
This is a repository copy of Even-hole-free graphs part II: Recognition algorithm.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74360/

Article:

Conforti, M, Cornuejols, G, Kapoor, A et al. (1 more author) (2002) Even-hole-free graphs 
part II: Recognition algorithm. Journal of Graph Theory, 40 (4). 238 - 266 . ISSN 
0364-9024 

https://doi.org/10.1002/jgt.10045

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Even-Hole-Free GraphsPart II: Re
ognition AlgorithmMi
hele Conforti �G�erard Cornu�ejols yAjai Kapoorand Kristina Vu�skovi�
 zSeptember 1997, revised April 2000, November 2001, February 2002

�Dipartimento di Matemati
a Pura ed Appli
ata, Universit�a di Padova, Via Belzoni 7, 35131 Padova, Italy.yCarnegie Mellon University, S
henley Park, Pittsburgh, PA 15213, USA.zS
hool of Computer Studies, University of Leeds, Leeds LS29JT, United Kingdom.This work was supported in part by NSF grants DMI-0098427, DMI-9802773, DMS-9509581 and ONR grantN00014-97-1-0196. Part of the resear
h was 
ompleted while Kristina Vu�skovi�
 was at the Department ofCombinatori
s and Optimization, University of Waterloo on an NSERC Canada International Fellowship.Ajai Kapoor was supported by a grant from Gruppo Nazionale Delle Ri
er
he-CNR. Finally, we a
knowledgethe support of Laboratoire ARTEMIS, Universite Joseph Fourier, Grenoble.1



Abstra
tWe present an algorithm that determines in polytime whether a graph 
ontains aneven hole. The algorithm is based on a de
omposition theorem for even-hole-free graphsobtained in Part I of this paper. We also give a polytime algorithm to �nd an even holein a graph when one exists.1 Introdu
tionIn a graph, a 
y
le is even if it 
ontains an even number of nodes, and odd otherwise. Ahole is a 
hordless 
y
le with at least four nodes. A graph that 
ontains no even hole is
alled even-hole-free. (Graph G 
ontains graph H means that H appears in G as an indu
edsubgraph. Graph G is H-free means that G does not 
ontain graph H.)In this part, we present a polytime re
ognition algorithm for even-hole-free graphs. Thealgorithm builds on a stru
tural theorem proved in [4℄. The algorithm is not pra
ti
al sin
ethe degree of the polynomial is high: our main 
ontribution is in showing that this re
ognitionproblem is in the 
omplexity 
lass P. Previously, it was not even known whether this problemwas in NP (it is trivially in 
o-NP, however). It was known (Biensto
k [1℄) that it is NP-
omplete to re
ognize whether a graph 
ontains an even hole passing through a spe
i�ednode. On the positive side, Porto [10℄ solved the even hole re
ognition problem in lineartime for planar graphs and Markossian, Gasparian and Reed [9℄ solved it in polytime fordiamond-and-
ap-free graphs. A diamond is a 
y
le of length four with a single 
hord. A 
apis a 
y
le of length greater than four with a single 
hord that forms a triangle with two edgesof the 
y
le. In [5℄ we extended this last result to 
ap-free graphs. Here we give a solutionfor all graphs.Finding an Even HoleNote that our re
ognition algorithm for even-hole-free graphs 
an be used to �nd an evenhole in graph G, if one exists: Let v1; : : : ; vn denote the nodes of G and let H = G. Initeration i, test whether H n vi 
ontains an even hole. If the answer is yes, set H = H n viand otherwise keep H un
hanged. Perform n iterations. At termination, the graph H is thedesired even hole.With 2 
alls to the re
ognition algorithm, we 
an also 
he
k in polytime whether, givena graph G and a node v of G, all the even holes of G 
ontain v. By 
ontrast, as stated above[1℄, given a graph G and a node v of G, it is NP-
omplete to 
he
k whether there exists aneven hole that 
ontains v.CutsetsThe de
omposition theorem of [4℄ whi
h we use here has two types of 
utsets. We de�nethese now.For S � V (G), we denote by G nS the subgraph obtained from the graph G by removingthe nodes of S and all the edges with at least one node in S. The node set S is a 
utset ofthe graph G if the graph G nS 
ontains more 
onne
ted 
omponents than G. For S � V (G),N(S) denotes the set of nodes in V (G) n S with at least one neighbor in S and N [S℄ denotesN(S) [ S. Node set S is a k-star if S is 
omprised of a 
lique C of size k and nodes withat least one neighbor in C, i.e. S � N [C℄. We refer to C as the 
lique 
enter of S. In this2



paper, we will use k-star 
utsets, k = 1; 2; 3. We also refer to a 1-star as a star, to a 2-star asa double star and to a 3-star as a triple star. If S is 
omprised of a 
lique C and all nodes ofG with at least one neighbor in C, it is 
alled a full k-star.A graph G has a 2-join V1jV2, with spe
ial sets (A1; A2; B1; B2), if its nodes 
an bepartitioned into sets V1 and V2 in su
h a way that, for i = 1; 2, Vi 
ontains disjoint, nonemptynode sets Ai and Bi, su
h that every node of A1 is adja
ent to every node of A2, every nodeof B1 is adja
ent to every node of B2, and there are no other adja
en
ies between V1 and V2.Furthermore jVij > 2 for i = 1; 2, and if Ai and Bi are both of 
ardinality 1, then the graphindu
ed by Vi is not a 
hordless path.Star 
utsets were introdu
ed by Chv�atal [2℄ and 2-joins by Cornu�ejols and Cunningham[8℄. In [6℄ and [3℄, 2-joins, star and double star 
utsets were used to 
onstru
t re
ognitionalgorithms for balan
ed 0; 1 matri
es and balan
ed 0;�1 matri
es. Re
ently, they were usedto de
ompose Berge graphs [7℄.Base ClassesThe de
omposition theorem of [4℄ shows that every even-hole-free graph ex
ept those intwo base 
lasses 
ontains a 2-join or a k-star 
utset. These two base 
lasses are the 
ap-free graphs and basi
 graphs. Cap-free graphs have been de�ned already. In [5℄, polytimealgorithms are given for re
ognizing 
ap-free graphs and for re
ognizing even-hole-free 
ap-free graphs. The se
ond base 
lass of graphs used in the de
omposition theorem of [4℄ is the
lass of basi
 graphs. We do not de�ne basi
 graphs here. We just note that every basi
graph is obtained from the line graph of a tree by adding two adja
ent nodes x and y, andas a 
onsequen
e we 
an 
he
k in polytime whether a graph is basi
. Sin
e there is a unique
hordless path between any two nodes in the line graph of a tree, it also follows that we 
an
he
k in polytime whether a basi
 graph is even-hole-free.De
omposition TheoremThe following theorem follows from the main result proved in [4℄. (In [4℄, the result isproved for odd-signable graphs, a 
lass of graphs that 
ontains even-hole-free graphs.)Theorem 1.1 A 
onne
ted even-hole-free graph is 
ap-free or basi
 or 
ontains a 2-join ora k-star 
utset, k = 1; 2; 3.Idea of the AlgorithmThe above de
omposition theorem is the basis of our re
ognition algorithm for even-hole-free graphs. Whenever a 2-join or a k-star 
utset is present in a graph G, we de
ompose Ginto two or more smaller or simpler graphs, 
alled blo
ks. When G 
ontains a k-star 
utset,this is done as follows.De�nition 1.2 Let S be a node 
utset in a graph G and C1; : : : ; Cn the 
onne
ted 
omponentsof G nS. We de�ne the blo
ks of the de
omposition to be graphs G1; : : : ; Gn, where Gi is thesubgraph of G indu
ed by V (Ci) [ S.When G 
ontains a 2-join, the blo
ks are de�ned as follows.3



De�nition 1.3 Let V1jV2 be a 2-join of G with spe
ial sets (A1; A2; B1; B2). If A2 and B2are in di�erent 
onne
ted 
omponents of G(V2), de�ne blo
k G1 to be the subgraph of Gindu
ed by node set V1 [ fa2; b2g, where a2 2 A2 and b2 2 B2. If G(V2) 
ontains a path fromA2 to B2, let Q be a shortest su
h path and de�ne blo
k G1 to be the subgraph of G indu
edby node set V1 plus a marker path P2 = a2; : : : ; b2 that is 
hordless and satis�es the followingproperties. Node a2 is adja
ent to all the nodes in A1, node b2 is adja
ent to all the nodes inB1 and these are the only adja
en
ies between P2 and V1. Furthermore, the marker path P2has length 4 if Q has even length, and length 5 otherwise. Blo
k G2 is de�ned similarly. SeeFigure 1.
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Figure 1: 2-Join De
ompositionIf we were to follow the standard paradigm for 
reating an algorithm from a de
ompositiontheorem, we would now show that(a) we 
an �nd in polytime whether a de
omposition exists in G;4



(b) G is even-hole-free if and only if all the blo
ks are;(
) when the de
omposition is applied re
ursively to the blo
ks, the total number of blo
ks
reated is polynomial.Unfortunately, although (a) is true for the two 
utsets of Theorem 1.1, neither (b) nor(
) holds.The problem with (
) is that, if we do not take 
are of dominated nodes properly, we 
anget an exponential number of blo
ks even de
omposing just with star 
utsets. (We say that uis dominated by v if u is adja
ent to v and N(u) � N [v℄.) Another problem is that we do notknow how to bound the number of blo
ks if we mix k-star 
utset and 2-join de
ompositions.Our solution to (
) is to do k-star 
utsets �rst, then 2-joins, and to deal with dominatednodes spe
ially.In Se
tion 5, we dis
uss the 2-join de
omposition of a graph G that has no k-star 
utset,k = 1; 2; 3. We show that G is even-hole-free if and only if the two blo
ks G1 and G2 ofthe de
omposition are even-hole-free. Furthermore, we show that the blo
ks G1 and G2 haveno k-star 
utsets, k = 1; 2; 3. Finally, if the 2-join de
omposition is applied re
ursively, weshow that only a linear number of blo
ks is 
reated overall. By Theorem 1.1, G is even-hole-free if and only if all these blo
ks belong to a base 
lass and are even-hole-free. Thisyields a polytime algorithm for 
he
king whether a graph without k-star 
utsets, k = 1; 2; 3,is even-hole-free.A major diÆ
ulty that needs to be addressed when de
omposing by a star, double staror triple star 
utset is the fa
t that (b) above does not hold. Consider, for example, a graphG 
onsisting of an even hole H and a node x with exa
tly two nonadja
ent neighbors in H,say u; v, where both paths of H from u to v have an odd number of edges. If we de
omposeG by the star 
utset N [x℄ 
onsisting of x and its two neighbors u; v, the two blo
ks of thede
omposition are even-hole-free, whereas G 
ontains the even hole H. Thus star 
utsetde
omposition is not even-hole-free preserving.To address this diÆ
ulty, we �rst apply a 
ertain 
leaning pro
edure to the input graphG. This pro
edure transforms G into a polynomial family of indu
ed subgraphs of G withthe property that, if G 
ontains an even hole, then at least one graph in the family 
ontainsan even hole that will either not be broken by k-star 
utset de
omposition or will be dete
tedwhile performing the de
omposition.Clean GraphsDe�nition 1.4 Let H be an even hole and u 2 V (G) n V (H). We say that u is good w.r.t.H if it has at most three neighbors in H and the graph indu
ed by N(u)\V (H) is 
onne
ted.Otherwise, u is 
alled bad.De�nition 1.5 An even hole H of G is 
lean if there is no bad node w.r.t. H.De�nition 1.6 Let u be a good node w.r.t. an even hole H. We say that u is of Type giw.r.t. H if jN(u) \ V (H)j = i.De�nition 1.7 A tent w.r.t. an even hole H is either5



� a Type g3 node w.r.t. to H, or� an edge uv su
h that node u is a Type g1 node w.r.t. H, node v is a Type g2 node w.r.t.H, the neighbor x of u in H is distin
t from the neighbors v1; v2 of v in H and x; v1have a 
ommon neighbor y 6= v2 in H (spe
ial tent).De�nition 1.8 Let H be an even hole and u a Type g3 node w.r.t. H, with neighbors u1; u2and u3 in H su
h that u1u2 and u2u3 are edges. Let H 0 be the hole indu
ed by (V (H)nfu2g)[fug. We say that H 0 is obtained from H through a Type g3 node substitution.Consider a spe
ial tent uv w.r.t. an even hole H. Let H 0 be the hole indu
ed by the nodeset (V (H)[fu; vg)nfy; v1g. We say that su
h a hole H 0 is obtained from H through a spe
ialtent substitution.A tent substitution is either a Type g3 node substitution or a spe
ial tent substitution.Note that holes H and H 0 are of the same length.
y u

v
x
v1v2

Figure 2: Spe
ial TentDe�nition 1.9 Let G be a graph 
ontaining an even hole H. We de�ne CG(H) to be thefamily of all holes of G obtained from H through a sequen
e of tent substitutions.De�nition 1.10 An even hole H� of G is spotless if all the holes in CG(H�) are 
lean.De�nition 1.11 A graph G is 
lean if it is either even-hole-free or it 
ontains a spotlesssmallest even hole H�.Given a graph G, Se
tion 4 presents a 
leaning pro
edure with the following property: it
onstru
ts in polytime a 
lean graph G0 that is even-hole-free if and only if G is even-hole-free.The graph G0 
onsists of a polynomial number of indu
ed subgraphs of G, at least one ofwhi
h is 
lean. The de
omposition of 
lean graphs by k-star 
utsets is presented in Se
tion 3.The main result of that se
tion is that a 
lean graph G 
an be de
omposed re
ursively intoa family of blo
ks that have no k-star 
utsets and satisfy the following property: (i) eitherG is identi�ed as 
ontaining an even hole during the de
omposition pro
ess or (ii) when thede
omposition pro
ess is 
ompleted, all blo
ks in the family are even-hole-free graphs if andonly if G is even-hole-free. 6



Dominated NodesThe other diÆ
ulty with k-star 
utsets is that (
) does not hold. As mentioned earlier, ourapproa
h to (
) is to remove dominated nodes. We prove in Se
tion 3 that the total numberof blo
ks generated by re
ursive de
omposition with k-star 
utsets is polynomial if one �rstremoves dominated nodes and uses full k-star 
utsets. For this reason, in our re
ognitionalgorithm, we will a
tually use the following re�nement of Theorem 1.1.A gem is a graph on �ve nodes, su
h that four of the nodes indu
e a 
hordless path oflength three and the �fth node is adja
ent to all of the nodes of this path.Theorem 1.12 Let G be a 
onne
ted even-hole-free graph. If G 
ontains no gem or domi-nated node, then G is 
ap-free or basi
 or 
ontains a 2-join or a full k-star 
utset, k = 1; 2; 3.Proof: Follows from Theorem 1.1 and the next two lemmas. 2Lemma 1.13 Assume G 
ontains no gem and no 4-hole. Let C be a 
lique and u 2 V (G)nC.If N [u℄ � N [C℄, then u is dominated by some node in C.Proof: Suppose N [u℄ � N [C℄, but no node of C dominates u. Let K � C be a minimalset su
h that N [u℄ � N [K℄, i.e. for ea
h v 2 K, N [u℄ 6� N [K n fvg℄. Sin
e u 2 N [K℄, u isadja
ent to a node of K, say x. Sin
e u is not dominated by x there exists v 2 N(u) su
hthat v is not adja
ent to x. Sin
e v 2 N [K℄, v is adja
ent to some node of K n fxg, sayy. Sin
e x; y; v; u is not a 4-hole, u is adja
ent to y. Sin
e N [u℄ 6� N [K n x℄, there exists anode w adja
ent to u and x but not y. Now either w; x; y; v; u indu
es a gem or w; x; y; v isa 4-hole. 2Lemma 1.14 Assume G 
ontains no dominated nodes, no gem and no 4-hole. If G 
ontainsa k-star 
utset, k = 1; 2; 3, then G 
ontains a full k-star 
utset.Proof: Let C be the 
lique 
enter of a k-star 
utset S of G, where k = 1; 2; 3. SupposeS0 = C [N(C) is not a 
utset of G. Then some 
omponent of GnS, say C1, must be entirely
ontained in S0 n S. Then u 2 C1 satis�es the 
onditions of Lemma 1.13 and therefore u isdominated by a node in C, 
ontradi
ting the assumption. 2Dominated nodes 
an be identi�ed in polytime and we will show in Se
tion 3 that, in
lean graphs, their removal is even-hole-preserving. In Se
tion 3, we also show that, whenG has a gem, there is a rather simple de
omposition result. So Theorem 1.12 provides thebasis for our re
ognition algorithm of even-hole-free graphs. The outline of the algorithm isas follows: 
he
k for 4-holes and a few other graphs that 
ontain even holes and that 
anbe identi�ed in polytime (to simplify the analysis, later), then 
lean G, remove dominatednodes, de
ompose by full k-star 
utsets, k = 1; 2; 3, then by 2-joins, and �nally 
he
k that allthe blo
ks are either basi
 or 
ap-free, and 
ontain no even holes.2 The AlgorithmA wheel (H;x) is a graph indu
ed by a hole H and a node x =2 V (H) having at least threeneighbors in H, say x1; : : : ; xn. A subpath of H 
onne
ting xi and xj is a se
tor if it 
ontains7



no intermediate node xl, 1 � l � n. A short se
tor is a se
tor of length 1, and a long se
toris a se
tor of length at least 2. A wheel is even if it 
ontains an even number of se
tors. It iseasy to see that an even wheel always 
ontains an even hole.A 3PC(x; y) is a graph indu
ed by three 
hordless paths from node x to y, having no
ommon or adja
ent intermediate nodes. Note that x and y are not adja
ent. It is easy tosee that a 3PC(x; y) always 
ontains an even hole.A 3PC(x1x2x3; y1y2y3) is a graph indu
ed by three 
hordless paths, P1 = x1; : : : ; y1, P2 =x2; : : : ; y2 and P3 = x3; : : : ; y3, having no 
ommon nodes and su
h that the only adja
en
iesbetween nodes of distin
t paths are the edges of the two 
liques of size three indu
ed by thedisjoint node sets fx1; x2; x3g and fy1; y2; y3g. It is easy to see that a 3PC(x1x2x3; y1y2y3)always 
ontains an even hole.A 3PC(x1x2x3; y) is a graph indu
ed by three 
hordless paths P1 = x1; : : : ; y, P2 =x2; : : : ; y and P3 = x3; : : : ; y, having no 
ommon nodes other than y and su
h that the onlyadja
en
ies between nodes of Pi n y and Pj n y, for i; j 2 f1; 2; 3g distin
t, are the edges ofthe 
lique of size three indu
ed by fx1; x2; x3g.We say that a graphG 
ontains a 3PC(:; :) if it 
ontains a 3PC(x; y) for some pair of nodesx; y 2 V (G). We say that a graph G 
ontains a 3PC(�;�) if for some x1; x2; x3; y1; y2; y3 2V (G) there exists a 3PC(x1x2x3; y1y2y3). Similarly we say that it 
ontains a 3PC(�; :) if it
ontains a 3PC(x1x2x3; y) for some x1; x2; x3; y 2 V (G).As mentioned above, an even-hole-free graph 
annot 
ontains an even wheel, a 3PC(:; :)nor a 3PC(�;�). Our re
ognition algorithm for even-hole-free graphs starts by 
he
kingwhether the graph 
ontains one of the two following stru
tures (this 
an be done in polynomialtime).De�nition 2.1 A wheel (H;x) is a short 4-wheel if it 
ontains four se
tors and one of thefollowing holds: the wheel has three short se
tors, or it has two nonadja
ent short se
tors anda se
tor of length three.De�nition 2.2 A 3PC(:; :) is short if one path has length 2 and one has length 3. A3PC(�;�) is short if one path has length one and one has length two. A short 3PC iseither a short 3PC(:; :) or a short 3PC(�;�).RECOGNITION ALGORITHM FOR EVEN-HOLE-FREE GRAPHSInput: A graph G.Output: YES if G is even-hole-free, and NO otherwise.Step 1: If G 
ontains a 4-hole, a 6-hole, a short 4-wheel or a short 3PC, output NO.Step 2: Apply the Cleaning Algorithm of Se
tion 4 to G and let L1 be the output family ofgraphs (so, if G has an even hole, then some graph in L1 has an even hole and is 
lean).Step 3: Start with L2 = ;. For ea
h L 2 L1, perform the Node Cutset De
ompositionAlgorithm of Se
tion 3. If the algorithm identi�es L as not being even-hole-free, outputNO. Otherwise, union the output with L2 (so the graphs in L2 have no full k-star
utsets, k = 1; 2; 3). 8



Step 4: Start with L3 = ;. For ea
h L 2 L2, perform the 2-Join De
omposition Algorithmof Se
tion 5 and union the output with L3 (so the graphs in L3 have no 2-join).Step 5: Start with L4 = L5 = ;. For ea
h L 2 L3, 
he
k whether L 
ontains a 
ap. If itdoes, add L to L4. Otherwise, add L to L5.Step 6: For ea
h L 2 L4, 
he
k whether L is a basi
 graph. If some L 2 L4 is not basi
,output NO. Otherwise, for ea
h L 2 L4, 
he
k whether L 
ontains an even hole. Ifsome L 2 L4 
ontains an even hole, output NO. Otherwise, go to Step 7.Step 7: For ea
h L 2 L5, 
he
k whether L 
ontains an even hole. If some L 2 L5 
ontainsan even hole, output NO. Otherwise, output YES.The Cleaning Algorithm, the Node Cutset De
omposition Algorithm and the 2-Join De-
omposition Algorithm will be shown to be polynomial in the next three se
tions. Steps 6and 7 
he
k 
ap-free and basi
 graphs. This 
an be performed in polytime, as pointed outalready. So, the above re
ognition algorithm 
an be implemented to run in polynomial time.In the next three se
tions, we will show that the following statements are equivalent.(i) G is even-hole-free,(ii) all the graphs in L1 are even-hole-free,(iii) all the graphs in L2 are even-hole-free,(iv) all the graphs in L3 are even-hole-free.We will also show that the graphs in L3 do not 
ontain a 4-hole, a dominated node, agem, a full k-star 
utset, k = 1; 2; 3; nor a 2-join. So, by Theorem 1.12, if G is even-hole-free,all the graphs in L3 must be either 
ap-free and even-hole-free, or basi
 and even-hole-free.The algorithm 
he
ks this in Steps 6 and 7. This establishes the validity of the algorithm(subje
t to being able to perform Steps 2, 3 and 4 as 
laimed).3 k-Star Cutsets in Clean GraphsThroughout this se
tion, unless otherwise stated, we assume that G is a 
lean graph withspotless smallest even hole H�. In addition, we assume that G 
ontains no 4-hole, no short4-wheel and no short 3PC.Lemma 3.1 If node u is dominated by node v, then G n fug 
ontains a hole in CG(H�).Proof: Assume that H� 
ontains u. Let u1 and u2 be the neighbors of u in H�. Sin
e u isdominated by v, v is adja
ent to u, u1 and u2. Sin
e H� is 
lean, v is of Type g3 w.r.t. H�,and hen
e the hole indu
ed by the node set (V (H�) n fug)[fvg is in CG(H�) and in G n fug.2 Before proving the main results of this se
tion, let us prove the following useful lemma.Lemma 3.2 Suppose C is a 
lique and C � S � N [C℄ is a 
utset breaking all the holes ofCG(H�). Then, for ea
h H 2 CG(H�), V (H) \ C = ;.9



Proof: Suppose H 2 CG(H�) is 
hosen su
h that the set P = V (H) \ C has maximum
ardinality. As H is broken by S, there exists a node x 2 V (H) \ S that has no neighbor inP . Let w be a neighbor of x in C. Now, if P 6= ;, then w must be a Type g3 node w.r.t. H.After substituting w into H, we would get a hole in CG(H�) having more nodes from C thanH, a 
ontradi
tion. 2This lemma, together with the de�nition of CG(H�), implies the following.Corollary 3.3 Suppose C is a 
lique and C � S � N [C℄ is a 
utset breaking all the holes ofCG(H�). Then, for ea
h H 2 CG(H�), the tents w.r.t. H are disjoint from C.In the de
omposition algorithm, we treat the de
omposition of gems in a spe
ial way. Letus 
onsider this 
ase �rst.Lemma 3.4 Let G be an even-hole-free graph and fx; y0; y; z; z0g a node set that indu
es agem, su
h that y0; y; z; z0 is a 
hordless path. Then S = (N(x) [N(y) [N(z)) n fy0; z0g is atriple star 
utset breaking y0 from z0.Proof: Suppose not. Then, in GnS, let P be a 
hordless path 
onne
ting y0 to z0. The nodesof P together with y and z indu
e a hole H. Node x has four neighbors on H, so (H;x) isan even wheel. 2Remark 3.5 If a triple star 
utset S from Lemma 3.4 is su
h that the 
onne
ted 
omponentsof GnS that 
ontain y0 and z0 respe
tively are both of size greater than 1, then N(x)[N(y)[N(z) is a full triple star 
utset.Lemma 3.6 Let fx; y0; y; z; z0g be a node set that indu
es a gem, su
h that y0; y; z; z0 is a
hordless path. Let S = N(x) [ N(y) [ N(z) n fy0; z0g and C1 (resp. C2) be the 
onne
ted
omponent of G n S that 
ontains y0 (resp. z0). If jC1j = 1 (resp. jC2j = 1), then G n fy0g(resp. G n fz0g) 
ontains a hole in CG(H�).Proof: Suppose that jC1j = 1. If H� does not 
ontain y0 then we are done, so suppose itdoes. Let H� = y0; h1; : : : ; hn; y0. Then sin
e N(y0) � S, h1; hn 2 S.Case 1: h1 or hn is in fx; yg.W.l.o.g. assume that h1 2 fx; yg. Assume h1 = x. Sin
e H� is a hole, hn does not
oin
ide with y and it 
annot be a neighbor of x. Sin
e hn 2 S, it must be a neighbor of yor z. If hn is a neighbor of z then y0; x; z; hn; y0 is a 4-hole. Hen
e hn is a neighbor of y. Butthen y is of Type g3 w.r.t. H� and so the hole indu
ed by the node set (V (H�) n fy0g)[ fygis in CG(H�) and in G n fy0g.When h1 = y, the same argument holds by inter
hanging the roles of x and y.Case 2: h1; hn 2 S n fx; y; zgAssume �rst that one of the nodes x or y, is adja
ent to both nodes h1 and hn. Assumew.l.o.g. that x is adja
ent to both h1 and hn. Then x is of Type g3 w.r.t. H� and the holeindu
ed by the node set (V (H�) n fy0g) [ fxg is in CG(H�) and in G n fy0g.If x is adja
ent to h1 but not to hn, and y is adja
ent to hn but not to h1, then sin
ethe node set V (H�) [ fx; yg 
annot indu
e a short 4-wheel, x or y must have a neighbor in10



V (H�) n fy0; h1; hng. W.l.o.g. assume that x has a neighbor in V (H�) n fy0; h1; hng. Sin
eH� is 
lean, x is adja
ent to h2. Sin
e the hole indu
ed by (V (H�) n fh1g) [ fxg is 
lean,nodes h3; : : : ; hn�1 are not adja
ent to y or x. But then the hole indu
ed by the node set(V (H�) n fy0; h1g) [ fx; yg is in CG(H�) and in G n fy0g.So we may assume that one of h1 or hn is adja
ent to z. Assume w.l.o.g. that hn isadja
ent to z. Then y is adja
ent to hn, sin
e otherwise y0; y; z; hn; y0 is a 4-hole. Also x isadja
ent to hn, sin
e otherwise y0; x; z; hn; y0 is a 4-hole. Node z 
annot be adja
ent to h1,sin
e H� is 
lean and of length greater than 4. Hen
e h1 is adja
ent to either x or y. Butthen one of x or y is adja
ent to both h1 and hn, whi
h is not possible. 2The above result is all we need when G 
ontains a gem. So, for the next result, we willassume that G 
ontains no gem.De�nition 3.7 A 3PC(x; y), with paths P1, P2 and P3, is de
omposition dete
table w.r.t.the node 
utset S if one of the following holds:(i) P1 is of length 2 or 3, V (P1) � S and the intermediate nodes of P2 and P3 are in twodi�erent 
omponents of G n S.(ii) P1 is of length 3, V (P1) � S and there are three distin
t 
omponents of G n S, C1, C2and C3, su
h that for some z 2 S n fx; yg, the intermediate nodes of P2 are 
ontainedin V (C1) [ V (C2) [ fzg and the intermediate nodes of P3 are 
ontained in V (C3).A 3PC(x1x2x3; y1y2y3), with the three paths P1, P2 and P3, is de
omposition dete
tablew.r.t. the node 
utset S if fx1; x2; x3; y1; y2; y3g � S, P1 is an edge and the intermediatenodes of P2 and P3 are 
ontained in two di�erent 
omponents of G n S.A de
omposition dete
table 3PC is either a de
omposition dete
table 3PC(:; :) or a de-
omposition dete
table 3PC(�;�).In order to show that we end up with a polynomial number of pie
es when we de
omposea graph using our node 
utsets, we need to re�ne the blo
ks. Let S be a k-star 
utset,k = 1; 2; 3, with 
lique 
enter C. Let C1; : : : ; Cn be the 
onne
ted 
omponents of G n Sand G1; : : : ; Gn the blo
ks of the de
omposition. We de�ne the re�ned blo
ks G01; : : : ; G0n asfollows: for i = 1; : : : ; n, remove from Gi all nodes of S n C that do not have a neighbor inCi.Theorem 3.8 Suppose that G 
ontains no 4-hole, no short 3PC, no gem and that G is a
lean graph with spotless smallest even hole H�. When de
omposing G with a full k-star
utset S = N [C℄, k = 1; 2; 3; then either some hole in CG(H�) is entirely 
ontained in one ofthe re�ned blo
ks of the de
omposition or there exists a de
omposition dete
table 3PC w.r.t.S.Proof: Consider the following two 
ases.Case 1: All the holes of CG(H�) are broken by S.Then, by Lemma 3.2, for ea
h H 2 CG(H�), V (H)\C = ;. Furthermore, by Corollary 3.3,no node of C is of Type g3. Let C = fv1; : : : ; vkg, where k = jCj. Denote by P1; : : : ; Pm the11




onne
ted 
omponents of G(V (H)\S). As H is broken by S, m � 2. On the other hand, asH is 
lean, ea
h node of C is adja
ent to at most one path P1; : : : ; Pm. Hen
e 2 � m � k � 3.Case 1.1: m = k = 3.Then we may assume that V (Pi) = N(vi) \ V (H), i = 1; 2; 3.If all the nodes of C are of Type g2 w.r.t. H, let ui and wi be the neighbors of vi in H andassume w.l.o.g. that the nodes u1; w1; u2; w2; u3; w3 appear in this order when traversing H.Let Q1 be the w1u2-subpath of H that does not 
ontain u1; w2; u3; w3. Let Q2 (respe
tivelyQ3) be the w2u3-subpath (respe
tively w3u1-subpath) of H that does not 
ontain nodes ofQ1. Sin
e H is an even hole, at least one of the three paths Qi is of odd length, say Q1.But then the hole indu
ed by V (Q1) [ fv1; v2g is an even hole of length smaller than H,
ontradi
ting our 
hoi
e of H.If all the nodes of C are of Type g1 w.r.t. H, let ui be the neighbor of vi in H. Let Q1be the u1u2-subpath of H that does not 
ontain u3. De�ne Q2 and Q3 in a similar fashion.Sin
e H is broken by S, some 
onne
ted 
omponent of G nS 
ontains the intermediate nodesof one of these paths, say Q1, but not of the other two paths. So we get a de
ompositiondete
table 3PC(u1; u2) satisfying (i) or (ii) of De�nition 3.7.If C has both Type g1 and Type g2 nodes w.r.t. H, assume w.l.o.g. that v1 is of Type g1and v2 is of Type g2. Sin
e H is a smallest even hole, v1v2 is a spe
ial tent w.r.t. H.Now a tent substitution would produ
e a smallest even hole in CG(H�) that interse
ts C,
ontradi
ting Corollary 3.3.Case 1.2: m = 2.First, suppose that k = 3. Assume that N [v1℄\V (H) = V (P1) and N [fv2; v3g℄\V (H) =V (P2), where jN [v2℄ \ V (H)j � jN [v3℄ \ V (H)j. If v2 and v3 both have a neighbor in H butdo not have a 
ommon neighbor in H, then G 
ontains a 4-hole. Hen
e, sin
e v2 and v3 areof Type g1 or g2 or v3 does not have a neighbor in H, jV (P2)j � 3. If jV (P2)j = 3, thenG(P2 [ fv2; v3g) is a gem. It follows that V (P2) = N [v2℄ \ V (H).Now, if v1 and v2 are of the same type, we get a de
omposition dete
table 3PC(�;�)or 3PC(:; :). If one is of Type g1 and the other of Type g2, v1v2 is a spe
ial tent. But this
ontradi
ts Corollary 3.3.If k = 2, the arguments from the previous paragraph hold.Case 2: A blo
k Gi 
ontains a hole of CG(H�).Suppose H 2 CG(H�) is a hole in Gi su
h that V (H) \ C has maximum 
ardinality. IfH 62 G0i, it follows from the de�nition of re�ned blo
k that some node x2 2 V (H) \ N(C)has no neighbor in H nN [C℄. So, there exists a 
hordless path P 0 = x1; x2; x3 in H su
h thatx1; x2 2 N(C) and x1 is adja
ent to some w1 2 C n V (H). If V (H) \ C 6= ; or w1 2 N(x3),then w1 is of Type g3 and, after substituting w1 into H, we would obtain a hole of CG(H�)in Gi with larger interse
tion with C than H, a 
ontradi
tion. It follows that, for ea
hH 2 CG(H�), V (H) \ C = ; and w1x3 is not an edge.By the 
hoi
e of x2, this implies x3 2 N(C). In fa
t, by the same argument, no node ofC is of Type g3 w.r.t. H. As G is 4-hole-free and gem-free, x2 is adja
ent to neither w1 norw3. So x2 is adja
ent to some node w2 2 C. Sin
e G is 4-hole-free, w2 is adja
ent to both x1and x3. Hen
e w2 is of Type g3 w.r.t. H, a 
ontradi
tion. 2
12



NODE CUTSET DECOMPOSITION ALGORITHMInput: A graph G that does not 
ontain a 4-hole, a short 3PC nor a short 4-wheel.Output: Either G is identi�ed as not being even-hole-free, or a list L of indu
ed subgraphsof G with the following properties:� The graphs in L do not 
ontain a gem, a full k-star 
utset, k = 1; 2; 3, nor anydominated nodes.� If the input graph G 
ontains an even hole and is 
lean, with spotless smallest evenhole H�, then one of the graphs in the list 
ontains a hole in CG(H�).Step 1: Initialize M = fGg, L = ;.Step 2: If M is empty, return L and stop. Otherwise, remove a graph F from M. If F hasno 
hordless path of length 4, go to Step 2. Otherwise, remove all dominated nodesfrom F and go to Step 3.Step 3: If F 
ontains a gem fx; y0; y; z; z0g, su
h that y0; y; z; z0 is a 
hordless path, go toStep 4. If F 
ontains a full k-star 
utset S, k = 1; 2; 3, go to Step 5. Otherwise, add Fto L and go to Step 2.Step 4: If S = (N(x)[N(y)[N(z))nfy0; z0g is not a 
utset breaking y0 from z0, go to Step6. If the 
onne
ted 
omponent of F nS that 
ontains y0 is of size 1, add graph F n fy0gto M and go to Step 2. If the 
onne
ted 
omponent of F n S that 
ontains z0 is of size1, add graph F n fz0g to M and go to Step 2. Otherwise, let S = N(x) [N(y) [N(z)and go to Step 5.Step 5: Che
k whether there exists a de
omposition dete
table 3PC(:; :) or 3PC(�;�)w.r.t. S. If yes, go to Step 6. Otherwise, 
onstru
t the re�ned blo
ks of de
ompo-sition by S, add them to M and go to Step 2.Step 6: Return that G is not even-hole-free and stop.Lemma 3.9 The Node Cutset De
omposition Algorithm produ
es the desired output.Proof: First suppose that the algorithm terminates in Step 6. Then by Lemma 3.4 and thefa
t that 3PC(:; :)'s and 3PC(�;�)'s 
ontain even holes, the algorithm 
orre
tly identi�esG as not being even-hole-free. Now suppose that the algorithm outputs the list L, i.e. thealgorithm does not terminate in Step 6. Then 
learly, by Steps 2 and 3, the graphs in L donot 
ontain any dominated node, gem or full k-star 
utset, k = 1; 2; 3. Now further assumethat the input graph G is 
lean and 
ontains a spotless smallest even hole H�. We want toshow that some graph in list L 
ontains a hole in CG(H�).Let F be a graph taken o� listM in Step 2. It is enough to show that if F 
ontains a holein CG(H�) then at least one of the graphs that gets put on list M or L in Steps 3, 4 and 5also 
ontains a hole in CG(H�). This follows from Lemma 3.1, Lemma 3.6 and Theorem 3.8.2 13



Lemma 3.10 The number of indu
ed subgraphs in list L produ
ed by the Node Cutset De-
omposition Algorithm is bounded by jV (G)j5.Proof: Let F be a graph taken o� list M in Step 2. Suppose that F is de
omposed in Step5 by a full k-star 
utset S, k = 1; 2; 3. Let C1; : : : ; Cn be the 
onne
ted 
omponents of F n Sand let F1; : : : ; Fn be the re�ned blo
ks of de
omposition by S. Let C be the 
lique 
enter ofS.Claim: No two of the graphs F1; : : : ; Fn 
ontain the same 
hordless path of length 4.Proof of Claim: Let P be a 
hordless path of length 4 and suppose that P appears in F1and F2. Then V (P ) � V (F1) \ S and V (P ) � V (F2) \ S. Sin
e V (P ) � S, it 
ontains twononadja
ent nodes a; b 2 S n C, su
h that there exists a 
hordless path P 0 from a to b thatuses only nodes in C as intermediate nodes. Sin
e a 2 V (F1) \ V (F2), by de�nition of there�ned blo
ks, a has neighbors in both C1 and C2. Similarly b has neighbors in both C1 andC2. Note that by de�nition of S, nodes of C do not have neighbors in C1 and C2. But nowthere is a 3PC(a; b) that uses P 0 and paths in C1 and C2. This 3PC(:; :) is de
ompositiondete
table w.r.t. S and hen
e would have been dete
ted in Step 5. This 
ompletes the proofof the 
laim.By Step 2, the algorithm only adds to L subgraphs of G that have a 
hordless path oflength 4. So, it follows from the 
laim that the number of graphs in L is at most jV (G)j5. 24 CleaningThis se
tion is devoted to the 
onstru
tion of the Cleaning Algorithm. We assume throughoutthis se
tion that G 
ontains no 4-hole, no 6-hole, no short 4-wheel and no short 3PC (re
allDe�nitions 2.1 and 2.2). The Cleaning Algorithm will take as input the graph G and produ
ea polynomial family L of indu
ed subgraphs of G su
h that, if G 
ontains an even hole, thenat least one of the graphs in L 
ontains an even hole and is 
lean. Given a hole H, a nodev 62 H is strongly adja
ent to H if v has at least two neighbors in H. Re
all that an evenhole H is 
lean if it has no bad strongly adja
ent nodes (De�nitions 1.4 and 1.5).Lemma 4.1 Let u be a bad node w.r.t. a smallest even hole H of G. Then either u hasexa
tly two neighbors in H and these nodes are nonadja
ent, or (H;u) is an even wheel andall the se
tors of the wheel are odd.Proof: If u has two neighbors in H, then they are nonadja
ent sin
e u is bad. So assumethat u has at least three neighbors in H. If u has an odd number of neighbors in H, thensin
e H is an even hole, one of the se
tors of the wheel (H;u) must be even. That se
tortogether with u indu
es an even hole and sin
e that hole 
annot be smaller than H, u mustbe of Type g3, 
ontradi
ting the assumption that u is bad. By a similar argument, if u hasan even number of neighbors in H, then all the se
tors of (H;u) must be odd. 2De�nition 4.2 Let v be a bad node w.r.t. a smallest even hole H of G. For i = 1; 2; 3,we say that v is of Type bi w.r.t. H if V (H) \ N(v) indu
es a graph G0 with exa
tly two
onne
ted 
omponents, jV (G0)j � 4 and the largest 
onne
ted 
omponent of G0 has exa
tly inodes (see Figure 3). Otherwise, we 
all v a Type b4 node w.r.t. H.14



Figure 3: Bad nodes of Type b1, Type b2 and Type b3Suppose H is a smallest even hole in G and v1 and v2 are two nonadja
ent bad nodesw.r.t. H. Consider the following three types of subpaths of H.e-path We 
all a subpath Qi of H an edge-path (or e-path) if one of its endnodes is adja
entto v1, the other is adja
ent to v2, at most one endnode is adja
ent to both v1; v2, andno intermediate node of Qi is adja
ent to v1 or v2.n-path We 
all a subpath Pi of H a node-path (or n-path) if it is a maximal path with thefollowing property: the endnodes of Pi are adja
ent to v1 and no node of Pi is adja
entto v2, or the endnodes of Pi are adja
ent to v2 and no node of Pi is adja
ent to v1. Notethat an n-path 
an have length 0.z-path We 
all a subpath P0 of H a zero-path (or z-path) if it is a maximal path with all thenodes adja
ent to both v1 and v2. As G is 4-hole-free, there is at most one z-path.Furthermore, if the z-path exists, it has at most two nodes.We 
onstru
t the graph H 0 from H de�ned as follows:Contra
t ea
h e-path Qi of H to a single edge qi.Contra
t ea
h n-path Pi of H to a single node pi.If H has a z-path P0, 
ontra
t it to a single node p0 
alled the z-node of H 0.Sin
e H has at least one node adja
ent to v1 but not v2 and another adja
ent to v2 butnot v1, the graph H 0 has at least two nodes distin
t from the z-node. Moreover, if H 0 hasno z-node, it has at least four nodes. To see this, note that, sin
e H has no z-path, it musthave an even number of e-paths. If H has exa
tly two e-paths, then V (H)[fv1; v2g 
ontainsan even hole smaller than H. So H has at least four e-paths and hen
e H 0 has at least fournodes.We 
all an edge or a node of H 0 even (odd) if the 
orresponding path of H has even (odd)number of edges. We 
all an edge or a node of H 0 real if the 
orresponding path of H is anedge or a node respe
tively. Note that real edges are odd and real nodes are even.15



Lemma 4.3 Let qi and qi+1 be two 
onse
utive edges of H 0 su
h that their 
ommon endnodepi is distin
t from p0. Then qi and qi+1 have the same parity if and only if pi is odd. Moreover,the edges of H 0 in
ident with p0 are odd.Proof: Indeed, otherwise either (H; v1) or (H; v2) would have an even se
tor, 
ontradi
tingLemma 4.1. 2Lemma 4.4 Suppose that H 0 has a z-node p0 and that qi = pipi+1 is an even edge. Then qihas a real endnode that is adja
ent to p0 by a real edge. Moreover, p0 is a real node and H 0has at least four edges.Proof: By Lemma 4.3, p0 is not an endnode of qi. If P0 has a node u0 that is adja
ent toneither endnode of Qi, then V (Qi) [ fu0; v1; v2g indu
es an even hole. Sin
e H is a smallesteven hole of G, V (H) n V (Qi) 
ontains three nodes. But now, sin
e v1 and v2 are bad w.r.t.H, they are of Type b1. This implies that G 
ontains a 4-hole, a 
ontradi
tion. Hen
e, wemay assume w.l.o.g. that pi is a real node and is adja
ent to p0 by a real edge. As v1 and v2are bad nodes w.r.t. H, it follows that pi+1 is not adja
ent to p0 in H 0. Hen
e, sin
e everynode of P0 must be adja
ent to an endnode of Qi, p0 is a real node. Finally, sin
e v1 and v2are bad, H 0 has at least four edges. 2Lemma 4.5 Let qi and qj be two non
onse
utive edges of H 0 with the same parity. Supposethat p0 is not an endnode of qi nor qj. Then qi and qj have real endnodes that are adja
entby a real edge.Proof: Suppose not. Sin
e V (Qi)[V (Qj)[fv1; v2g does not indu
e a smaller even hole thanH, it follows that H 0 has four edges, say i = 1 and j = 3, the paths Q2 and Q4 ea
h havelength 2, and v1, v2 are both of Type b1. Sin
e G has no short 3PC(:; :), both Q1 and Q3have length greater 1. It follows that V (Q2) [ V (Q4) [ fv1; v2g is an 8-hole. Sin
e H is asmallest hole, Q1 and Q3 both have length 2. But now V (Q1) [ V (Q2) forms a 6-hole withv1 or v2, 
ontradi
ting the assumption that G 
ontains no 6-hole. 2Lemma 4.6 If pi is a node of H 0 that is not adja
ent to p0, then either pi is even or Pi isan edge.Proof: The result holds when i = 0, so we assume now i 6= 0. Suppose pi is odd. Then, byLemma 4.3, the two edges of H 0 that have pi as a 
ommon endnode, say qi and qi+1, musthave the same parity. So, if Pi is not an edge, V (Qi) [ V (Qi+1) [ fv1; v2g indu
es a smallereven hole than H. 2Theorem 4.7 Let v1 and v2 be nonadja
ent bad nodes w.r.t. a smallest even hole H of G.Then either v1 and v2 have a 
ommon neighbor in H, or exa
tly one of v1; v2 is of Type b2w.r.t. H.Proof: Let H 0 be de�ned from H as above. Assume v1 and v2 have no 
ommon neighbor inH. Then H 0 has no z-node. Let p1; : : : ; pm be the nodes of H 0 appearing in this order whentraversing H 0 and assume w.l.o.g. that v1 is adja
ent to p1. Then pk is adja
ent to vi if and16



only if k � i (mod 2). Furthermore, m is even sin
e p1pm is an edge and p1 is adja
ent to v1,whi
h implies that pm is adja
ent to v2.Case 1: m � 6.It follows from Lemma 4.5 that H 0 
annot have three 
onse
utive even edges. Hen
eH 0 has two odd edges, the endnodes of whi
h are not adja
ent by a real edge. But this
ontradi
ts Lemma 4.5.Case 2: m = 4.Suppose v1 is not a Type b2 node w.r.t. H. Then, by Lemmas 4.1 and 4.6, both p1 andp3 must be even. Now, if p2 and p4 are also even, then by Lemma 4.3, the edges of H 0 mustbe alternately odd and even. Thus H 0 has two odd edges whose endnodes are not adja
entby a real edge, 
ontradi
ting Lemma 4.5. Hen
e v2 is of Type b2.If both v1 and v2 are of Type b2, then all the nodes of H 0 are odd and, by Lemma 4.3,all the edges of H 0 must have the same parity. But then, any two nonadja
ent edges of H 0
ontradi
t Lemma 4.5. 2Lemma 4.8 Let H be a Type b2 node free smallest even hole and let v1 and v2 be twononadja
ent bad nodes w.r.t. H. Then H = u0; u1; : : : ; ur where v1 and v2 are both adja
entto u0. If v1 and v2 have exa
tly one 
ommon neighbor in H, then w.l.o.g. v1 is adja
ent tou1 and the two se
tors of (H; v1) with 
ommon endnode u1, 
ontain all the neighbors of v2 inH. Otherwise, v1 and v2 are both adja
ent to u1 and w.l.o.g. the two se
tors of (H; v1) with
ommon endnode u1, 
ontains all the neighbors of v2 in H.Proof: By Theorem 4.7, H has a z-path. Consider H 0 = p0; p1; : : : ; pm obtained from Has before, where p0 is the z-node. Assume w.l.o.g. that qi = pipi+1 where 0 � i � m andm + 1 � 0. Furthermore, assume w.l.o.g. that v1 is adja
ent to p1, i.e. the endnodes of P1are adja
ent to v1. By Lemmas 4.3 and 4.4, all the edges of H 0 are odd, ex
ept maybe q1and qm�1.Case 1: H 0 has an even edge.W.l.o.g. q1 is even. By Lemma 4.4, q0 is a real edge, both p0 and p1 are real nodes andm � 3. If m = 3, we are done. Assume m = 4. As p0 and p1 are real nodes, Lemma 4.1implies that p3 must be odd. But then, by Lemma 4.6, v1 would be of Type b2. Hen
e m � 5.As both q2 and q3 are odd by Lemma 4.3, it follows that p3 is odd. Hen
e, by Lemma 4.5applied to q2 and q4, q4 is even. But then q1 and q4 
ontradi
t Lemma 4.5.Case 2: All the edges of H 0 are odd.By Lemma 4.3, p2 is odd. If m � 4, then the pair q1 and q3 
ontradi
ts Lemma 4.5. Ifm = 3, then, by Lemmas 4.1 and 4.6, v2 would be of Type b2 w.r.t. H. Hen
e m = 2 and,by Lemma 4.1 applied to H and v2, P0 has two nodes u0 and u1. So we are done. 2This lemma implies the next result.Theorem 4.9 Let H be a Type b2 node free smallest even hole. Let v1 be a Type b3 nodew.r.t. H and N(v1) \ V (H) = fu1; u2; u3; u4g, where u2 is adja
ent to u1 and u3. If v2 is abad node w.r.t. H, then N(v2) \ fu2; u4; v1g 6= ;.
17



PROCEDURE BADInput: A graph G that does not 
ontain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.Output: A family L of indu
ed subgraphs of G that satis�es the following: If G 
ontains asmallest even hole H, then, for some G0 2 L 
ontaining H, the family CG0(H) has noType b2 nodes. Moreover, if there is a Type b1 or b3 node w.r.t. H but no Type b2node w.r.t. a hole in CG(H), then H is a spotless smallest even hole in some graphG00 2 L.Step 1: Set L = fGg.Step 2: For every (P1; P2; u), where P1 = x0; x1; x2; x3 and P2 = y0; y1; y2; y3 are disjoint
hordless paths in G and u 2 N(x1) \N(y1), add to L the graphs obtained from G byremoving the node set N(fx1; x2; y1; y2; ug) n (V (P1) [ V (P2)).Theorem 4.10 Pro
edure BAD produ
es the desired output.Proof: Let u be a Type bi node w.r.t. a smallest even hole H, where i � 3. TakeP1 = x0; x1; x2; x3 and P2 = y0; y1; y2; y3 to be disjoint subgraphs of H su
h that N(u) \fx1; x2; y1; y2g has maximum 
ardinality. Denote by G0 the graph G n (N(fx1; x2; y1; y2; ug) n(V (P1) [ V (P2))). Then G0 2 L and H � G0.Claim: In G, node u is a Type bi node w.r.t. all the holes in CG0(H).Proof of Claim: Indeed, in G0, the nodes x1; x2; y1 and y2 have degree 2. Sin
e they belongto H, they also belong to all the holes in CG0(H). It follows that P1 and P2 are subpaths inall the holes of CG0(H). This 
ompletes the proof of the 
laim.By Theorem 4.7, if i = 2, then every hole in CG0(H) is Type b2 node free. By Theorem 4.9,if i = 3 and all holes in CG(H) are Type b2 node free, then H is a spotless smallest even holein G0. Finally, by Theorem 4.7, if i = 1 and all holes in CG(H) are Type b2 node free, thenH is a spotless smallest even hole in G0. 2Lemma 4.11 Let H be a Type b2 node free smallest even hole and v1, v2 and v3 be threepairwise nonadja
ent bad nodes w.r.t. H. Then there exists a node u 2 V (H) that is adja
entto v1, v2 and v3.Proof: By Theorem 4.7, there exists a node u 2 V (H) that is adja
ent to v1 and v2. Supposev3 is not adja
ent to u.As v1 and v2 are two nonadja
ent bad nodes w.r.t. H, by Lemma 4.8, we may letH = u0; u1; : : : ; um where u = u0, node u1 is adja
ent to v1 (and possibly v2) and the twose
tors of (H; v1) with 
ommon endnode u1 
ontain all the neighbors of v2 in H. Considerthe following two 
ases.Case 1: v3 is adja
ent to u1.As v3 is not adja
ent to u0, and v1 is adja
ent to u0 but not to u2, it follows fromLemma 4.8 that the two se
tors of v1 sharing u0 
ontain all the neighbors of v3 in H. ByTheorem 4.7, nodes v2 and v3 have a 
ommon neighbor in H. The only possibility is nodeu1. So u1 satis�es the lemma. 18



Case 2: v3 is not adja
ent to u1.Suppose that v1, v2 and v3 do not have a 
ommon neighbor in H. Let ui be adja
ent tov1 and v3, and let uj be adja
ent to v2 and v3. Then i > j. First assume that ui = um. Itfollows from Lemma 4.8 applied to v1 and v3 that N(v1) \ V (H) = fu0; u1; um�1; umg. Butthen (H; v1) is a short 4-wheel, a 
ontradi
tion.It follows that i < m. Then i = j+1, otherwise the set fui; uj ; v1; v2; v3; u0g would indu
ea 6-hole. If v3 is not adja
ent to uj�1, then by Lemma 4.8, the two se
tors of (H; v3) sharingui must 
ontain all the neighbors of v2. But then v3 is not adja
ent to ui+1 and the two se
torsof (H; v3) sharing uj must 
ontain all the neighbors of v1 in H, a 
ontradi
tion. Hen
e v3is adja
ent to both uj�1 and ui+1. Now, by Lemma 4.8, the se
tors of (H; v3) sharing ui+1(uj�1) 
ontain all the neighbors of v1 (v2). So (H; v3) is a short 4-wheel, a 
ontradi
tion. 2Theorem 4.12 Let H be a Type b2 node free smallest even hole. If there exist three nonad-ja
ent bad nodes w.r.t. H, then there exists a node u in H su
h that all the bad nodes w.r.t.H are adja
ent to node u or to one of the neighbors of u in H.Proof: Suppose v1, v2 and v3 are three nonadja
ent bad nodes w.r.t. H and u is a 
ommonneighbor in H (su
h a node exists by Lemma 4.11). Let u1; u2 denote the neighbors of u inH. Suppose v is a bad node w.r.t. H that is not adja
ent to a node in fu; u1; u2g. Then,v is adja
ent to at most one of the nodes v1; v2; v3, else G 
ontains a 4-hole. Say v is notadja
ent to v1 and v2. Now, by Lemma 4.11, nodes v1; v2; v have a 
ommon neighbor in H,say w. But then w; v1; u; v2 is a 4-hole, a 
ontradi
tion. 2For a node set S, denote by �(S) the 
ardinality of a largest stable set in S.Theorem 4.13 Let H be a Type b2 node free smallest even hole and S be the set of all badnodes w.r.t. H.a. If �(S) = 1, then there are two nonadja
ent nodes u1; u2 in H su
h that either S = N 0where N 0 = N(u1)\N(u2), or there exists a 2 SnN 0 with the property that, if N denotesthe set of nodes of Gn (N 0[fag) adja
ent to all nodes in N 0[fag, then jV (H)\N j � 3and S � N [N 0 [ fag.b. If �(S) = 2, then there are two nonadja
ent nodes u1; u2 in H, and a third node w1 inH (not ne
essarily distin
t from u1 or u2) su
h that, if A = S n N(w1) and N 00 =(N(u1)\N(u2)) nN(w1), then either �(A nN 00) � 1, or there exists a node a 2 A nN 00and a node v1 adja
ent to u1, u2 and w1 with the property that, if N is the set ofnodes of G n (N 00 [ fa; v1g) that are adja
ent to all the nodes in N 00 [ fa; v1g, thenjV (H) \N j � 3 and �(A n (N [N 00 [ fag)) � 1.Proof: a. Let u1 and u2 be two nodes of H su
h that(i) the shortest path of H 
onne
ting u1 and u2 has at least three edges,(ii) N 0 = N(u1) \N(u2) has maximum 
ardinality.By (i), N 0 � S. If N 0 = S, we are done. So, suppose a 2 S n N 0. Denote by N thenodes of Gn (N 0[fag) adja
ent to all nodes in N 0[fag. Then, sin
e S is a 
lique 
ontainingN 0 [ fag, S � N [N 0 [ fag. 19



If jV (H) \N j � 4, then H would 
ontain two nodes x1 and x2 satisfying (i) and havingmore 
ommon neighbors in S than u1 and u2, whi
h 
ontradi
ts (ii).b. Suppose v1; v2 2 S are nonadja
ent.By Theorem 4.7, nodes v1 and v2 have a 
ommon neighbor in H, say w1. Let A be theset of bad nodes that are not adja
ent to w1. As G is 4-hole free, ea
h node of A is adja
entto exa
tly one of v1; v2. For i = 1; 2, denote by Ai the set of nodes of A adja
ent to vi. ThenA1 \ A2 = ; and A1 [ A2 = A. As �(S) = 2, it follows that both A1 and A2 are 
liques(possibly empty). Now assume that u1 and u2 are two nodes of H su
h that(i) v1 is adja
ent to both u1 and u2,(ii) the shortest path in H 
onne
ting u1 and u2 has at least three edges,(iii) N 00 = (N(u1) \N(u2)) nN(w1) has maximum 
ardinality.As v1 is a bad node w.r.t. H, su
h a pair of nodes u1; u2 always exists. (ii) and (iii)imply that N 00 � A. As G is 4-hole free and N(v1) \ A2 = ;, it follows that N 00 � A1. IfA1 = N 00, then A nN 00 = A2, so �(A n N 00) � 1 and we are done. So, suppose a 2 A1 n N 00.Denote by N the nodes of G n (N 00 [fa; v1g) adja
ent to all the nodes in N 00 [fa; v1g. Then,sin
e A1 is a 
lique 
ontaining N 00 [ fag, it follows that A1 � N [ N 00 [ fag, and hen
e�(A n (N [N 00 [ fag)) � 1.If jV (H) \N j � 4, then N would 
ontain two nodes x1 and x2 satisfying (i) and (ii) andhaving more 
ommon neighbors in A1 than u1 and u2, whi
h 
ontradi
ts (iii). 2PROCEDURE b4Input: A graph G that does not 
ontain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.Output: A family L of indu
ed subgraphs of G that satis�es the following: If G 
ontains asmallest even hole H su
h that CG(H) is Type bi node free for i = 1; 2; 3, then H is aspotless smallest even hole in some G0 2 L.Step 1: Set L = L2 = fGg and L1 = L3 = ;.Step 2: For every 
hordless path P = w0; w1; w2; w3; w4 in G, add to L the graph obtainedfrom G by removing the node set (S3i=1N(wi)) n V (P ).Step 3a: For every 
hordless path P = w0; w1; w2 in G and v1 6= w0; w2 adja
ent to w1, addto L1 the graph obtained from G by removing the node set N(w1) n fw0; w2; v1g.For k = 1 to 2, dobeginStep 3b: For every L 2 Lk and for every nonadja
ent u1; u2 2 V (L), add to Lk+1 the graphobtained from L by removing the node set N(u1) \N(u2).Step3
: For every L 2 Lk and for every nonadja
ent u1; u2 2 V (L), let N 0 = N(u1)\N(u2).For every a 2 V (L)nN 0, let N denote the set of nodes of Ln(N 0[fag) that are adja
entto all the nodes in N 0 [ fag. For i = 0; 1; 2; 3, let Ni denote the family of all subsets ofN with 
ardinality jN j � i. For every M 2 Ni, add to Lk+1 the graph obtained from Lby removing the node set M [N 0 [ fag.end 20



Step 4: Add to L all the graphs in L3.Theorem 4.14 Pro
edure b4 produ
es the desired output.Proof: Let H be a smallest even hole in G that is Type b2 node free, and S be the set of allbad nodes w.r.t. H.If �(S) � 3, then, by Theorem 4.12, Step 2 produ
es a graph G0 in L where H is 
lean.If �(S) = 1, then, by Theorem 4.13a, Steps 3b and 3
 applied to G 2 L2 when k = 2,produ
es a graph G0 2 L3 where H is 
lean.Finally, if �(S) = 2, then Step 3a produ
es a graph L 2 L1 where the nodes of G inN(w1) n fw0; w2; v1g are removed. The bad nodes that remain are v1 and A = S nN(w1). ByTheorem 4.13b, Steps 3b and 3
 applied to L when k = 1 produ
e a graph in L2 that 
ontainsH and su
h that the set A2 of remaining bad nodes w.r.t. H satis�es �(A2) � 1 (Note thatN 0 in Step 3
 (k=1) of the algorithm is equal to N 00 [ fv1g as de�ned in Theorem 4.13bwhenever v1 is adja
ent to u1 and u2.) Now, by Theorem 4.13a, Steps 3b and 3
 when k = 2produ
e some graph G0 2 L3 where H is 
lean.So, in all 
ases, the algorithm produ
es a graph G0 in L where H is 
lean. To 
ompletethe proof it remains to show that, if CG(H) is Type bi node free for i = 1; 2; 3, then H is aspotless smallest even hole in G0. This follows from the next two 
laims.Claim 1: If H� is a 
lean smallest even hole and CG(H�) is Type bi node free, for i = 1; 2; 3,then any hole obtained from H� through one spe
ial tent substitution is also 
lean.Proof of Claim 1: Let xy be a spe
ial tent w.r.t. H�, with intermediate paths P1 and P2,where P1 is of length 2, and let H be the hole indu
ed by the node set V (P2)[fx; yg. W.l.o.g.assume that x is of Type g2 w.r.t. H�, with neighbors x1 and x2 in H�, and node y has aunique neighbor y1 in H�. Let p1 be the intermediate node of P1, and w.l.o.g. let x2 and y1be the endnodes of P1. We will show that the strongly adja
ent nodes to H are of Type g2or g3.Suppose not and let u be a strongly adja
ent node to H that is not of Type g2 or g3.Then u must have at least one neighbor in P2. Let u1 be the neighbor of u in P2 that is
losest to x1, and let P 0 be the x1u1-subpath of P2. Sin
e H� is 
lean, u is either not stronglyadja
ent to H� or is of Type g2 or g3 w.r.t. H�. Also u must be adja
ent to a node in fx; yg,so we have the following three 
ases to 
onsider.Case 1: Node u is adja
ent to both x and y.First assume that u is adja
ent to y1. Then u must have at least two neighbors in P2,sin
e otherwise u is of Type g3 w.r.t. H. If u has two neighbors in P2 then u1 is adja
ent toy1 and (H;u) is a short 4-wheel. If u has three neighbors in P2 then it is of Type g3 w.r.t.H� and the hole indu
ed by the node set V (P 0) [ fx; ug is even of length smaller than H�,
ontradi
ting our 
hoi
e of H�. Hen
e u is not adja
ent to y1. By a similar argument u is notadja
ent to x1 either. Sin
e u must have a neighbor in P2 and sin
e it is either not stronglyadja
ent to H� or it is of Type g2 or g3 w.r.t. H�, this implies that u does not have anyneighbors in P1. Node u1 is not adja
ent to y1, sin
e otherwise u; y; y1; u1; u is a 4-hole. LetH 0 be the hole indu
ed by the node set V (P 0) [ V (P1) [ fy; ug. But now (H 0; x) is a short4-wheel.Case 2: Node u is adja
ent to x but not to y.21



Node u is not adja
ent to y1, sin
e otherwise u; x; y; y1; u is a 4-hole. If u is adja
ent to x1then u is of Type g3 w.r.t. H�, with all neighbors in P2. But then (H;u) is a short 4-wheel.Hen
e u is not adja
ent to x1 nor y1, whi
h implies that it 
annot have any neighbors in P1.But now there is a short 3PC(x; y1), where two of the paths are x; P1; y1 and x; y; y1 and thethird path passes through u.Case 3: Node u is adja
ent to y but not to x.Node u is not adja
ent to x1, sin
e otherwise u; y; x; x1; u is a 4-hole. If u is adja
ent to y1then u is of Type g3 w.r.t. H�, with all neighbors in P2. But then (H;u) is a short 4-wheel.Hen
e u is not adja
ent to x1 nor y1, whi
h implies that it 
annot have any neighbors in P1.If u is of Type g1 or g3 w.r.t. H�, then u is of Type b1 or b3 w.r.t. H, 
ontradi
ting theassumption that CG(H�) is Type b1 and b3 node free. Sin
e H� is 
lean, u must be of Typeg2 w.r.t. H�, 
ontradi
ting Lemma 4.1 applied to H and u.Claim 2: If H� is a 
lean smallest even hole and CG(H�) is Type bi node free, for i = 1; 2; 3,then any hole obtained from H� through one Type g3 node substitution is also 
lean.Proof of Claim 2: Let x be a Type g3 node w.r.t. H�, with neighbors x1, x2 and x3 in H�.Assume that x2 is the middle neighbor of x in H� and let H be the hole obtained from H�by substituting x for x2. We will show that the strongly adja
ent nodes to H are of Type g2or g3. Let u be a strongly adja
ent node to H. We 
onsider the following two 
ases.Case 1: Node u is not adja
ent to x.Then u 
annot be adja
ent to both x1 and x3, sin
e otherwise x; x1; u; x3; x is a 4-hole.Sin
e u is strongly adja
ent to H, it is also strongly adja
ent to H�. Sin
e H� is 
lean, uis of Type g2 or g3 w.r.t. H�. But then, sin
e u is not adja
ent to both x1 and x3, u is ofType g2 or g3 w.r.t. H as well.Case 2: Node u is adja
ent to x.If u is not adja
ent to x1 nor x3 then it is also not adja
ent to x2, sin
e otherwise uwould be a bad strongly adja
ent node w.r.t. H�. By Lemma 4.1 applied to H and u, nodeu 
annot be of Type g2 w.r.t. H�, and hen
e it is of Type g1 or g3 w.r.t. H�. But then uis of Type b1 or b3 w.r.t. H, 
ontradi
ting the assumption that CG(H�) is Type b1 and b3node free. Therefore u must be adja
ent to x1 or x3.First assume that u is adja
ent to both x1 and x3. Then u must also be adja
ent to x2,sin
e otherwise u; x1; x2; x3; u is a 4-hole. Sin
e H� is 
lean, u is of Type g3 w.r.t. H� andhen
e w.r.t. H as well.Now assume that u is adja
ent to x1 but not to x3. Note that sin
e H� is 
lean, u 
anhave at most three neighbors in V (H�) n fx2g. If u has two neighbors in V (H�) n fx2g, thenu is of Type g2 or g3 w.r.t. H� and hen
e of Type g3 w.r.t. H. If u has three neighbors inV (H�) n fx2g, then (H;u) is a short 4-wheel. This 
ompletes the proof of Claim 2 and of thetheorem. 2CLEANING ALGORITHMInput: A graph G that does not 
ontain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.Output: A family L of indu
ed subgraphs of G su
h that, if G 
ontains an even hole, thensome G0 2 L 
ontains a spotless smallest even hole.22



Step 1: Set L = fGg.Step 2: Apply Pro
edure BAD to G and let L0 be the resulting output family.Step 3: Apply Pro
edure BAD to ea
h graph in L0 and union the output with L.Step 4: Apply Pro
edure b4 to ea
h of the graphs in L0 and union the output with L.If G 
ontains an even hole then, after Step 2, L0 
ontains a graph G0 with a smallest evenhole H su
h that CG0(H) is Type b2 node free. Now, if H has a Type b1 or b3 node in G0,we get the desired output in L after Step 3 and otherwise we get it after Step 4. So theCleaning Algorithm produ
es the desired output. The size of the output 
an be estimated tobe O(n25).5 2-Join De
ompositionsIn this se
tion, we assume that G does not 
ontain a 4-hole, a dominated node, a gem nor afull k-star 
utset, k = 1; 2; 3. So, by Lemma 1.14, G 
ontains no k-star 
utset.Let V1jV2 be a 2-join with spe
ial sets (A1; A2; B1; B2). For i = 1; 2, let Pi be the family of
hordless paths P = x1; : : : ; xn where x1 2 Ai, xn 2 Bi and xj 2 Vi n (Ai[Bi), 2 � j � n�1.Lemma 5.1 The sets Pi are nonempty and 
ontain no path of length 1, for i = 1; 2.Proof: Let u 2 A1 and v 2 B1.First, suppose that there is no path in V1 from A1 to B1. Then, sin
e jV1j > 2, eitherfug [A2 or fvg [B2 is a star 
utset. Hen
e P1 6= ;. Similarly, P2 6= ;.Now, if uv is an edge, then no node of A2 
an be adja
ent to a node of B2 (sin
e G is4-hole-free). As P2 6= ;, it follows that V2 n (A2 [B2) 6= ;. But then fu; vg [A2 [B2 wouldbe a double star 
utset. 2The blo
ks of a 2-join de
omposition are graphs G1 and G2 de�ned as follows. Blo
k G1
onsists of the subgraph of G indu
ed by node set V1 plus a marker path P2 = a2; : : : ; b2 thatis 
hordless and satis�es the following properties. Node a2 is adja
ent to all the nodes in A1,node b2 is adja
ent to all the nodes in B1 and these are the only adja
en
ies between P2 andthe nodes of V1. Furthermore, let Q 2 P2. The marker path P2 has length 4 if Q has evenlength, and length 5 otherwise. Blo
k G2 is de�ned similarly.Theorem 5.2 Let G1 and G2 be the blo
ks of a 2-join de
omposition of G. Then, G iseven-hole-free if and only if G1 and G2 are even-hole-free.Proof: First assume that G1 or G2 has an even hole, say G1 does. Repla
ing in G1 the markerpath P2 by a path Q 2 P2 of the same parity yields a graph G01 that 
ontains an even hole.Sin
e G01 is a subgraph of G, this hole is also an even hole of G.Conversely, suppose that G 
ontains an even hole. If P1 (resp. P2) has paths of di�erentparities then, 
learly, G2 (resp. G1) has an even hole. If all the paths of P1 [ P2 have thesame parity, then both G1 and G2 have even holes. So, we may assume that all the pathsof P1 are odd and all the paths of P2 are even. But then ea
h even hole H of G must be
ontained in V1 [A2 [B2 or V2 [A1 [B1. Hen
e H belongs either to G1 or G2. 223



Lemma 5.3 If G does not 
ontain a full k-star 
utset, k = 1; 2; 3, then neither do the blo
ksof a 2-join de
omposition of G.Proof: Let G1 and G2 be the blo
ks of a 2-join de
omposition of G and suppose that one ofthem, say G1, 
ontains a full k-star 
utset S, k = 1; 2; 3. We will obtain a 
ontradi
tion byshowing that this implies that G also 
ontains a full k-star 
utset. We 
onsider the followingthree 
ases.Case 1: S = N [x℄If x is not a node of the marker path P2, then S is also a 
utset in G. First assume that x
oin
ides with a2 or b2, say x = a2. Sin
e P2 is not an edge, the nodes of B1 are all 
ontainedin the same 
omponent of G1nS. Let u be a node of G1nS that is not in the same 
omponentas B1. But then N(a) [ fag, where a 2 A2, is a full star 
utset in G breaking u from B1.Now assume that x is an intermediate node of P2. Note that the graph indu
ed by the nodeset V1[fa2; b2g is 
onne
ted sin
e otherwise G would have a star 
utset. Hen
e x is adja
entto a2 or b2, say a2. Let u 2 A1 and v 2 B1 be the endnodes of a path in P1. Sin
e P2 isof length greater than 2, the nodes of B1 [ fug are all 
ontained in the same 
omponent ofG1 nS. Let y be a node of G1 nS that is not in the same 
omponent as B1. Then N(u)[fugis a full star 
utset in G breaking y from v.Case 2: S = N(x) [N(y)If P2 
ontains neither x nor y, then S is also a 
utset in G. If P2 
ontains both x and y,then sin
e P2 is of length greater than 3, either N(x)[fxg or N(y)[fyg is a full star 
utsetin G1, and we are done by Case 1. So assume w.l.o.g. that x = a2 and y 2 A1. Let u be anode of A2. Then N(u) [N(y) is a full double star 
utset in G.Case 3: S = N(x) [N(y) [N(z)If P2 does not 
ontain a node in fx; y; zg, then S is also a 
utset in G. So w.l.o.g. assumethat x = a2 and y; z 2 A1. But then N(x) [N(y) is a full double star 
utset in G. 2We now present an algorithm that de
omposes a graph using 2-joins.Remark 5.4 In [8℄, a set of for
ing rules is given that de
ides in polytime whether a pair ofedges a1a2 and b1b2 belong to a 2-join with spe
ial sets (A1; A2; B1; B2) su
h that for i = 1; 2ai 2 Ai and bi 2 Bi. The algorithm either outputs su
h a 2-join or it 
on
ludes that no su
h2-join exists. We outline here this algorithm for the sake of 
ompleteness. As pointed outto us by Jim Geelen and Paul Seymour, these for
ing rules 
an be formulated as a 2-SATproblem, thus providing an alternate, and elegant, proof that a 2-join 
an be found in polytime.Let a1; a2; b1; b2; u be �ve distin
t nodes su
h that a1a2 and b1b2 are edges but neithera1b2 nor a2b1 is an edge and u is adja
ent to at most one of the nodes a2; b2 (possibly none).The following rules yield a 2-join V1jV2 with a1; b1; u 2 V1 and a2; b2 2 V2 or show that nosu
h 2-join exists.During the algorithm, the nodes h in V1 are partitioned into three sets:� Node h belongs to A1 if it is adja
ent to a2 but not b2,� Node h belongs to B1 if it is adja
ent to b2 but not a2,� Node h belongs to S1 if it is adja
ent to neither a2 nor b2.24



The 
ase where some node h in V1 is adja
ent to both a2 and b2 will not be permitted.Initially, a1; b1; u are in V1 and all the other nodes of G are in V2. For
ing rules are usedto move nodes from V2 to V1 as follows.� If v 2 V2 is adja
ent to at least one node in S1, add v to V1 and delete it from V2,� If v 2 V2 is adja
ent to at least one node in A1 [B1 and N(v) \ (A1 [B1) 6= A1 or B1,then add v to V1 and delete it from V2.If some node v moved from V2 to V1 is adja
ent to both a2 and b2, then the algorithmterminates sin
e no 2-join with a1; b1; u 2 V1 and a2; b2 2 V2 exists. If this situation nevero

urs, we 
ontinue moving nodes from V2 to V1 until no for
ing rule applies. At this stage,denote by A2 the nodes of V2 adja
ent to A1, by B2 those adja
ent to B2 and by S2 the rest.The only adja
en
ies between nodes of V1 and V2 are between node sets A1, A2 and betweenB1, B2. There are three possibilities.� If jV2j = 2 or if jA2j = jB2j = 1 and V2 indu
es a path, then no 2-join exists witha1; b1; u 2 V1 and a2; b2 2 V2.� If the �rst 
ase does not o

ur and if jA1j � 2 or jB1j � 2 or jA1j = jB1j = 1 but V1does not indu
e a path, then V1jV2 is a 2-join with spe
ial sets (A1; A2; B1; B2).� Finally, when neither of the above two 
ases o

ur, then jA1j = jB1j = 1 and V1 indu
esa path. For ea
h h 2 V2, move h from V2 to V1 and use the above for
ing rules to �nda 2-join with a1; b1; u; h 2 V1 and a2; b2 2 V2. If this fails for all h 2 V2, then no 2-joinexists with a1; b1; u 2 V1 and a2; b2 2 V2.Remark 5.5 Constru
ting blo
ks of a 2-join de
omposition 
an be done in polynomial time.By Remarks 5.4 and 5.5, one 
an see that every step of the following algorithm 
an beimplemented to run in polynomial time.2-JOIN DECOMPOSITION ALGORITHMInput: A graph G that does not 
ontain a 4-hole, a gem, a full k-star 
utset, k = 1; 2; 3; norany dominated nodes.Output: A list L of graphs, with the following properties:� The graphs in L do not 
ontain a 4-hole, a gem, a full k-star 
utset, k = 1; 2; 3; a2-join nor any dominated nodes.� G is even-hole-free if and only if all the graphs in L are even-hole-free.Step 1: Let L0 = fGg and L = ;.Step 2: If L0 = ;, stop. Otherwise, remove a graph F from L0. Let L00 be the set of allffa1; b1; ug; fa2; b2gg where a1; b1; a2; b2; u are �ve distin
t nodes of F with the propertythat a1b1 and a2b2 are edges but not a2b1 nor a1b2, and node u is adja
ent to at mostone of the nodes a2; b2. 25



Step 3: If L00 = ;, add F to L and go to Step 2. Otherwise, remove ffa1; b1; ug; fa2; b2ggfrom L00.Step 4: Che
k whether there is a 2-join V1jV2 with spe
ial sets (A1; A2; B1; B2) su
h thatu 2 V1, for i = 1; 2, ai 2 Ai and bi 2 Bi. If there is su
h a 2-join, go to Step 5.Otherwise, go to Step 3.Step 5: Constru
t the blo
ks of the 2-join de
omposition, add them to L0 and go to Step 2.Remark 5.6 The number of graphs in list L produ
ed by the 2-Join De
omposition Algorithmis O(jV (G)j). This is easily seen by observing that in ea
h 2-join de
omposition, the sum ofthe number of nodes in the two blo
ks is at most 12 more than the number of nodes in theoriginal graph. If we stop doing 2-join de
ompositions when the size of the blo
ks is smallerthan 24, then the number of blo
ks 
reated is only linear in the number of nodes in the originalgraph.Lemma 5.7 The 2-Join De
omposition Algorithm produ
es the desired output.Proof: By 
onstru
ting blo
ks of a 2-join de
omposition we do not 
reate any gems, dominatednodes nor any 4-holes. So by Lemma 5.3, at every point in the algorithm the graphs in L0have the property that they do not 
ontain a 4-hole, a gem, a full k-star 
utset, k = 1; 2; 3;nor any dominated nodes. By the 
onstru
tion of L, the graphs in L do not 
ontain a 4-hole,a gem, a full k-star 
utset, k = 1; 2; 3; a 2-join nor any dominated nodes. Furthermore, byTheorem 5.2, G is even-hole-free if and only if all the graphs in L are even-hole-free. 2A
knowledgment: We are grateful to the two referees for numerous improvements inthe presentation. Spe
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