × V ∗]W

for any k. It turns out that this family is invariant under a certain subgroup G of
affine transformations of k, so that Uk = Uk′ whenever k′ = g · k with g ∈ G. This
kind of invariance is not obvious from definitions: we will deduce it by studying the
action of G on modules Qk of quasi-invariants.

First, as in Example 5.1, for C ∈ A/W we define the transformation gC : k 7→ k′

by

(5.11) k′C,i = kC,i−1 −
1

nC
+ δi,0 and k′C′,i = kC′,i for C ′ 6= C .

Note that (gC)nC = Id. Note also that if k satisfies the conditions (5.6), then k′

satisfies the same conditions, with a replaced by a′ := a − 1C , where 1C : A → Z

is the characteristic function of the orbit C.

Proposition 5.2. Let G denote the (abelian) group generated by all gC with C ∈
A/W . Then Qk′ = Qk for any k′ ∈ G · k, provided k satisfies (5.6).

Proof. A straightforward calculation shows that the two systems of congruences
(5.7) for k and k′ = gC · k are equivalent. As in Example 5.1 above, this implies
the equality Qk′ = Qk. �

For the purposes of Section 8, we will need an analogue of the above result for
the modules of τ -valued quasi-invariants Qk(τ). First, we need to modify their
definition similarly to (5.8):

(5.12) ϕ ∈ Qk(τ) ⇐⇒ (1 ⊗ eH,i+aH
)ϕ ≡ 0 mod 〈α

nHkH,i

H 〉 ⊗ τ

for all H ∈ A and i = 0, 1, . . . , nH − 1. Then it is easy to see that Qk(τ) can be
described similarly to (3.13):

(5.13) Qk(τ) =
⋂

H∈A

QH
k (τ) , QH

k (τ) =

nH−1⊕

i=0

〈αH〉nHkH,i ⊗ eH,i+aH
τ .

As before, the space Qk(τ) ⊂ C[Vreg]⊗τ is invariant under the differential action of
Hk. As a result, the subspace eQk(τ) of W -invariant elements in Qk(τ) becomes
a module over the spherical subalgebra eHke. Furthermore, the proof of Lemma
3.11 applies verbatim, so we have the formula

(5.14) eQk(τ) =
⋂

H∈A

eH,0Q
H
k (τ) ,



18 YURI BEREST AND OLEG CHALYKH

with each of the subspaces eH,0Q
H
k (τ) described similarly to (3.15):

(5.15) eH,0Q
H
k (τ) =

nH−1⊕

i=0

α
nHkH,i+i
H C[V H

reg]
WH ⊗ eH,i+aH

τ .

Finally, using (5.14) and (5.15), we obtain similarly to Proposition 5.2 the following
result.

Proposition 5.3. Let G denote the abelian group generated by all transformations
(5.11). Then for any k satisfying (5.6) and any k′ ∈ G · k, we have eQk′(τ) =
eQk(τ) as subspaces in C[Vreg] ⊗ τ .

Proposition 5.2 has the following important consequence.

Proposition 5.4. Let k be arbitrary and k′ ∈ G ·k. Then the spherical subalgebras
Uk = eHke and Uk′ = eHk′e coincide as subsets in DW and hence are isomorphic.
Furthermore, we have eTp,ke = eTp,k′e for any p ∈ C[V ∗]W , or equivalently,
Lp,k = Lp,k′ , where Lp,k := Res (eTp,ke).

Proof. First, we prove the claim under the integrality assumption (5.6). By Propo-
sition 5.2, we have Qk = Qk′ , so that D(Qk)W = D(Qk′)W . On the other hand,
Proposition 4.3 says that Uk = eD(Qk)W and Uk′ = eD(Qk′)W . Whence Uk = Uk′ .

To prove the second claim, let L, L′ denote Lp,k and Lp,k′ , respectively. From
the defintion of the Dunkl operators it easily follows that L and L′ have the same
principal symbol p(∂), and their lower order coefficients are rational functions of
negative homogeneous degrees. Hence L − L′ is a differential operator whose all
coefficients have negative homogeneous degree. But, by Proposition 5.2 and Theo-
rem 3.8, both L and L′ are in D(Qk), so, by Lemma 4.2(ii), the principal symbol
of L− L′ must be regular. This proves that L = L′.

To extend the above results to arbitrary k, take k′ = g · k, with fixed g ∈ G. For
the standard filtration, we have grUk = grUk′

∼= C[V × V ∗]W . Thus, we may view
k 7→ Uk and k 7→ Ug·k as two flat families of filtered subspaces in DW . We know
that these subspaces coincide when k takes rational values satisfying (5.6). Since
the set of such values of k is Zariski dense in the space of all complex multiplicities,
we conclude that Uk = Ug·k holds for all k. In the same spirit, we have Lp,k = Lp,k′

for rational k, and both sides of this equality depend polynomially in k, hence the
same must be true for all k. �

5.4. Isomorphisms of spherical algebras. In this section, we will regard k =
{kC,i} as a vector in CN , with N =

∑
C∈A/W nC . Let {ℓC,i} denote the standard

basis in this vector space, so that k =
∑

C∈A/W

∑nC−1
i=0 kC,iℓC,i. (As usual, we

assume ℓC,i to be periodic in i, so that ℓC,nC
= ℓC,0.)

The next proposition describes the transformation of Uk under translations k 7→
k + ℓC,nC−1. In the Coxeter case, this result was first established in [BEG] for
generic (’regular’) multiplicities and later extended in [Go] to arbitrary k’s when
W is crystallographic. We now prove it in full generality: for an arbitrary complex
reflection group and arbitrary multiplicities.

Proposition 5.5. For a fixed C ∈ A/W , we have the following isomorphisms
(1) eHke

∼= ǫCHk′ǫC , k′ = k + ℓC,nC−1;
(2) eHke

∼= ǫHk′ǫ, k′ = k +
∑

C∈A/W ℓC,nC−1 ,

where ǫ is the sign idempotent on W and ǫC is given by (5.4).
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Proof. Let f = fC and g = gC be the transformations k 7→ k′ defined by (5.5) and
(5.11), respectively. Recall that f describes the effect of the conjugation by δC , so
that

(5.16) δC Tξ,k δ
−1
C = Tξ,f(k) and δC Hk δ

−1
C = Hf(k) .

On the other hand, by Proposition 5.4 , eHke = eHg(k)e. Now, a simple calculation
shows that k′ := fg(k) = k + ℓC,nC−1. Combining all these together, we get

eHke = eHg(k)e = e δ−1
C Hfg(k)δC e = δ−1

C ǫCHk′ǫC δC ∼= ǫCHk′ǫC ,

which is our first isomorphism. The second isomorphism is proved in a similar way,
using f =

∏
C∈C fC and g =

∏
C∈C gC instead of fC , gC . �

Note that the above proof gives a bit more than stated in the proposition: it
shows that eHke = eδ−1

C Hk′δCe as subsets in DW . Now, arguing as in (the proof

of) Proposition 5.4, we conclude that eTp,k e = e δ−1
C Tp,k′δC e for any W -invariant

polynomial p. More generally, we have the following result, which answers a ques-
tion of Dunkl and Opdam (see [DO], Question 3.22).

Proposition 5.6. For fixed C ∈ A/W and a = 1, . . . , nC − 1 , let

(5.17) k′ = k +
a∑

i=1

ℓC,nC−i .

Then eHke = eδ−a
C Hk′δa

Ce in DW , and eTp,k e = e δ−a
C Tp,k′δa

C e for all p ∈
C[V ∗]W .

This is proved by replacing the transformations f = fC , g = gC in the proof of
Proposition 5.5 by their iterates, fa and ga. �

5.5. Shift operators. We are now in position to construct the Heckman-Opdam
shift operators for the group W , extending an idea of G. Heckman [H]. Fix C ∈
A/W and a ∈ {0, . . . , nC − 1} as above, and recall the elements δC , δ∗C , see (2.3).
For an arbitrary k, define k′ by (5.17) (with k′ := k in the case a = 0) and introduce
the following differential operators

(5.18) Sk := Res
(
δ1−a
C Tδ∗

C ,k′δa
C

)
, S−

k := Res
(
δ−a
C (Tδ∗

C ,k′)nC−1δa−1
C

)
.

Note that both expressions under Res are W -invariant.

Theorem 5.7. For all p ∈ C[V ∗]W , the operators Sk and S−
k satisfy the following

intertwining relations

Lp,ek ◦ Sk = Sk ◦ Lp,k , Lp,k ◦ S−
k = S−

k ◦ Lp,ek ,

where k̃ = k + ℓC,nC−a .

Proof. Let f = fC and g = gC be the same as in the proof of Proposition 5.5,
and let k′ be as in (5.17). A direct calculation shows that k′ = faga(k) and
g1−afga(k) = k+ℓC,nC−a. As a result, if we let k1 := f1−a(k′) and k2 := f−a(k′) ,
then k = g1−a(k1) and k2 = ga(k) . By Proposition 5.4, this implies

Lp,ek = Lp,k1
and Lp,k = Lp,k2

.
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To prove the first identity it thus suffices to show that Sk intertwines Lp,k1
and

Lp,k2
. Writing δ , δ∗ for δC , δ∗C , we have

eLp,k1
Sk = eTp,k1

δ1−aTδ∗,k′δa
e

= eδ1−aTp,fa−1(k1)Tδ∗,k′δa
e (by (5.16))

= eδ1−aTp,k′Tδ∗,k′δa
e

= eδ1−aTδ∗,k′Tp,k′δa
e (by Lemma 3.1(i))

= eδ1−aTδ∗,k′δaTp,f−a(k′)e

= eδ1−aTδ∗,k′δa
e · eTp,k2

e (by Lemma 3.1(ii))

= eSkLp,k2
.

The second identity involving S−
k is proved in a similar fashion. �

6. Category O

Throughout this section, we will use the following notation: if A is an algebra,
we write Mod(A) for the category of all left modules over A, and mod(A) for
its subcategory consisting of finitely generated modules. In particular, when A is
a finite-dimensional algebra over C (e.g., A = CW ), mod(A) is the category of
finite-dimensional modules over A.

6.1. Standard modules. Recall that the Cherednik algebra Hk = Hk(W ) ad-
mits a decomposition Hk

∼= C[V ] ⊗ CW ⊗ C[V ∗] , which is similar to the PBW
decomposition U(g) ∼= U(n−) ⊗ U(h) ⊗ U(n+) for the universal enveloping alge-
bra of a complex semisimple Lie algebra g. This suggests to view the subalgebras
C[V ], C[V ∗] and CW of Hk as analogues of U(n−), U(n+) and U(h) respectively,
and introduce a category of ‘highest weight modules’ over Hk by analogy with the
Bernstein-Gelfand-Gelfand category Og in Lie theory.

Precisely, the category Ok := OHk
is defined as the full subcategory of mod(Hk),

consisting of modules on which the elements of V ⊂ C[V ∗] act locally nilpotently:

Ok := {M ∈ mod(Hk) : ξdm = 0 , ∀m ∈M , ∀ ξ ∈ V , ∀ d≫ 0} .

It is easy to see that Ok is closed under taking subobjects, quotients and extensions
in mod(Hk): in other words, Ok is a Serre subcategory of mod(Hk).

The structure of Ok is determined by so-called standard modules, which play
a rôle similar to Verma modules in Lie theory. To define such modules we fix an
irreducible representation τ of W and extend the W -structure on τ to a C[V ∗]∗W -
module structure by letting ξ ∈ V act trivially. The standard Hk-module of type
τ is then given by

(6.1) M(τ) := IndHk

C[V ∗]∗W τ = Hk ⊗
C[V ∗]∗W

τ .

It is easy to see from the relations of Hk that M(τ) ∈ Ok . Moreover, the PBW
theorem (3.3) implies that M(τ) ∼= C[V ] ⊗ τ as a C[V ]-module.

The basic properties of standard modules are summarized in the following

Proposition 6.1. Let Irr(W ) be the set of irreducible representations of W .
(1) {M(τ)}τ∈Irr(W ) are pairwise non-isomorphic indecomposable objects of Ok.
(2) Each M(τ) has a unique simple quotient L(τ), and {L(τ)}τ∈Irr(W ) is a com-

plete set of simple objects of Ok.
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(3) Every module M ∈ Ok admits a finite filtration

(6.2) {0} = F0 ⊂ F1 ⊂ . . . ⊂ FN = M ,

with Fi ∈ Ok and Fi/Fi−1
∼= L(τi) for some τi ∈ Irr(W ).

Proof. The first claim follows from [DO], Proposition 2.27 and Corollary 2.28. The
second and the third are [GGOR], Proposition 2.11 and Corollary 2.16, respectively.

�

6.2. The Knizhnik-Zamolodchikov (KZ) functor. Introduced by Opdam and
Rouquier, this functor is one of the main tools for studying the category O. We
briefly review its construction referring the reader to [GGOR] for details and proofs.

First, using Proposition 3.2, we introduce the localization functor

(6.3) Mod(Hk) → Mod(DW ) , M 7→Mreg := DW ⊗
Hk

M .

By definition, Mod(DW ) is the category ofW -equivariant D-modules on Vreg. Since
W acts freely on Vreg, this category is equivalent to the category ModD(Vreg/W ) of
D-modules on the quotient variety Vreg/W . The full subcategory of ModD(Vreg/W )
consisting of O-coherent D-modules is equivalent to the category of vector bun-
dles on Vreg/W equipped with a regular flat connection, which is, in turn, equiv-
alent to the category of finite-dimensional representation of the Artin braid group
BW := π1(Vreg/W, ∗ ) (the Riemann-Hilbert correspondence).

Now, in view of Proposition 6.1, localizing an object in the category Ok ⊂
Mod(Hk) yields a DW -module, which is finite over C[Vreg]. Hence, combined with
above equivalences, the restriction of (6.3) to Ok gives an exact additive functor

(6.4) KZk : Ok → mod(CBW ) .

We illustrate this construction by applying (6.4) to a standard module M =
M(τ) (cf. [BEG], Prop. 2.9). Since M(τ) ∼= C[V ]⊗ τ as a C[V ]-module, Mreg can
be identified with C[Vreg] ⊗ τ as a C[Vreg]-module and thus can be thought of as
(the space of sections of) a trivial vector bundle on Vreg of rank dim τ . With this
identification, the D-module structure on Mreg is described by

(6.5) ∂ξ(f ⊗ v) = ∂ξ(f) ⊗ v + f ⊗ ∂ξ(v) , ∀ ξ ∈ V ,

where f ∈ C[Vreg] and v ∈ τ . Since ξ v = 0 in M and ξ corresponds under
localization to the Dunkl operator Tξ, we have Tξ(v) = 0, or equivalently

(6.6) ∂ξv −
∑

H∈A

αH(ξ)

αH

nH−1∑

i=0

nHkH,ieH,i(v) = 0 , ∀ ξ ∈ V .

The relations (6.5) can thus be rewritten as

(6.7) ∂ξ(f ⊗ v) = ∂ξ(f) ⊗ v +
∑

H∈A

αH(ξ)

αH

nH−1∑

i=0

nHkH,if ⊗ eH,iv ,

which gives an explicit formula for a regular flat connection on Mreg = C[Vreg]⊗ τ .
This connection is called a KZ connection with values in τ : its horizontal sections
y : Vreg → τ satisfy the following KZ equations

(6.8) ∂ξy +
∑

H∈A

αH(ξ)

αH

nH−1∑

i=0

nHkH,ieH,i(y) = 0 , ∀ ξ ∈ V .
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Remark 6.2. Notice a formal similarity between the systems (6.6) and (6.8). Apart
from inessential change of sign, there is, however, an important difference: in (6.8),
the group elements w ∈ W act on the values of the functions involved, while in
(6.6) on their arguments.

It is easy to check that if y is a local solution of (6.8) near a point x0 ∈ Vreg, then
wy := wyw−1 is a local solution near wx0. Thus, the system (6.8) is W -equivariant
and descends to a regular holonomic system on Vreg/W . The space of local solutions
of this holonomic system has dimension dim τ , and its monodromy gives a linear
representation of the braid group BW in this space. The corresponding dim(τ)-
dimensional CBW -module is the value of the functor (6.4) on M(τ). We remark
that for complex reflection groups, the system (6.8) and its monodromy have been
studied in detail in [K], [BMR] and [O2].

6.3. The Hecke algebra. It is crucial for applications that the KZ functor (6.4)
factors through representations of the Hecke algebra of W . To define this algebra,
we recall that, for every H ∈ A, there is a unique reflection sH ∈WH with det sH =
exp 2πi/nH . It is known that the braid group BW is generated by the elements σH

which correspond to sH as generators of monodromy around H ∈ A (see [BMR]).
Given now complex parameters k = {kH,i}, with kH,0 = 0, the Hecke algebra
Hk(W ) is defined as the quotient of CBW by the following relations

nH−1∏

j=0

(
σH − (det sH)−je2πikH,j

)
= 0 , ∀H ∈ A .

Notice that, for kH,j ∈ Z, these relations become (σH)nH = 1, so in that case
Hk(W ) is canonically isomorphic to the group algebra of W . In general, Hk should
be viewed as a deformation of CW .

Restricting scalars via the natural projection CBW ։ Hk(W ) , we can regard
mod(Hk) as a full subcategory of mod(CBW ). It turns out that

Theorem 6.3 ([GGOR], Theorem 5.13). For each k, the KZ functor (6.4) has its
image in mod(Hk), i. e. KZk : Ok → mod(Hk) .

The next two results require the assumption that dimHk = |W | . It will be
crucial for us that this assumption holds automatically for all W whenever kH,j ∈ Z,
since Hk

∼= CW in this case4.
Let Otor denote the full subcategory of Ok consisting of modules M such that

Mreg = 0. Clearly, Otor is a Serre subcategory of Ok, so that the quotient Ok/Otor

is defined as an abelian category.

Proposition 6.4 ([GGOR], Theorem 5.14). Assume that dimHk = |W |. Then
the KZ functor induces an equivalence

KZk : Ok/Otor
∼
→ mod(Hk) .

In addition, one can prove

Theorem 6.5 ([GGOR], Theorems 5.15, 5.16). Assume that dimHk = |W |. Then
there exist projective objects P ∈ Ok and Q ∈ mod(Hk) such that

Hk
∼= (EndOk

P )
opp

and Ok ≃ mod (EndHk
Q)

opp
.

4In general, the equlaity dimHk = |W | is known to be true for almost all complex reflection

groups, except for a few exceptional ones, in which case it still remains a conjecture (see [BMR]).
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6.4. Regularity. The structure of the category Ok depends on the values of the
parameters k. For generic k’s, Ok is a semisimple category, while for special values
of k it has a more complicated structure (in particular, it has homological dimension
> 0). Likewise, the Hecke algebra Hk is semisimple for generic k’s, but becomes
more complicated for certain special values. Using the KZ functor, we can show that
the special values in both cases actually coincide. Precisely, we have the following

Theorem 6.6. Assume that dimHk = |W |. Then the following are equivalent.
1. Hk is a semisimple algebra.
2. Ok is a semisimple category.
3. Hk is a simple ring.

Proof. We give a detailed proof of this result following R.Vale’s dissertation [V] (cf.
loc. cit., Theorem 2.1).

1 ⇒ 2 . If Hk is semisimple and Q ∈ mod(Hk), then EndHk
Q is a semisimple

algebra. Thus, by Theorem 6.5, Ok is a semisimple category.
2 ⇒ 1 . By Proposition 6.1, the standard modules are indecomposable. Hence,

if Ok is semisimple, all M(τ) are simple and we have L(τ) = M(τ). Each M(τ) is
torsion free over C[V ], so L(τ)reg = M(τ)reg 6= 0. Since any M ∈ Ok can be filtered
as in Proposition 6.1, we conclude that Mreg 6= 0 and Otor = 0. As a result, by
Proposition 6.4, the category mod(Hk) is equivalent to a semisimple category Ok.
Thus, Hk is semisimple.

2 ⇒ 3 . If Ok is semisimple, then as above M(τ) = L(τ) for all τ ∈ Irr(W ).
Suppose now that 0 6= I ⊂ Hk is a proper two-sided ideal. Hk and I are torsion
free over C[V ]. Therefore 0 6= Ireg ⊂ Hreg is a two-sided ideal of Hreg = DW , which
is a simple algebra. Hence, Ireg = Hreg.

Now, we can always find a primitive ideal J ⊂ Hk, containing I. By [G], The-
orem 2.3, every primitive ideal is the annihilator of some simple module in O.
Therefore, I ⊂ AnnHk

L(τ) for some τ . But Ireg = Hreg implies that I ∩ C[V ] 6= 0,
while AnnHk

L(τ) ∩ C[V ] = 0 because L(τ) = M(τ) is torsion free over C[V ]. Con-
tradiction.

3 ⇒ 2 . Assuming Hk is simple, we get that AnnHk
L(τ) = 0 for all τ ∈ Irr(W ).

Then L(τ)reg must be nonzero. Indeed, otherwise L(τ) would be annihilated by
some power of δ, which contradicts AnnHk

L(τ) = 0.
Thus, L(τ)reg 6= 0 for all τ . In that case, each L(τ) is a submodule of some

standard module, by [GGOR], Proposition 5.21. By [DO], 2.5, we have [M(τ) :
L(τ)] = 1 and it follows that L(τ) ⊂ M(τ) only if both are the same. Hence, if
L(τ) 6= M(τ) then it must be a submodule of some M(σ) with σ 6= τ .

By loc.cit., we can order the elements τ1 < · · · < τd of Irr(W ) in such a way
that the matrix with the entries [M(τi) : L(τj)] is upper-triangular. From the
previous paragraph it follows that if L(τi) 6= M(τi) then the i-th column of this
(upper-triangular) matrix has at least one nonzero off-diagonal entry. This gives
us immediately that M(τ1) = L(τ1) is simple. Therefore, [M(τ1) : L(τ2)] = 0,
which implies that L(τ2) = M(τ2) is simple, and so on. As a result, we conclude
that L(τi) = M(τi) for all i, i.e. all standard modules are simple. Now, the
BGG reciprocity (see [GGOR], Section 2.6.2 and Proposition 3.3) implies that each
L(τ) = M(τ) is projective and O is semisimple (cf. the concluding remark of [BEG],
Section 2). �
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Remark 6.7. The implication “2 ⇒ 3” holds without the assumption dimHk =
|W |, since the KZ functor is not used in the proof. Note also that this implication
is equivalent to

L(τ) = M(τ) , ∀τ ∈ Irr(W ) ⇒ Hk is a simple ring ,

which was one of the key observations of [BEG] (see Section 3 of loc.cit).

We now call a multiplicity vector k = {kC,i} ∈ C
P

C∈A/W nC regular if the
category Ok(W ) is semisimple. Write Reg(W ) for the subset of all regular vectors

in C
P

C∈A/W nC . In view of Theorem 6.6, for those groups W , where it is known
that dim Hk = |W |, Reg(W ) coincides with the set of all k’s, for which the Hecke
algebra Hk(W ) is semisimple and the Cherednik algebra Hk(W ) is simple. In
general, we will need the following fact.

Lemma 6.8. For any group W , Reg(W ) is a connected subset in C
P

C∈A/W nC .

Proof. Put

(6.9) z(k) =
∑

H∈A

nH−1∑

i=0

nHkH,ieH,i ∈ CW .

The element z(k) is central in CW , hence it acts on each τ ∈ Irr(W ) as a scalar,
which we denote by cτ (k). Obviously, cτ (k) is a linear function of k. Moreover,
according to [DO], Lemma 2.5, cτ (k) is a linear function with nonnegative integer
coefficients. By loc.cit., Proposition 2.31, M(τ) is simple if cσ(k) − cτ (k) /∈ N for
all σ ∈ Irr(W ). Hence, if k is generic, namely,

(6.10) cσ(k) − cτ (k) /∈ N , ∀σ, τ ∈ Irr(W ) ,

then all standard modules are simple and, as in the proof of Theorem 6.6, the
category Ok is semisimple.

It follows that the complement to Reg(W ) is contained in a locally finite union
of hyperplanes, thus Reg(W ) itself is connected. �

7. Shift Functors and KZ Twists

7.1. Shift functors. Recall that Ok is the full subcategory of Mod(Hk) consisting
of finitely generated modules on which the elements ξ ∈ V act locally nilpotently.
It is convenient to enlarge Ok by dropping the finiteness assumption: following
[GGOR], we denote the corresponding category by Oln

k . The inclusion functor
Oln

k →֒ Mod(Hk) has then a right adjoint rk : Mod(Hk) → Oln
k , which assigns to

M ∈ Mod(Hk) its submodule

rk(M) := {m ∈M : ξdm = 0 , ∀ ξ ∈ V , d≫ 0} .

Thus, rk(M) is the largest submodule (i.e., the sum of all submodules) of M be-
longing to Oln

k . When restricted to finitely generated modules, rk defines a functor
mod(Hk) → Ok; however, rk(M) 6∈ Ok for an arbitrary M ∈ Mod(Hk).

We will combine rk with localization to define functors between module categories
ofHk, with different values of k. To this end, for each k, we identify Hk[δ−1] = DW
using the Dunkl representation (see Proposition 3.2) and write θk : Hk → DW for
the corresponding localization map. Associated to θk is a pair of natural functors:
the localization (θk)∗ : Mod(Hk) → Mod(DW ),M 7→ DW ⊗Hk

M , and its right
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adjoint – the restriction of scalars (θk)∗ : Mod(DW ) → Mod(Hk) via θk. Given a
pair of multiplicities, k and k′ say, we now define

Tk→k′ := rk′ (θk′)∗ (θk)∗ : Mod(Hk) → Mod(Hk′) .

Proposition 7.1. The functor Tk→k′ restricts to a functor: Ok → Ok′ .

Proof. Given M ∈ Ok, let N := (θk′)∗(θk)∗M ∈ Mod(Hk′). To prove the claim we
need only to show that rk′(N) is a finitely generated module over Hk′ . Assuming
the contrary, we may construct an infinite strictly increasing chain of submodules
N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ rk′(N) ⊂ Mreg, with Ni ∈ Ok′ . Localizing this chain, we
get an infinite chain of Hreg-submodules of Mreg. Since Mreg is finite over C[Vreg]
and C[Vreg] is Noetherian, this localized chain stabilizes at some i. Thus, omitting
finitely many terms, we may assume that (Ni)reg = (N0)reg for all i. In that case
all the inclusions Ni ⊂ Ni+1 are essential extensions, and since each Ni ∈ Ok′ ,
the above chain of submodules can be embedded into an injective hull of N0 in Ok′

and hence stabilizes for i ≫ 0. (The injective hulls in Ok′ exist and have finite
length, since Ok′ is a highest weight category, see [GGOR], Theorem 2.19.) This
contradicts the assumption that the inclusions are strict. Thus, we conclude that
rk′(N) is finitely generated. �

Definition 7.2. We call Tk→k′ : Ok → Ok′ the shift functor from Ok to Ok′ .

The following lemma establishes basic properties of the functors Tk→k′ .

Lemma 7.3. Let k, k′, k′′ be arbitrary complex multiplicities, and let M ∈ Ok.
(i) If k ∈ Reg, then Tk→k(M) ∼= M .

(ii) If k, k′ ∈ Reg and M is simple, then Tk→k′(M) is either simple or zero.

(iii) If k ∈ Reg and M is simple with Tk→k′(M) 6= 0 , then

[Tk′→k′′ ◦ Tk→k′ ](M) ∼= Tk→k′′(M) .

Proof. To simplify the notation, we will write Mreg for both (θk)∗M ∈ Mod(DW )
and (θk′)∗(θk)∗M ∈ Mod(Hk′) whenever this does not lead to confusion.

(i) For regular k, Otor = 0 , hence Mreg 6= 0 whenever M 6= 0 , and M is
naturally an Hk-submodule of Mreg. We need to show that M is the maximal
submodule of Mreg belonging to Ok. If M ⊆ N ⊂ Mreg , with N ∈ Ok , then
Nreg = Mreg . Since Otor = 0, this forces N = M , proving (i).

(ii) For regular k , the simple objects in Ok are the standard modules M(τ). If
M = M(τ) is such a module, then Mreg is a simple DW -module. Hence, if 0 6= N ⊆
(θk′)∗ (θk)∗(M) , then Nreg = Mreg . As a result, if 0 6= N ( N ′ ⊂ (θk′)∗ (θk)∗(M)
are two submodules N, N ′ ∈ Ok′ , then Nreg = N ′

reg and (N ′/N)reg = 0 . But this
contradicts the fact that (Ok′)tor = 0. Thus (θk′)∗ (θk)∗(M) may have at most one
nontrivial submodule N ∈ Ok′ which, therefore, must be simple.

(iii) If M ∈ Ok is simple, then Mreg is simple. Hence, if N = Tk→k′(M) 6= 0 ,
then Nreg = Mreg , and therefore rk′′(Mreg) = rk′′(Nreg). �

Remark 7.4. Part (ii) of Lemma 7.3 can be restated as follows: if k, k′ ∈ Reg ,
then Tk→k′ : Ok → Ok′ transforms standard modules either to standard modules
or zero.

Corollary 7.5. Assume that k, k′ ∈ Reg . Then the following are equivalent:
(1) Tk→k′ [Mk(τ)] ∼= Mk′(τ ′) ,
(2) Mk(τ)reg ∼= Mk′(τ ′)reg as Hreg-modules.
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Proof. (1) ⇒ (2). Let M = Mk(τ) . Since k ∈ Reg , M is a simple Hk-module
and Mreg is a simple Hreg-module. Then, if (1) holds, Mk′(τ ′)reg is a submodule
of a simple module Mreg, and hence Mk′(τ ′)reg = Mreg , as needed.

(2) ⇒ (1). If (2) holds, Mreg contains a copy of Mk′(τ ′) . Lemma 7.3(ii) then
implies that Mk′(τ ′) ∼= Tk→k′(M). �

7.2. KZ twists. Throughout this section we assume that kH,i ∈ Z. In that case the
Hecke algebra Hk is isomorphic to the group algebra CW , so that dimHk = |W |.
We can use the results of the previous section, which we summarize in the following

Proposition 7.6. If k is integral, then the algebra Hk is simple, the category Ok

is semisimple, all standard modules Mk(τ) ∈ Ok are irreducible, and the functor KZ

is an equivalence: Ok
∼
→ mod(CW ).

Proof. The first two claims follow from Theorem 6.6. The irreducibility of M(τ)
then follows from the fact that these modules are indecomposable. Finally, Lk(τ) =
Mk(τ) implies that Otor = 0, so the last claim is a consequence of Proposition 6.4.

�

Now, applying the KZ functor to Mk(τ), we see that, for integral k’s, any local
solution to the KZ system (6.8) is a global single-valued function y : Vreg → τ .
Thus we have the following result, due to Opdam.

Proposition 7.7 (see [O1, O2]). If k is integral, every local solution of the system
(6.8) extends to a rational function on V , with possible poles along H ∈ A. The
monodromy of this system on Vreg/W is given by the W -action wy := wyw−1 on
the space of global solutions.

Remark 7.8. If {ei} is a basis of τ , then any global solution of (6.8) can be written in
the form yi =

∑
fij ⊗ ej , with fij ∈ C[Vreg]. Since {yi} are linearly independent at

each point x ∈ Vreg, the matrix F := (fij) is invertible, with F−1 ∈ C[Vreg]⊗EndCτ .

Next, the last statement of Proposition 7.6 implies that the functor KZ induces
a bijection between the simple objects of Ok and mod(CW ), i.e. between the sets
{Mk(τ)}τ∈Irr(W ) and Irr(W ). For any integral k, this defines a permutation

kzk : Irr(W ) → Irr(W ) , kzk(τ) := KZ [Mk(τ)] ,

which we call a KZ twist. It is obvious from the definition that kz0(τ) = τ for all
τ . It is also clear that kzk preserves dimension.

As mentioned in the Introduction, our aim is to establish the following additivity
property of KZ twists:

(7.1) kzk ◦ kzk′ = kzk+k′ , ∀ k, k′ ∈ Z
P

C∈A/W nC ,

which was first proved (under the assumption that dim Hk = |W | ) in [O1, O2].
We begin by relating kzk to localization in the category O.

Proposition 7.9. If k is integral, there is an isomorphism of Hreg-modules

Mk(τ)reg ∼= M0(σ)reg ,

where σ = kzk(τ) and M0(σ) is the standard module over H0 = D(V ) ∗W corre-
sponding to σ.
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Proof. Choose a basis {ei} of τ , and let M = Mk(τ). By 6.2 and 7.2, we have a
flat connection ∂ on Mreg

∼= C[Vreg]⊗ τ , and a space σ of the horizontal sections of
this connection, with a basis yi =

∑
fij ⊗ ej . The action of W on σ is given by

wyi =
∑

fij ◦ w
−1 ⊗ wej = wyi ,

that is, it coincides with the monodromy of the connection, cf. Proposition 7.7.
Thus there is a subspace σ ⊂ Mreg which is isomorphic to kzk(τ) as a W -module
and such that ∂ξσ = 0 for all ξ ∈ V . Also, by Remark 7.8, we have

C[Vreg] · σ = C[Vreg] · τ = Mreg .

It follows that Mreg
∼= M0(σ)reg , with σ = kzk(τ), as required. �

Taking τ ′ = kz−1
k′ ◦ kzk(τ) in Proposition 7.9, we get

Corollary 7.10. For any integral k, k′ there is a permutation τ 7→ τ ′ on Irr(W ) ,
such that Mk(τ)reg ∼= Mk′(τ ′)reg for all τ ∈ Irr(W ).

Now, we are in position to state the main result of this section.

Theorem 7.11. Let k and k′ be complex multiplicities such that k′H,i − kH,i ∈ Z

for all H and i. Then
(1) Tk→k′(M) 6= 0 for any standard module M ∈ Ok .
(2) If k, k′ ∈ Reg, then Tk→k′ [Mk(τ)] ∼= Mk′(τ ′) , or equivalently,

Mk(τ)reg ∼= Mk′(τ ′)reg , τ = kzk′−k(τ ′) .

Before proving Theorem 7.11 (see Section 7.3 below), we deduce some of its
implications. First, Theorem 7.11 implies the additivity property (7.1) of KZ twists.

Corollary 7.12 (Conjecture in [O2, O3]). The map k 7→ kzk is a homomorphism
from the additive group of integral multiplicities to the group of permutations on
Irr(W ).

Indeed, all integral values of k are regular, so by Theorem 7.11 and Lemma
7.3(iii),

T0→k+k′ [M0(τ)] ∼= Tk→k+k′ ◦ T0→k[M0(τ)] .

Hence kzk+k′(τ) = kzk′ ◦ kzk(τ)), as required. �

Next, we will prove one of the key results for describing the structure of quasi-
invariants in Section 8. For this, recall the module Qk(τ) defined in Section 3.3: by
construction, this is a submodule of C[Vreg]⊗ τ under the differential action of Hk.
Using notation of Section 7.1, we now identify C[Vreg] ⊗ τ with (θk)∗(θ0)

∗(M) ,
where M = M0(τ). The Dunkl operators Tξ,k act on C[Vreg] ⊗ τ by lowering the
degree. Together with property (3.16), this implies that Qk(τ) ∈ Ok. Lemma 7.3
shows then

(7.2) Qk(τ) ∼= T0→k[M0(τ)] .

On the other hand, by Proposition 7.9, we have

(7.3) T0→k[M0(τ)] ∼= Mk(τ ′) , τ = kzk(τ ′) .

Combining (7.2) and (7.3), we arrive at the following conclusion.

Proposition 7.13. There is an isomorphism of Hk-modules Qk(τ) ∼= Mk(τ ′),
where τ = kzk(τ ′).
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Remark 7.14. Formula (7.2) suggests a conceptual way to define quasi-invariants
with values in an arbitrary W -module τ (cf. Section 3.3). Specifically, for any
k = {kH,i} , with kH,i ∈ Z, the module Qk(τ) can be described by

Qk(τ) = {ϕ ∈ C[Vreg] ⊗ τ : θk(ξ)dϕ = 0 , ∀ ξ ∈ V , d≫ 0} ,

where θk : Hk →֒ DW , and DW operates on C[Vreg] ⊗ τ via the identification
C[Vreg] ⊗ τ ∼= (DW/J) ⊗CW τ , by formulas (3.6).

7.3. Proof of Theorem 7.11. We first prove the result for integral k, k′ and
then use a deformation argument in k. We begin with some preparations. Given
M = Mk(τ) ∈ Ok, we identify Mreg

∼= C[Vreg] ⊗ τ as a C[Vreg] ∗W -module. The
action of ∂ξ gives then a flat connection on C[Vreg] ⊗ τ , depending on k, which is
the KZ connection (6.7). The algebra Hk′ also acts on Mreg, with ξ ∈ V acting as
the Dunkl operator

(7.4) Tξ,k′ = ∂ξ −
∑

H∈A

αH(ξ)

αH

nH−1∑

i=0

nHk
′
H,ieH,i ,

where ∂ξ acts by formula (6.7). Clearly, for k′ = k + b with b fixed, the action of
both Tξ,k and Tξ,k′ on Mreg = C[Vreg] ⊗ τ depends polynomially on k.

Recall that C[Vreg] is obtained from C[V ] by inverting the homogeneous polyno-
mial δ, so the standard grading on C[V ] extends naturally to a Z-grading on C[Vreg]
and Mreg.

Now, we choose dual bases {ξi} and {xi} in V and V ∗, and, following [DO],
consider the (deformed) Euler operator

(7.5) E(k) :=
∑

i

xiTξi,k ∈ DW .

It is easy to see that E(k) = E(0)− z(k) , with E(0) =
∑

i xi∂ξi and z(k) given by
(6.9). Using formula (6.7) for the action of ∂ξ on Mreg, we get

E(0)(f ⊗ v) = E(0)(f) ⊗ v + f ⊗ z(k)(v) .

Being a central element in CW , z(k) acts on τ ∈ Irr(W ) as a scalar cτ (k) , so that

(7.6) tr z(k)|τ = cτ (k) dim τ .

For any homogeneous f ⊗ v ∈Mk(τ)reg, we have then

E(k′)(f ⊗ v) = (m+ cτ (k) − z(k′))(f ⊗ v) , m = deg f .

This gives the following result (cf. [DO], Lemma 2.26).

Lemma 7.15. Let σ ∈ Irr(W ) and m ∈ Z. Let Mσ,m be a homogeneous subspace
of Mk(τ)reg of degree m, which is isomorphic to σ ∈ Irr(W ) as a W -module. Then
E(k′) acts on Mσ,m as multiplication by m+ cτ (k) − cσ(k′) .

Arguing as in [DO], Proposition 2.27, from Lemma 7.15 we deduce

Lemma 7.16. Every Hk′-submodule of Mreg = Mk(τ)reg is graded. With respect to
this grading, the actions of Tξ,k′ , W and V ∗ have degrees −1, 0 and 1, respectively.

Now, let us summarize what we have so far in the case of integral k, k′. By
Corollary 7.10 and Corollary 7.5,

(7.7) Mk(τ)reg ∼= Mk′(τ ′)reg and Tk→k′ [Mk(τ)] ∼= Mk′(τ ′)
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for some τ ′ ∈ Irr(W ). Thus, viewed as a Hk′ -module, Mk(τ)reg contains a (unique)
submodule N ∈ Ok′ , which is isomorphic to Mk′(τ ′). Note that both Mk(τ)reg
and Mk′(τ ′)reg are free over C[Vreg], so the first isomorphism in (7.7) implies that
dim τ = dim τ ′. Further, we claim that N ⊆Mk(τ)reg satisfies

(7.8) δrMk(τ) ⊂ N ⊂ δ−rMk(τ) ,

where r ≫ 0 depends on the difference k′ − k but not on k. To see this, we
can use Proposition 7.13 to identify M = Mk(τ) with one of the modules Qk(σ).
Under such an identification, N = Tk′, k(M) gets identified with Qk′(σ), and then
(7.8) follows from (3.17). Now, (7.8) and Lemma 7.16 show that the subspace
τ ′ generating N sits in δ−rMk(τ) , and its homogeneity degree deg τ ′ ≤ r deg δ .
Thus, summing up, we have

Lemma 7.17. Assume that k and k′ are integral, and let M := Mk(τ) , with τ ∈
Irr(W ). Then Mreg contains a subspace τ ′ , such that dim τ ′ = dim τ , Tξ,k′(τ ′) =
0 for all ξ ∈ V , and

(7.9) τ ′ ⊂ δ−rM , deg τ ′ ≤ r deg δ ,

where r depends only on k′ − k .

Proof of Theorem 7.11. Let k be arbitrary complex-valued and let k′ = k + b ,
where b is integral. Throughout the proof we will keep b fixed, while regarding k
as a parameter. As above, we identify M = Mk(τ) with one and the same vector
space C[V ] ⊗ τ for all k. The localized modules Mreg are then identified with
C[Vreg] ⊗ τ , and the information about k is encoded in the connection (6.7).

Let (Mreg)
0 denote the subspace of all elements in Mreg that are annihilated by

Tξ,k′ for all ξ. Obviously, (Mreg)
0 is preserved by the action of W . If W ⊂ (Mreg)

0

is a W -invariant subspace isomorphic to some σ ∈ Irr(W ), then we have a nonzero
homomorphism from Mk′(σ) to Mreg (by the universality of the standard modules).
Therefore, to see that Tk→k′M 6= 0 it suffices to see that (Mreg)

0 6= 0.
We put on Mreg a positive increasing filtration {Fj}, with

Fj = {m ∈Mreg |m = δ−ju , where u ∈M and deg u ≤ 2j deg δ} .

Each Fj is finite-dimensional, and it is easy to see that Tξ,k′Fj ⊆ Fj+1 for all ξ ∈ V .
Set (Fj)

0 := Fj ∩ (Mreg)
0, so that (Fj)

0 = {m ∈ Fj |Tξ,k′(m) = 0 , ∀ ξ ∈
V } . For each j ≥ 0, the operators Tξ,k′ induce linear maps between the finite-
dimensional spaces Fj and Fj+1. All these maps depend polynomially on k, and
the subspace (Fj)

0 is their common kernel. It follows that (Fj)
0 has constant

dimension, independent of k, over some dense Zariski open subset in the parameter
space. Now, for integral k, we have Lemma 7.17, which says that (Fj)

0 6= 0 for some
j = r, which depends only on b = k′−k. Therefore, for this particular j, (Fj)

0 6= 0
for all integral k, and hence for all k. As a result, (Mreg)

0 6= 0 for all k, which
proves the first claim of the theorem. Moreover, it follows that dim(Fj)

0 ≥ dim τ
for all k.

Recall the set Reg of regular values of k. For a fixed integral b, put Regb :=
Reg∩ (b+ Reg); this is the set of all k such that both k and k′ = k+ b are regular.
It follows from Lemma 6.8 and Theorem 7.6 that the set Regb is connected and
contains all integral points. Since we already know that Tk→k′(M) 6= 0, Lemma
7.3(ii) implies that, for k ∈ Regb , there is a (unique) submodule N ∈ Ok′ inside
Mreg (considered as a Hk′ -module). Moreover, we know that N ∼= Mk′(τ ′) for some
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τ ′ ∈ Irr(W ). It remains to show that τ ′ satisfies τ = kzk′−k(τ ′). Note that this is
certainly true when k = 0, see (7.3).

If we regard the generating space τ ′ of N as a subspace in Mreg
∼= C[Vreg] ⊗ τ ,

then we know that (1) dim τ ′ = dim τ , (2) τ ′ = (Mreg)
0 for k ∈ Regb, and (3)

dim(Fj)
0 ≥ dim τ for all k. Since (Fj)

0 ⊂ (Mreg)
0, this immediately implies that

(Fj)
0 = τ ′ for all k ∈ Regb, in particular, it has the same dimension. Thus, the

dimension of (Fj)
0 does not jump at any of the regular values k ∈ Regb, therefore

the subspace (Fj)
0 ⊂ C[Vreg]⊗τ varies continuously with k varying inside Regb. As

a result, τ ′ = (Fj)
0 does not deform as a W -module, so it is the same as for k = 0,

in which case we know already that τ = kzk′−k(τ ′). This finishes the proof. �

The above arguments allow us to prove the following property of KZ twists,
which is obtained by a different method in [O3], Corollary 3.8(vi).

Corollary 7.18. If τ ∈ Irr(W ) and τ ′ = kzb(τ), then cτ (k) = cτ ′(k).

Proof. The proof of Theorem 7.11 shows that, for all regular k and k′ = k+b (b here
is fixed and integral), there is a homogeneous subspace τ ′ ⊂Mk(τ)reg = C[Vreg]⊗ τ
annihilated by all Tξ,k′ and therefore by the Euler operator E(k′). This subspace
varies continuously with k, hence its homogeneity degree remains constant. By
Lemma 7.15, this degree is given by m = cτ ′(k′) − cτ (k) = cτ ′(b) + cτ ′(k) − cτ (k).
Therefore cτ ′(k) − cτ (k) is constant in k, hence zero. �

7.4. Heckman-Opdam shift functors. We briefly explain the relation between
our functors T and the Heckman-Opdam shift functors introduced in [BEG] and
studied in [GS].

Assume that k′ is related to k by (5.17), for some C ∈ A/W and a = 1, . . . , nC−1.
Then, by Proposition 5.6, we have

eHke = e δ−a
C Hk′ δa

C e .

It follows thateHk′ δa
C e is a eHk′e-eHke-bimodule. Thus, one can define a functor

Sk→k′ : Mod(Hk) → Mod(Hk′) by

M 7→ Hk′e ⊗eHk′e eHk′δa
Ce ⊗eHke eM .

It is easy to check that Sk′→k restricts to a functor from Ok to Ok′ . Similarly, one
defines Sk′→k : Ok′ → Ok by

M 7→ Hke ⊗eHke eδ−a
C Hk′e ⊗eHk′e eM .

Now, checking on standard modules, it is easy to prove

Proposition 7.19. If k, k′ ∈ Reg , then Tk→k′
∼= Sk→k′ .

In general, however, the functors T and S are not isomorphic: for example,
since T factors through localization, it always kills torsion (in particular, finite-
dimensional modules), while S does not. On the other hand, if k′ = k , then S
is, by definition, isomorphic to the identity functor, while T is not (for projective
objects P ∈ Ok , we still have T (P ) ∼= P , by [GGOR], Theorem 5.3).

We can also define shift functors using shift operators constructed in Section 5.5.
Briefly, if k′ − k is integral, then there is a W -invariant differential operator S
satisfying

(7.10) Tp,k′ eS = eS Tp,k , ∀ p ∈ C[V ∗]W .
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(Such S is a composition of elementary shift operators of Theorem 5.7.) RegardHreg

as a Hk′ -Hk-bimodule via the Dunkl representation, and consider its sub-bimodule
P generated by eS, i.e. P := Hk′ (eS)Hk ⊂ Hreg . Now, given M ∈ Ok, define
M ′ := P⊗Hk

M . Clearly, if Mreg 6= 0 , then M ′ is a nonzero Hk′-module embedded
in Hreg ⊗Hk

M = Mreg. To prove that M ′ ∈ Ok′ , it is suffices to check that Tp,k′ ,
with p ∈ C[V ∗]W , act locally nilpotently on M ′. But this follows immediately from
(7.10) and the well-known fact that the adjoint action of C[V ∗]W on Hk is locally
nilpotent. Thus, P ⊗Hk

— defines a functor Ok → Ok′ . Again, when k, k′ ∈ Reg ,
it is easy to show that this functor is isomorphic to Tk→k′ (and hence, Sk→k′ , by
Proposition 7.19). We can use this to prove the following useful observation.

Proposition 7.20. Let k, k′ be integral, and let S be a composition of shift opera-
tors of Theorem 5.7, such that

Lp,k′ ◦ S = S ◦ Lp,k , ∀ p ∈ C[V ∗]W .

Then S[Qk] ⊆ Qk′ , where Qk and Qk′ are the corresponding modules of quasi-
invariants.

Proof. Using the fact that Tk→k′(Qk) = Qk′ and the above relation between T
and S, we have

e(S[Qk] ⊗ 1) = eS [Qk ⊗ 1] = (eS)[Qk] ⊆ Hk′eSHk ⊗Hk
Qk ⊂ Qk′ = e(Qk′ ⊗ 1) .

Thus S[Qk] ⊆ Qk′ , as required. �

8. The Structure of Quasi-invariants

8.1. Cohen-Macaulayness. First, we consider the module of W -valued quasi-
invariants Qk introduced in Section 3.2. By (3.18), this is a Hk ⊗ CW -module,
which can be decomposed as

Qk =
⊕

τ∈Irr(W )

Qk(τ) ⊗ τ∗ ,

with Qk(τ) ⊂ C[V ] ⊗ τ defined by (3.12). By Proposition 7.13, Qk(τ) ∼= Mk(τ ′) ,
where τ ′ = kz−k(τ). Hence we have

Proposition 8.1. The Hk ⊗ CW -module Qk has the direct sum decomposition

(8.1) Qk
∼=

⊕

τ∈Irr(W )

Mk(τ ′) ⊗ τ∗ ,

where τ ′ = kz−k(τ) . In particular, Qk is a free module over C[V ].

Now, by Theorem 3.4, the module Qk of the usual quasi-invariants is isomorphic
to eQk as a eHke⊗CW -module. This gives the following result generalizing [BEG],
Proposition 6.6.

Theorem 8.2. The eHke ⊗ CW -module Qk has the direct sum decomposition

(8.2) Qk
∼=

⊕

τ∈Irr(W )

eMk(τ ′) ⊗ τ∗ ,

where τ ′ = kz−k(τ) . In particular, Qk is free over C[V ]W and, hence, Cohen-
Macaulay.
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Proof. The decomposition (8.2) follows directly from (8.1). Each eMk(τ) is iso-
morphic to (C[V ] ⊗ τ)W as a C[V ]W -module and, hence, free over C[V ]W . With
(8.2), this implies the last claim of the theorem. �

Remark 8.3. Our proof of Theorem 8.2 is similar to [BEG], however the result is
slightly different, because of a KZ twist. In [BEG], it was erroneously claimed that
Mk(τ)reg ∼= M0(τ)reg. By Theorem 7.11, this is true only for those groups W and
values of k, for which kzk is the identity on Irr(W ). In general, even in the Coxeter
case, there are examples when kzk is non-trivial (see [O1]).

8.2. Poincaré series. Given a graded module M =
⊕∞

i=0M
(i) , with finite-dim-

ensional components M (i), we write P (M, t) :=
∑∞

i=0 t
i dimM (i) for the Poincaré

series of M . Using Theorem 8.2, we will compute this series for Qk. Our computa-
tion is slightly different from [BEG] as we begin with Qk.

We equip C[Vreg] ⊗ τ with a natural grading, so that deg V ∗ = 1 and deg τ =
0 . Each Qk(τ) is then a graded submodule of C[Vreg] ⊗ τ , and by Proposition
7.13, we know that Qk(τ) ∼= Mk(τ ′) , with τ = kzk(τ ′) . Now, by Lemma 7.15
and Corollary 7.18, the degree of the generating subspace τ ′ of Qk(τ) is equal to
deg τ ′ = cτ ′(k) = cτ (k). Hence

P (Qk(τ), t) = (dim τ) tcτ (k) (1 − t)− dim V .

As a result, by Proposition 8.1, the Poincaré series for Qk is given by

P (Qk, t) =
∑

τ∈Irr(W )

(dim τ)2 tcτ (k) (1 − t)− dim V .

Now, to compute P (Qk, t) = P (eQk, t) we simply take the W -invariant part of
Qk. This can be done separately for each summand in (8.1). The Poincaré series
of eMk(τ) is obtained by multiplying the Poincaré series of (C[V ]⊗ τ)W by tcτ (k).
Hence, writing

(8.3) χτ (t) := P ((C[V ] ⊗ τ)W , t)

for the Poincaré series of (C[V ] ⊗ τ)W , we get

(8.4) P (eQk(τ), t) = tcτ′ (k)χτ ′(t) ,

where τ ′ = kz−k(τ) . Finally, summing up over all τ ∈ Irr(W ) as in (8.2), we find
(cf. [BEG])

(8.5) P (Qk, t) =
∑

τ∈Irr(W )

(dim τ) tcτ (k) χτ (t) .

8.3. Symmetries of fake degrees. It was pointed out to us by E. Opdam that
the above results could be used to give another proof of an interesting symmetry of
fake degrees of complex reflection groups (see [O2], Theorem 4.2). Below, we will
show that property for the series (8.3); for the relation of (8.3) to fake degrees we
refer the reader to Opdam’s paper [O2].

Fix a collection of integers a = {aC}C∈A/W , with aC ∈ {0, 1, . . . , nC − 1}.
Put δa :=

∏
C∈A/W (δC)aC and write ǫa for the corresponding one-dimensional

representation of W , with character
∏

C∈A/W (detC)−aC . Now, define k = {kC,i}

by kC,i := aC/nC for all C, i. Then, for every τ ∈ Irr(W ), the space Qk(τ) has a
simple description:

(8.6) Qk(τ) = δa C[V ] ⊗ τ ,
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which is easily seen from the definition (3.12).
On the other hand, consider k′ = g · k , with g :=

∏
C∈A/W (gC)aC and gC

defined by (5.11). A straightforward calculation shows that

k′ =
∑

C∈A/W

∑

1≤i≤aC

ℓC,nC−i ,

where we use the same notation as in Proposition 5.5. Now, from Proposition 5.3, it
follows that eQk(τ) = eQk′(τ) ; hence, these two modules have the same Poincaré
series. For eQk(τ), we can compute its Poincaré series directly from (8.6): with
notation (8.3), the result reads tdeg δaχǫa⊗τ . On the other hand, for eQk′(τ), we
apply (8.4). Equating the resulting Poincaré series, we get

tdeg δaχǫa⊗τ (t) = tcτ′ (k′)χτ ′(t) , τ = kzk′(τ ′) ,

which is equivalent to [O2], Theorem 4.2.

9. Appendix: The Baker-Akhiezer Function

In the case of integral multiplicities k, we can construct a common eigenfunction
for the ring of commuting differential operators Lp,k , p ∈ C[V ∗]W , by successively

applying the shift operators (5.18) to the exponential function e〈λ,x〉. We will
call such a function the Baker-Akhiezer function; our goal is to establish some
properties of this function, generalizing the results of [VSC] and [CFV] in the
Coxeter case. Perhaps, the most curious property (the ‘bispectral’ symmetry) is
given by Proposition 9.1. This proposition has been proven in [SV] for the complex
groups of type G(m, p, N), and although our proof is somewhat different, the key
idea to use the pairing (9.10) is borrowed from [SV].

We restrict ourselves to the case when kC,i ∈ Z≥0 , with kH,0 = 0. In that case,
the successive application of the elementary shift operators Sk, see (5.18), produces
a function ψ(λ, x) on V ∗ × V of the form

(9.1) ψ(λ, x) = P (λ, x) e〈λ,x〉 ,

where 〈λ, x〉 is the natural pairing, and P ∈ C[V ∗×V ] is a polynomial with leading
term

(9.2) P0 =
∏

C∈A/W

(δ∗C(λ) δC(x))
NC , NC :=

nC−1∑

i=0

kC,i .

Since the elementary shift operators (5.18) are all homogeneous of degree zero, so is
their composition, and hence P has degree zero with respect to the grading defined
by deg V ∗ = 1 and deg V = −1 .

By construction, ψ is a common eigenfunction of the generalized Calogero-Moser
operators Lp,k = ResTp,k :

(9.3) Lp,k[ψ] = p(λ)ψ , ∀ p ∈ C[V ∗]W .

It is analytic in both variables, and by Proposition 7.20,

(9.4) ψ(λ, x) ∈ Qk as a function of x ,

where Qk denotes the analytic completion of the module of quasi-invariants Qk.
Note also that the shift operators in Theorem 5.7 are W -invariant, thus,

(9.5) ψ(wλ, x) = ψ(λ,wx) ∀w ∈W .
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Recall the antilinear isomorphism ∗ : V → V ∗ determined by the W -invariant
Hermitian form on V , see Section 2.1. It is easy to check that ∗ respects the
canonical pairing between V and V ∗ and is W - equivariant, see [DO], Proposition
2.17(i). It extends to an anti-linear map C[V ∗ × V ] → C[V × V ∗] , which we
denote by the same symbol. Note that ∗ induces a natural antilinear map ∗ :
EndC(C[V ]) → EndC(C[V ∗]) , and it is easy to check that

(9.6) (Tp,k)∗ = Tp∗,k , p ∈ C[V ∗] ,

where k denotes the complex conjugate (in our case, k = k). Here, the Dunkl
operators on the right are defined in the same way as Tp,k but with respect to the
dual representation V ∗ of W .

Applying ∗ to ψ, we get

(9.7) ψ∗(x, λ) = P ∗(x, λ) e〈x,λ〉 .

Let us write ψ = ψV (λ, x) to indicate the dependence of ψ on the reflection repre-
sentation V of W . It follows then from (9.6) that ψ∗ = ψV ∗(x, λ) . In particular,
ψ∗ is a common eigenfunction of the ‘dual’ family of operators with respect to the
λ-variable:

(9.8) Lq,k[ψ∗] = q(x)ψ∗ , ∀ q ∈ C[V ]W .

Now, by ‘bispectral symmetry’ of the Baker-Akhiezer function we mean the follow-
ing property.

Proposition 9.1. ψV (λ, x) = ψV ∗(x, λ) . In particular, ψ = ψV is a common
solution to the eigenvalue problems (9.3) and (9.8).

For the proof, we consider

(9.9) Φ(λ, x) :=
∑

w∈W

ψ(wλ, x) =
∑

w∈W

ψ(λ,wx) .

Lemma 9.2. The function (9.9) has the following properties:
(1) Φ is global analytic in x and λ;
(2) Φ is W -invariant in each of the variables, x and λ;
(3) Tp,kΦ = p(λ)Φ for all p ∈ C[V ∗]W ;
(4) In a neighborhood of λ = 0 , Φ admits an expansion Φ =

∑
i Φi, where

Φi ∈ C[V ]W ⊗ C[V ∗]W is homogeneous of degree i in both λ and x;
(5) Φ(0, x) = Φ(λ, 0) = Φ(0, 0) 6= 0.

Proof. The first four properties are immediate from the definition; only (5) needs
a proof. Let us define a bilinear map C[V ∗] × C[V ] → C by

(9.10) (p, q)k := Tp,k(q)(0) , p ∈ C[V ∗] , q ∈ C[V ] .

This is closely related to the pairing on C[V ]×C[V ] defined in [DO], which equals
(p∗, q)k in our notation.

It follows from [DO], Proposition 2.20 and Theorem 2.18, that (9.10) is a non-
degenerate pairing for any k ∈ Reg satisfying

(9.11) (p, q)k = (q∗, p∗)k , ∀ (p, q) ∈ C[V ] × C[V ∗] .

(For integral k, we have k = k .) Moreover, by Proposition 2.17(iii) of loc.cit, the
restriction of (−,−)k to W -invariants is also nondegenerate.
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We need to prove that Φ0 = Φ(0, 0) 6= 0. Assuming the contrary, let us take
the first nonzero term Φi. Then, substituting the expansion Φ =

∑
i Φi into the

equations (3), we see that Tp,kΦi = 0 for all p ∈ C[V ∗]W . This implies that

(9.12) (p,Φi)k = 0 , ∀ p ∈ C[V ∗]W .

Note that Φi is W -invariant as a function of x. Thus, (9.12) contradicts the non-
degeneracy of (−,−)k and proves that Φ0 = Φ(0, 0) 6= 0. �

Proof of Proposition 9.1. We can normalize Φ so that Φ(0, 0) = 1. Taking a homo-
geneous basis {pi} of C[V ∗]W , with 0 = deg p0 ≤ deg p1 ≤ deg p2 ≤ . . . , we can
expand Φ (as a function of λ) into a series in pi :

Φ(λ, x) =
∑

i≥0

pi(λ)qi(x) , with some qi ∈ C[V ]W .

Evaluating both sides of Tp,kΦ = p(λ)Φ at x = 0, we conclude that the elements
qi form the basis dual to {pi} with respect to the pairing (9.10).

If {pi} and {qi} are dual bases, then so are {q∗i } and {p∗i }, by (9.11). Therefore,
we also have

Φ(λ, x) =
∑

i≥0

pi(λ)qi(x) =
∑

i≥0

q∗i (λ)p∗i (x) = Φ(x∗, λ∗) .

Using the definition (9.9) of Φ, and the fact that 〈µ, x〉 = 〈x∗, µ∗〉, we easily conclude

that ψ(λ, x) = ψ(x∗, λ∗) = ψ∗(x, λ), which finishes the proof. �

Thus, the properties of ψ in x (say) mirror those in λ, but with V replaced by
V ∗. For instance, letting Q∗

k := Qk(W,V ∗) , we have a counterpart of (9.4):

(9.13) ψ(λ, x) ∈ Q∗
k as a function of λ .

Having this, we can now characterize, similarly to [VSC], the Baker-Akhiezer func-
tion ψ(λ, x) as a unique function satisfying (9.1), (9.2) and (9.13). Furthermore,
we get the following result, which for a Coxeter group W was first established in
[VSC] (see also [CFV]). Recall the subalgebra Ak ⊂ C[V ], see (2.6), and denote by
A∗

k ⊂ C[V ∗] its ‘dual’ counterpart related to Q∗
k.

Proposition 9.3. For any p ∈ A∗
k, there exists a differential operator Lp ∈ D(Vreg)

in the x-variable, with a constant principal symbol p, such that Lpψ = p(λ)ψ.
The operators {Lp}p∈A∗

k
pairwise commute and generate a subalgebra of D(Vreg),

isomorphic to A∗
k.

Note that, by bispectral symmetry, we also have a similar commutative subalge-
bra of differential operators in the ‘spectral’ variable λ.
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