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Abstract

We present an algorithm that determines in polytime whether a graph contains an
even hole. The algorithm is based on a decomposition theorem for even-hole-free graphs
obtained in Part I of this paper. We also give a polytime algorithm to find an even hole
in a graph when one exists.

1 Introduction

In a graph, a cycle is even if it contains an even number of nodes, and odd otherwise. A
hole is a chordless cycle with at least four nodes. A graph that contains no even hole is
called even-hole-free. (Graph G contains graph H means that H appears in G as an induced
subgraph. Graph G is H-free means that G does not contain graph H.)

In this part, we present a polytime recognition algorithm for even-hole-free graphs. The
algorithm builds on a structural theorem proved in [4]. The algorithm is not practical since
the degree of the polynomial is high: our main contribution is in showing that this recognition
problem is in the complexity class P. Previously, it was not even known whether this problem
was in NP (it is trivially in co-NP, however). It was known (Bienstock [1]) that it is NP-
complete to recognize whether a graph contains an even hole passing through a specified
node. On the positive side, Porto [10] solved the even hole recognition problem in linear
time for planar graphs and Markossian, Gasparian and Reed [9] solved it in polytime for
diamond-and-cap-free graphs. A diamond is a cycle of length four with a single chord. A cap
is a cycle of length greater than four with a single chord that forms a triangle with two edges
of the cycle. In [5] we extended this last result to cap-free graphs. Here we give a solution
for all graphs.

Finding an Even Hole

Note that our recognition algorithm for even-hole-free graphs can be used to find an even
hole in graph G, if one exists: Let vi,...,v, denote the nodes of G and let H = G. In
iteration ¢, test whether H \ v; contains an even hole. If the answer is yes, set H = H \ v;
and otherwise keep H unchanged. Perform n iterations. At termination, the graph H is the
desired even hole.

With 2 calls to the recognition algorithm, we can also check in polytime whether, given
a graph G and a node v of G, all the even holes of G contain v. By contrast, as stated above
[1], given a graph G and a node v of G, it is NP-complete to check whether there exists an
even hole that contains v.

Cutsets

The decomposition theorem of [4] which we use here has two types of cutsets. We define
these now.

For S C V(@G), we denote by G\ S the subgraph obtained from the graph G by removing
the nodes of S and all the edges with at least one node in S. The node set S is a cutset of
the graph G if the graph G\ S contains more connected components than G. For S C V(G),
N(S) denotes the set of nodes in V(G) \ S with at least one neighbor in S and N[S] denotes
N(S)US. Node set S is a k-star if S is comprised of a clique C of size k£ and nodes with
at least one neighbor in C, i.e. § C N[C]. We refer to C as the clique center of S. In this



paper, we will use k-star cutsets, £k = 1,2,3. We also refer to a 1-star as a star, to a 2-star as
a double star and to a 3-star as a triple star. If S is comprised of a clique C and all nodes of
G with at least one neighbor in C, it is called a full k-star.

A graph G has a 2-join V1|V, with special sets (A, Ag, By, Be), if its nodes can be
partitioned into sets V1 and V5 in such a way that, for ¢ = 1, 2, V; contains disjoint, nonempty
node sets A; and B;, such that every node of Ay is adjacent to every node of As, every node
of Bj is adjacent to every node of Bsy, and there are no other adjacencies between V; and Vs.
Furthermore |V;| > 2 for ¢ = 1,2, and if A; and B; are both of cardinality 1, then the graph
induced by V; is not a chordless path.

Star cutsets were introduced by Chvatal [2] and 2-joins by Cornuéjols and Cunningham
[8]. In [6] and [3], 2-joins, star and double star cutsets were used to construct recognition
algorithms for balanced 0,1 matrices and balanced 0, &1 matrices. Recently, they were used
to decompose Berge graphs [7].

Base Classes

The decomposition theorem of [4] shows that every even-hole-free graph except those in
two base classes contains a 2-join or a k-star cutset. These two base classes are the cap-
free graphs and basic graphs. Cap-free graphs have been defined already. In [5], polytime
algorithms are given for recognizing cap-free graphs and for recognizing even-hole-free cap-
free graphs. The second base class of graphs used in the decomposition theorem of [4] is the
class of basic graphs. We do not define basic graphs here. We just note that every basic
graph is obtained from the line graph of a tree by adding two adjacent nodes z and y, and
as a consequence we can check in polytime whether a graph is basic. Since there is a unique
chordless path between any two nodes in the line graph of a tree, it also follows that we can
check in polytime whether a basic graph is even-hole-free.

Decomposition Theorem
The following theorem follows from the main result proved in [4]. (In [4], the result is
proved for odd-signable graphs, a class of graphs that contains even-hole-free graphs.)

Theorem 1.1 A connected even-hole-free graph is cap-free or basic or contains a 2-join or
a k-star cutset, k =1,2,3.

Idea of the Algorithm

The above decomposition theorem is the basis of our recognition algorithm for even-hole-
free graphs. Whenever a 2-join or a k-star cutset is present in a graph G, we decompose G
into two or more smaller or simpler graphs, called blocks. When G contains a k-star cutset,
this is done as follows.

Definition 1.2 Let S be a node cutset in a graph G and C1, ..., Cy the connected components
of G\ S. We define the blocks of the decomposition to be graphs Gy,...,Gy, where G; is the
subgraph of G induced by V(C;) U S.

When G contains a 2-join, the blocks are defined as follows.



Definition 1.3 Let V1|V be a 2-join of G with special sets (Ay, Ay, By, Bs). If Ay and By
are in different connected components of G(V2), define block Gy to be the subgraph of G
induced by node set V1 U {ag,ba}, where ag € Ay and by € By. If G(V2) contains a path from
Ay to Bo, let QQ be a shortest such path and define block Gy to be the subgraph of G induced
by node set V1 plus o marker path P, = as,...,bs that is chordless and satisfies the following
properties. Node ao is adjacent to all the nodes in Ay, node by is adjacent to all the nodes in
B and these are the only adjacencies between P> and V. Furthermore, the marker path Ps
has length 4 if Q has even length, and length 5 otherwise. Block Gy is defined similarly. See

Figure 1.
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Figure 1: 2-Join Decomposition

If we were to follow the standard paradigm for creating an algorithm from a decomposition
theorem, we would now show that

(a) we can find in polytime whether a decomposition exists in G;



(b) G is even-hole-free if and only if all the blocks are;

(c) when the decomposition is applied recursively to the blocks, the total number of blocks
created is polynomial.

Unfortunately, although (a) is true for the two cutsets of Theorem 1.1, neither (b) nor
(c) holds.

The problem with (c) is that, if we do not take care of dominated nodes properly, we can
get an exponential number of blocks even decomposing just with star cutsets. (We say that u
is dominated by v if u is adjacent to v and N(u) C N[v].) Another problem is that we do not
know how to bound the number of blocks if we mix k-star cutset and 2-join decompositions.

Our solution to (c) is to do k-star cutsets first, then 2-joins, and to deal with dominated
nodes specially.

In Section 5, we discuss the 2-join decomposition of a graph G that has no k-star cutset,
k = 1,2,3. We show that G is even-hole-free if and only if the two blocks G; and G2 of
the decomposition are even-hole-free. Furthermore, we show that the blocks G; and G have
no k-star cutsets, k = 1,2,3. Finally, if the 2-join decomposition is applied recursively, we
show that only a linear number of blocks is created overall. By Theorem 1.1, G is even-
hole-free if and only if all these blocks belong to a base class and are even-hole-free. This
yields a polytime algorithm for checking whether a graph without k-star cutsets, k = 1,2, 3,
is even-hole-free.

A major difficulty that needs to be addressed when decomposing by a star, double star
or triple star cutset is the fact that (b) above does not hold. Consider, for example, a graph
G consisting of an even hole H and a node x with exactly two nonadjacent neighbors in H,
say w,v, where both paths of H from u to v have an odd number of edges. If we decompose
G by the star cutset N|[z] consisting of z and its two neighbors u, v, the two blocks of the
decomposition are even-hole-free, whereas G contains the even hole H. Thus star cutset
decomposition is not even-hole-free preserving.

To address this difficulty, we first apply a certain cleaning procedure to the input graph
G. This procedure transforms G into a polynomial family of induced subgraphs of G with
the property that, if G contains an even hole, then at least one graph in the family contains
an even hole that will either not be broken by k-star cutset decomposition or will be detected
while performing the decomposition.

Clean Graphs

Definition 1.4 Let H be an even hole and u € V(G) \ V(H). We say that u is good w.r.t.
H if it has at most three neighbors in H and the graph induced by N(u) NV (H) is connected.
Otherwise, u is called bad.

Definition 1.5 An even hole H of G is clean if there is no bad node w.r.t. H.

Definition 1.6 Let u be a good node w.r.t. an even hole H. We say that u is of Type gi
w.r.t. H if |[N(u) NV(H)| =1.

Definition 1.7 A tent w.r.t. an even hole H is either



e a Type g3 node w.r.t. to H, or

e an edge uv such that node u is a Type gl node w.r.t. H, node v is a Type g2 node w.r.t.
H, the neighbor x of u in H is distinct from the neighbors vi,v9 of v in H and x,v;
have a common neighbor y # vy in H (special tent).

Definition 1.8 Let H be an even hole and u a Type g3 node w.r.t. H, with neighbors wuy, us
and ug in H such that uyugy and ugug are edges. Let H' be the hole induced by (V(H)\ {uz2})U
{u}. We say that H' is obtained from H through a Type g3 node substitution.

Consider a special tent uv w.r.t. an even hole H. Let H' be the hole induced by the node
set (V(H)U{u,v})\{y,v1}. We say that such a hole H' is obtained from H through a special
tent substitution.

A tent substitution is either a Type g3 node substitution or a special tent substitution.
Note that holes H and H' are of the same length.

/ /Ul

Figure 2: Special Tent

Definition 1.9 Let G be a graph containing an even hole H. We define Cq(H) to be the
family of all holes of G obtained from H through a sequence of tent substitutions.

Definition 1.10 An even hole H* of G is spotless if all the holes in Cq(H™*) are clean.

Definition 1.11 A graph G is clean if it is either even-hole-free or it contains a spotless
smallest even hole H*.

Given a graph G, Section 4 presents a cleaning procedure with the following property: it
constructs in polytime a clean graph G’ that is even-hole-free if and only if G is even-hole-free.
The graph G’ consists of a polynomial number of induced subgraphs of G, at least one of
which is clean. The decomposition of clean graphs by k-star cutsets is presented in Section 3.
The main result of that section is that a clean graph G can be decomposed recursively into
a family of blocks that have no k-star cutsets and satisfy the following property: (i) either
G is identified as containing an even hole during the decomposition process or (ii) when the
decomposition process is completed, all blocks in the family are even-hole-free graphs if and
only if G is even-hole-free.



Dominated Nodes

The other difficulty with k-star cutsets is that (c) does not hold. As mentioned earlier, our
approach to (c¢) is to remove dominated nodes. We prove in Section 3 that the total number
of blocks generated by recursive decomposition with k-star cutsets is polynomial if one first
removes dominated nodes and uses full k-star cutsets. For this reason, in our recognition
algorithm, we will actually use the following refinement of Theorem 1.1.

A gem is a graph on five nodes, such that four of the nodes induce a chordless path of
length three and the fifth node is adjacent to all of the nodes of this path.

Theorem 1.12 Let G be a connected even-hole-free graph. If G contains no gem or domi-
nated node, then G is cap-free or basic or contains a 2-join or a full k-star cutset, k = 1,2, 3.

Proof: Follows from Theorem 1.1 and the next two lemmas. g

Lemma 1.13 Assume G contains no gem and no 4-hole. Let C be a clique and u € V(G)\C.
If N[u] C N[C], then u is dominated by some node in C.

Proof: Suppose N[u] C N|[C], but no node of C dominates u. Let K C C be a minimal
set such that N[u| C N[K], i.e. for each v € K, N[u] € N[K \ {v}]. Since u € N[K], u is
adjacent to a node of K, say z. Since u is not dominated by z there exists v € N(u) such
that v is not adjacent to z. Since v € N[K], v is adjacent to some node of K \ {z}, say
y. Since z,y,v,u is not a 4-hole, u is adjacent to y. Since N[u] € N[K \ z], there exists a
node w adjacent to v and x but not y. Now either w, z,y,v, v induces a gem or w,x,y,v is
a 4-hole. a

Lemma 1.14 Assume G contains no dominated nodes, no gem and no 4-hole. If G contains
a k-star cutset, k =1,2,3, then G contains a full k-star cutset.

Proof: Let C' be the clique center of a k-star cutset S of G, where £ = 1,2,3. Suppose
S"=CUN(C) is not a cutset of G. Then some component of G\ S, say C1, must be entirely
contained in S\ S. Then u € C; satisfies the conditions of Lemma 1.13 and therefore u is
dominated by a node in C, contradicting the assumption. O

Dominated nodes can be identified in polytime and we will show in Section 3 that, in
clean graphs, their removal is even-hole-preserving. In Section 3, we also show that, when
G has a gem, there is a rather simple decomposition result. So Theorem 1.12 provides the
basis for our recognition algorithm of even-hole-free graphs. The outline of the algorithm is
as follows: check for 4-holes and a few other graphs that contain even holes and that can
be identified in polytime (to simplify the analysis, later), then clean G, remove dominated
nodes, decompose by full k-star cutsets, k = 1,2, 3, then by 2-joins, and finally check that all
the blocks are either basic or cap-free, and contain no even holes.

2 The Algorithm

A wheel (H,z) is a graph induced by a hole H and a node z ¢ V(H) having at least three
neighbors in H, say z1,...,%,. A subpath of H connecting z; and z; is a sector if it contains



no intermediate node z;, 1 <1 < n. A short sector is a sector of length 1, and a long sector
is a sector of length at least 2. A wheel is even if it contains an even number of sectors. It is
easy to see that an even wheel always contains an even hole.

A 3PC(z,y) is a graph induced by three chordless paths from node z to y, having no
common or adjacent intermediate nodes. Note that x and y are not adjacent. It is easy to
see that a 3PC(z,y) always contains an even hole.

A 3PC(z1x223, y1y2y3) is a graph induced by three chordless paths, P; = x1,...,y1, P, =
Zo,...,y2 and Py = x3,...,ys, having no common nodes and such that the only adjacencies
between nodes of distinct paths are the edges of the two cliques of size three induced by the
disjoint node sets {z1,z2, 23} and {y1,y2,y3}. It is easy to see that a 3PC(x1z2x3, y1y2y3)
always contains an even hole.

A 3PC(ziz9z3,y) is a graph induced by three chordless paths P, = zi,...,y, P» =
Zo,...,y and P3 = x3,...,y, having no common nodes other than y and such that the only
adjacencies between nodes of P; \ y and P; \ y, for 4,5 € {1,2,3} distinct, are the edges of
the clique of size three induced by {z1, z2, z3}.

We say that a graph G contains a 3PC(., .) if it contains a 3PC(x, y) for some pair of nodes
z,y € V(G). We say that a graph G contains a 3PC(A, A) if for some z1,x2, 3, Y1, Y2, Y3 €
V(G) there exists a 3PC(z12223, y1y2y3). Similarly we say that it contains a 3PC(A,.) if it
contains a 3PC(z1z9x3,y) for some x1,x9,z3,y € V(Q).

As mentioned above, an even-hole-free graph cannot contains an even wheel, a 3PC(.,.)
nor a 3PC(A,A). Our recognition algorithm for even-hole-free graphs starts by checking
whether the graph contains one of the two following structures (this can be done in polynomial
time).

Definition 2.1 A wheel (H,x) is a short 4-wheel if it contains four sectors and one of the
following holds: the wheel has three short sectors, or it has two nonadjacent short sectors and
a sector of length three.

Definition 2.2 A 3PC(.,.) is short if one path has length 2 and one has length 3. A
3PC(A,A) is short if one path has length one and one has length two. A short 3PC is
either a short 3PC(.,.) or a short 3PC(A,A).

RECOGNITION ALGORITHM FOR EVEN-HOLE-FREE GRAPHS
Input: A graph G.
Output: YES if G is even-hole-free, and NO otherwise.

Step 1: If G contains a 4-hole, a 6-hole, a short 4-wheel or a short 3PC, output NO.

Step 2: Apply the Cleaning Algorithm of Section 4 to G and let £1 be the output family of
graphs (so, if G has an even hole, then some graph in £; has an even hole and is clean).

Step 3: Start with Lo = (). For each L € L;, perform the Node Cutset Decomposition
Algorithm of Section 3. If the algorithm identifies L as not being even-hole-free, output
NO. Otherwise, union the output with Ly (so the graphs in Lo have no full k-star
cutsets, k = 1,2, 3).



Step 4: Start with L3 = (). For each L € L, perform the 2-Join Decomposition Algorithm
of Section 5 and union the output with £3 (so the graphs in £3 have no 2-join).

Step 5: Start with £4 = L5 = (). For each L € L3, check whether L contains a cap. If it
does, add L to £4. Otherwise, add L to Ls.

Step 6: For each L € L4, check whether L is a basic graph. If some L € L4 is not basic,
output NO. Otherwise, for each L € L4, check whether L contains an even hole. If
some L € L4 contains an even hole, output NO. Otherwise, go to Step 7.

Step 7: For each L € L5, check whether L contains an even hole. If some L € L5 contains
an even hole, output NO. Otherwise, output YES.

The Cleaning Algorithm, the Node Cutset Decomposition Algorithm and the 2-Join De-
composition Algorithm will be shown to be polynomial in the next three sections. Steps 6
and 7 check cap-free and basic graphs. This can be performed in polytime, as pointed out
already. So, the above recognition algorithm can be implemented to run in polynomial time.

In the next three sections, we will show that the following statements are equivalent.

(i) G is even-hole-free,

(ii) all the graphs in £; are even-hole-free,

(iii) all the graphs in L9 are even-hole-free,

(iv) all the graphs in L3 are even-hole-free.

We will also show that the graphs in £3 do not contain a 4-hole, a dominated node, a
gem, a full k-star cutset, £ = 1,2, 3, nor a 2-join. So, by Theorem 1.12, if G is even-hole-free,
all the graphs in £3 must be either cap-free and even-hole-free, or basic and even-hole-free.
The algorithm checks this in Steps 6 and 7. This establishes the validity of the algorithm
(subject to being able to perform Steps 2, 3 and 4 as claimed).

3 k-Star Cutsets in Clean Graphs

Throughout this section, unless otherwise stated, we assume that G is a clean graph with
spotless smallest even hole H*. In addition, we assume that G contains no 4-hole, no short
4-wheel and no short 3PC.

Lemma 3.1 If node u is dominated by node v, then G \ {u} contains a hole in Cq(H™).

Proof: Assume that H* contains u. Let u; and us be the neighbors of u in H*. Since u is
dominated by v, v is adjacent to u, u; and wuy. Since H* is clean, v is of Type g3 w.r.t. H*,
and hence the hole induced by the node set (V(H*)\ {u})U{v} is in Cq(H*) and in G \ {u}.
O

Before proving the main results of this section, let us prove the following useful lemma.

Lemma 3.2 Suppose C is a clique and C C S C N[C] is a cutset breaking all the holes of
Ca(H*). Then, for each H € Co(H*), V(H)NC = 0.



Proof: Suppose H € Cq(H*) is chosen such that the set P = V(H) N C has maximum
cardinality. As H is broken by S, there exists a node z € V(H) N S that has no neighbor in
P. Let w be a neighbor of z in C. Now, if P # (), then w must be a Type g3 node w.r.t. H.
After substituting w into H, we would get a hole in Cg(H*) having more nodes from C' than
H, a contradiction. O

This lemma, together with the definition of Ci(H™*), implies the following.

Corollary 3.3 Suppose C is a clique and C C S C N[C] is a cutset breaking all the holes of
Cq(H*). Then, for each H € Cq(H™), the tents w.r.t. H are disjoint from C.

In the decomposition algorithm, we treat the decomposition of gems in a special way. Let
us consider this case first.

Lemma 3.4 Let G be an even-hole-free graph and {x,yo,y,z,20} a node set that induces a
gem, such that yo,y, z, 2o is a chordless path. Then S = (N(z) UN(y) UN(2)) \ {vo,20} is a
triple star cutset breaking yo from zg.

Proof: Suppose not. Then, in G\ S, let P be a chordless path connecting yo to zp. The nodes
of P together with y and z induce a hole H. Node z has four neighbors on H, so (H,z) is
an even wheel. a

Remark 3.5 If a triple star cutset S from Lemma 3.4 is such that the connected components
of G\'S that contain yo and zy respectively are both of size greater than 1, then N(x)UN (y)U
N(z) is a full triple star cutset.

Lemma 3.6 Let {z,y0,y,2,20} be a node set that induces a gem, such that yo,y, 2,20 is a
chordless path. Let S = N(z) UN(y) UN(z) \ {vo,20} and Cy (resp. Ca) be the connected
component of G\ S that contains yo (resp. zp). If |C1| =1 (resp. |Ca| = 1), then G\ {yo}
(resp. G\ {z0}) contains a hole in Cq(H™).

Proof: Suppose that |C1| = 1. If H* does not contain yy then we are done, so suppose it
does. Let H* = yg, h1,...,hn,yo. Then since N(yy) C S, hi,h, € S.
Case 1: hj or hy is in {z,y}.

W.lo.g. assume that h; € {z,y}. Assume h; = z. Since H* is a hole, h,, does not
coincide with y and it cannot be a neighbor of . Since h, € S, it must be a neighbor of y
or z. If hy, is a neighbor of z then yg, x, z, Ay, yo is a 4-hole. Hence h,, is a neighbor of y. But
then y is of Type g3 w.r.t. H* and so the hole induced by the node set (V(H*)\ {yo}) U{y}
isin Ce(H*) and in G \ {yo}.

When h; = y, the same argument holds by interchanging the roles of z and y.

Case 2: hy,hy, € S\ {z,y,z}

Assume first that one of the nodes z or y, is adjacent to both nodes hy and h,. Assume
w.l.o.g. that x is adjacent to both h; and h,. Then z is of Type g3 w.r.t. H* and the hole
induced by the node set (V(H*) \ {yo}) U{z} is in C¢(H*) and in G \ {yo}.

If z is adjacent to h; but not to hy,, and y is adjacent to h, but not to hy, then since
the node set V(H*) U {z,y} cannot induce a short 4-wheel,  or y must have a neighbor in
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V(H*) \ {yo,h1,hn}. W.lo.g. assume that = has a neighbor in V(H*) \ {yo, h1,hn}. Since
H* is clean, z is adjacent to hg. Since the hole induced by (V(H*) \ {h1}) U {z} is clean,
nodes hs,...,h,—1 are not adjacent to y or z. But then the hole induced by the node set
(V(H*) \ {yo,h1}) U{z,y} is in Cq(H*) and in G \ {yo}.

So we may assume that one of hy or h, is adjacent to z. Assume w.l.o.g. that h, is
adjacent to z. Then y is adjacent to h,, since otherwise yg,y, z, h,, Yo is a 4-hole. Also x is
adjacent to h,, since otherwise yg, x, z, hn, yo is a 4-hole. Node z cannot be adjacent to hi,
since H* is clean and of length greater than 4. Hence h; is adjacent to either x or y. But
then one of z or y is adjacent to both hy and h,, which is not possible. O

The above result is all we need when G contains a gem. So, for the next result, we will
assume that G contains no gem.

Definition 3.7 A 3PC(xz,y), with paths Py, P> and P3, is decomposition detectable w.r.t.
the node cutset S if one of the following holds:

(i) Py is of length 2 or 3, V(Py) C S and the intermediate nodes of Py and P3 are in two
different components of G\ S.

(ii) Py is of length 3, V(P1) C S and there are three distinct components of G\ S, Cy, Cs
and C3, such that for some z € S\ {z,y}, the intermediate nodes of P» are contained
in V(C1) UV (C2) U{z} and the intermediate nodes of Py are contained in V (Cs).

A 3PC(z112%3,y1Y2y3), with the three paths Py, Py and P3, is decomposition detectable
w.r.t. the node cutset S if {x1,z2,23,y1,Y2,y3} C S, Py is an edge and the intermediate
nodes of Py and Ps are contained in two different components of G \ S.

A decomposition detectable 3PC is either a decomposition detectable 3PC(.,.) or a de-
composition detectable 3PC(A, A).

In order to show that we end up with a polynomial number of pieces when we decompose
a graph using our node cutsets, we need to refine the blocks. Let S be a k-star cutset,
k = 1,2,3, with clique center C. Let Cj,...,C, be the connected components of G \ S
and Gy,..., G, the blocks of the decomposition. We define the refined blocks G, ..., G}, as
follows: for i = 1,...,n, remove from G; all nodes of S\ C that do not have a neighbor in
Ci.

Theorem 3.8 Suppose that G contains no 4-hole, no short 3PC, no gem and that G is a
clean graph with spotless smallest even hole H*. When decomposing G with a full k-star
cutset S = N[C], k = 1,2,3, then either some hole in Cq(H*) is entirely contained in one of
the refined blocks of the decomposition or there exists a decomposition detectable 3PC w.r.t.

S.

Proof: Consider the following two cases.
Case 1: All the holes of Cg(H*) are broken by S.

Then, by Lemma 3.2, for each H € Cq(H*), V(H)NC = 0. Furthermore, by Corollary 3.3,
no node of C' is of Type g3. Let C' = {vy,...,v;}, where k = |C|. Denote by P,..., P, the
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connected components of G(V(H)NS). As H is broken by S, m > 2. On the other hand, as
H is clean, each node of C'is adjacent to at most one path Py,..., P,. Hence 2 <m < k < 3.
Case 1.1: m =k = 3.

Then we may assume that V(P;) = N(v;)) NV (H),i=1,2,3.

If all the nodes of C are of Type g2 w.r.t. H, let u; and w; be the neighbors of v; in H and
assume w.l.o.g. that the nodes wy,w;, ug, ws,us, ws appear in this order when traversing H.
Let Q1 be the wjus-subpath of H that does not contain wuy,ws, us, ws. Let Q2 (respectively
(03) be the wyug-subpath (respectively wsu;-subpath) of H that does not contain nodes of
Q1. Since H is an even hole, at least one of the three paths @Q; is of odd length, say Q.
But then the hole induced by V(Q1) U {vi,v2} is an even hole of length smaller than H,
contradicting our choice of H.

If all the nodes of C' are of Type gl w.r.t. H, let u; be the neighbor of v; in H. Let ()
be the uju9o-subpath of H that does not contain us. Define ()9 and Q3 in a similar fashion.
Since H is broken by S, some connected component of G\ S contains the intermediate nodes
of one of these paths, say ()1, but not of the other two paths. So we get a decomposition
detectable 3PC(u1,us) satisfying (i) or (i7) of Definition 3.7.

If C has both Type gl and Type g2 nodes w.r.t. H, assume w.l.o.g. that v; is of Type gl
and vy is of Type g2. Since H is a smallest even hole, vivs is a special tent w.r.t. H.
Now a tent substitution would produce a smallest even hole in Ce(H™*) that intersects C,
contradicting Corollary 3.3.

Case 1.2: m = 2.

First, suppose that £ = 3. Assume that N[v;|NV(H) = V(P;) and N[{ve,v3}|NV(H) =
V(P), where |[N[vo] NV (H)| > |N[v3] NV (H)|. If vo and vz both have a neighbor in H but
do not have a common neighbor in H, then G contains a 4-hole. Hence, since vy and v3 are
of Type gl or g2 or vs does not have a neighbor in H, |V(P)| < 3. If |V(P,)| = 3, then
G (P2 U{vg,v3}) is a gem. It follows that V(P,) = N[v2] NV (H).

Now, if v; and vy are of the same type, we get a decomposition detectable 3PC(A, A)
or 3PC(.,.). If one is of Type gl and the other of Type g2, vjvs is a special tent. But this
contradicts Corollary 3.3.

If £ = 2, the arguments from the previous paragraph hold.

Case 2: A block G; contains a hole of Cq(H™).

Suppose H € Ce(H™) is a hole in G; such that V(H) N C has maximum cardinality. If
H ¢ G, it follows from the definition of refined block that some node x5 € V(H) N N(C)
has no neighbor in H \ N[C]. So, there exists a chordless path P’ = 1, x9,z3 in H such that
z1,%9 € N(C) and z; is adjacent to some wy € C\ V(H). If V(H)NC # 0 or wy € N(z3),
then wy is of Type g3 and, after substituting w; into H, we would obtain a hole of Cq(H™)
in G; with larger intersection with C' than H, a contradiction. It follows that, for each
H e Cq(H*), V(H)NC = and wiz3 is not an edge.

By the choice of x9, this implies 3 € N(C). In fact, by the same argument, no node of
C is of Type g3 w.r.t. H. As G is 4-hole-free and gem-free, zo is adjacent to neither w; nor
ws3. S0 T9 is adjacent to some node wy € C. Since G is 4-hole-free, wo is adjacent to both z;
and z3. Hence wo is of Type g3 w.r.t. H, a contradiction. a
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NODE CUTSET DECOMPOSITION ALGORITHM

Input: A graph G that does not contain a 4-hole, a short 3PC nor a short 4-wheel.

Output: Either G is identified as not being even-hole-free, or a list £ of induced subgraphs
of G with the following properties:

e The graphs in £ do not contain a gem, a full k-star cutset, & = 1,2,3, nor any
dominated nodes.

e If the input graph G contains an even hole and is clean, with spotless smallest even
hole H*, then one of the graphs in the list contains a hole in Cq(H™).

Step 1: Initialize M = {G}, L =10.

Step 2: If M is empty, return £ and stop. Otherwise, remove a graph F' from M. If F' has
no chordless path of length 4, go to Step 2. Otherwise, remove all dominated nodes
from F' and go to Step 3.

Step 3: If F' contains a gem {z,yo,v, 2, 20}, such that yg,y, 2, zp is a chordless path, go to
Step 4. If F' contains a full k-star cutset S, k = 1,2, 3, go to Step 5. Otherwise, add F'
to £ and go to Step 2.

Step 4: If S = (N(x) UN(y)UN(2)) \ {yo, 20} is not a cutset breaking yo from zp, go to Step
6. If the connected component of F'\ S that contains yo is of size 1, add graph F'\ {yo}
to M and go to Step 2. If the connected component of F'\ S that contains z is of size
1, add graph F'\ {29} to M and go to Step 2. Otherwise, let S = N(z) U N(y) U N(z)
and go to Step 5.

Step 5: Check whether there exists a decomposition detectable 3PC(.,.) or 3PC(A,A)
w.r.t. S. If yes, go to Step 6. Otherwise, construct the refined blocks of decompo-
sition by §, add them to M and go to Step 2.

Step 6: Return that G is not even-hole-free and stop.

Lemma 3.9 The Node Cutset Decomposition Algorithm produces the desired output.

Proof: First suppose that the algorithm terminates in Step 6. Then by Lemma 3.4 and the
fact that 3PC(.,.)’s and 3PC(A, A)’s contain even holes, the algorithm correctly identifies
G as not being even-hole-free. Now suppose that the algorithm outputs the list £, i.e. the
algorithm does not terminate in Step 6. Then clearly, by Steps 2 and 3, the graphs in £ do
not contain any dominated node, gem or full k-star cutset, k = 1,2,3. Now further assume
that the input graph G is clean and contains a spotless smallest even hole H*. We want to
show that some graph in list £ contains a hole in Cq(H™).

Let F' be a graph taken off list M in Step 2. It is enough to show that if F' contains a hole
in Cq(H*) then at least one of the graphs that gets put on list M or £ in Steps 3, 4 and 5
also contains a hole in Ce(H ™). This follows from Lemma 3.1, Lemma 3.6 and Theorem 3.8.
O
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Lemma 3.10 The number of induced subgraphs in list L produced by the Node Cutset De-
composition Algorithm is bounded by |V (G)|°.

Proof: Let F' be a graph taken off list M in Step 2. Suppose that F' is decomposed in Step
5 by a full k-star cutset S, k =1,2,3. Let C1,...,C, be the connected components of F'\ S
and let F1, ..., F, be the refined blocks of decomposition by S. Let C' be the clique center of
S.

Claim: No two of the graphs Fi,...,F, contain the same chordless path of length 4.

Proof of Claim: Let P be a chordless path of length 4 and suppose that P appears in F}
and Fy. Then V(P) C V(F;)N S and V(P) C V(F,) N S. Since V(P) C S, it contains two
nonadjacent nodes a,b € S\ C, such that there exists a chordless path P’ from a to b that
uses only nodes in C as intermediate nodes. Since a € V(F1) NV (Fy), by definition of the
refined blocks, a has neighbors in both C} and Cs. Similarly b has neighbors in both C; and
Cs. Note that by definition of S, nodes of C' do not have neighbors in C7 and C5. But now
there is a 3PC(a,b) that uses P’ and paths in C and Cy. This 3PC(.,.) is decomposition
detectable w.r.t. S and hence would have been detected in Step 5. This completes the proof
of the claim.

By Step 2, the algorithm only adds to £ subgraphs of G that have a chordless path of
length 4. So, it follows from the claim that the number of graphs in £ is at most |V (G)[?. O

4 Cleaning

This section is devoted to the construction of the Cleaning Algorithm. We assume throughout
this section that G' contains no 4-hole, no 6-hole, no short 4-wheel and no short 3PC (recall
Definitions 2.1 and 2.2). The Cleaning Algorithm will take as input the graph G and produce
a polynomial family £ of induced subgraphs of G such that, if G contains an even hole, then
at least one of the graphs in £ contains an even hole and is clean. Given a hole H, a node
v & H is strongly adjacent to H if v has at least two neighbors in H. Recall that an even
hole H is clean if it has no bad strongly adjacent nodes (Definitions 1.4 and 1.5).

Lemma 4.1 Let u be o bad node w.r.t. o smallest even hole H of G. Then either u has
exactly two neighbors in H and these nodes are nonadjacent, or (H,u) is an even wheel and
all the sectors of the wheel are odd.

Proof: If u has two neighbors in H, then they are nonadjacent since u is bad. So assume
that u has at least three neighbors in H. If w has an odd number of neighbors in H, then
since H is an even hole, one of the sectors of the wheel (H,u) must be even. That sector
together with v induces an even hole and since that hole cannot be smaller than H, u must
be of Type g3, contradicting the assumption that u is bad. By a similar argument, if u has
an even number of neighbors in H, then all the sectors of (H,u) must be odd. O

Definition 4.2 Let v be a bad node w.r.t. a smallest even hole H of G. For i = 1,2,3,
we say that v is of Type bi w.r.t. H if V(H) N N(v) induces a graph G' with ezactly two
connected components, |V(G')| < 4 and the largest connected component of G' has exactly i
nodes (see Figure 3). Otherwise, we call v a Type b4 node w.r.t. H.
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Figure 3: Bad nodes of Type bl, Type b2 and Type b3

Suppose H is a smallest even hole in G and vy and vs are two nonadjacent bad nodes
w.r.t. H. Consider the following three types of subpaths of H.

e-path We call a subpath @); of H an edge-path (or e-path) if one of its endnodes is adjacent
to vy, the other is adjacent to v, at most one endnode is adjacent to both v, vs, and
no intermediate node of (); is adjacent to v; or vs.

n-path We call a subpath P; of H a node-path (or n-path) if it is a maximal path with the
following property: the endnodes of P; are adjacent to v; and no node of P; is adjacent
to w2, or the endnodes of P; are adjacent to vo and no node of F; is adjacent to v;. Note
that an n-path can have length 0.

z-path We call a subpath P, of H a zero-path (or z-path) if it is a maximal path with all the
nodes adjacent to both v; and ve. As G is 4-hole-free, there is at most one z-path.
Furthermore, if the z-path exists, it has at most two nodes.

We construct the graph H' from H defined as follows:
Contract each e-path @); of H to a single edge ¢;.
Contract each n-path P; of H to a single node p;.
If H has a z-path Py, contract it to a single node pg called the z-node of H'.

Since H has at least one node adjacent to v; but not vo and another adjacent to vo but
not vy, the graph H' has at least two nodes distinct from the z-node. Moreover, if H' has
no z-node, it has at least four nodes. To see this, note that, since H has no z-path, it must
have an even number of e-paths. If H has exactly two e-paths, then V(H)U{v;,v9} contains
an even hole smaller than H. So H has at least four e-paths and hence H' has at least four
nodes.

We call an edge or a node of H' even (odd) if the corresponding path of H has even (odd)
number of edges. We call an edge or a node of H' real if the corresponding path of H is an
edge or a node respectively. Note that real edges are odd and real nodes are even.
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Lemma 4.3 Let ¢; and g; 11 be two consecutive edges of H' such that their common endnode
p; 15 distinct from pg. Then q; and q;+1 have the same parity if and only if p; is odd. Moreover,
the edges of H' incident with py are odd.

Proof: Indeed, otherwise either (H,vy) or (H,v2) would have an even sector, contradicting
Lemma 4.1. O

Lemma 4.4 Suppose that H' has a z-node py and that q; = p;p;+1 s an even edge. Then q;
has a real endnode that is adjacent to py by a real edge. Moreover, py is a real node and H'
has at least four edges.

Proof: By Lemma 4.3, pg is not an endnode of ¢;. If Py has a node ug that is adjacent to
neither endnode of @;, then V(Q;) U {ug,v1,v2} induces an even hole. Since H is a smallest
even hole of G, V(H) \ V(Q;) contains three nodes. But now, since v; and vy are bad w.r.t.
H, they are of Type bl. This implies that G contains a 4-hole, a contradiction. Hence, we
may assume w.l.o.g. that p; is a real node and is adjacent to py by a real edge. As vy and vo
are bad nodes w.r.t. H, it follows that p;y; is not adjacent to py in H'. Hence, since every
node of Py must be adjacent to an endnode of Q);, pp is a real node. Finally, since v; and vs
are bad, H' has at least four edges. a

Lemma 4.5 Let g; and g; be two nonconsecutive edges of H' with the same parity. Suppose
that po is not an endnode of q; nor q;. Then q; and g; have real endnodes that are adjacent
by a real edge.

Proof: Suppose not. Since V(Q;) UV (Q;)U{vi,v2} does not induce a smaller even hole than
H, it follows that H' has four edges, say 4 = 1 and 7 = 3, the paths Q3 and @4 each have
length 2, and vy, vy are both of Type bl. Since G has no short 3PC(.,.), both @1 and Q3
have length greater 1. It follows that V(Q2) U V(Q4) U {v1,v2} is an 8-hole. Since H is a
smallest hole, @ and Q3 both have length 2. But now V(Q1) UV (Q2) forms a 6-hole with
v1 or ve, contradicting the assumption that G contains no 6-hole. O

Lemma 4.6 If p; is a node of H' that is not adjacent to py, then either p; is even or P; is
an edge.

Proof: The result holds when ¢ = 0, so we assume now ¢ # 0. Suppose p; is odd. Then, by
Lemma 4.3, the two edges of H' that have p; as a common endnode, say ¢; and ¢;;1, must
have the same parity. So, if P; is not an edge, V(Q;) UV (Q;i4+1) U {v1,v2} induces a smaller
even hole than H. a

Theorem 4.7 Let vy and ve be nonadjacent bad nodes w.r.t. o smallest even hole H of G.
Then either vi and ve have a common neighbor in H, or exactly one of vi,vy is of Type b2
w.r.t. H.

Proof: Let H' be defined from H as above. Assume v; and vo have no common neighbor in

H. Then H' has no z-node. Let py,...,p;, be the nodes of H' appearing in this order when
traversing H' and assume w.l.o.g. that vy is adjacent to p;. Then pj is adjacent to v; if and
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only if £ =i (mod 2). Furthermore, m is even since pip,, is an edge and p; is adjacent to vy,
which implies that p,, is adjacent to v,.
Case 1: m > 6.

It follows from Lemma 4.5 that H' cannot have three consecutive even edges. Hence
H' has two odd edges, the endnodes of which are not adjacent by a real edge. But this
contradicts Lemma 4.5.

Case 2: m =4.

Suppose v is not a Type b2 node w.r.t. H. Then, by Lemmas 4.1 and 4.6, both p; and
p3 must be even. Now, if ps and p, are also even, then by Lemma 4.3, the edges of H' must
be alternately odd and even. Thus H' has two odd edges whose endnodes are not adjacent
by a real edge, contradicting Lemma 4.5. Hence vy is of Type b2.

If both v; and vy are of Type b2, then all the nodes of H' are odd and, by Lemma 4.3,
all the edges of H' must have the same parity. But then, any two nonadjacent edges of H’
contradict Lemma 4.5. a

Lemma 4.8 Let H be a Type b2 node free smallest even hole and let v1 and vy be two
nonadjacent bad nodes w.r.t. H. Then H = ug,u1,...,u, where vy and vo are both adjacent
to ug. If v1 and vy have exactly one common neighbor in H, then w.l.o.g. vi is adjacent to
w1 and the two sectors of (H,v1) with common endnode uy, contain all the neighbors of ve in
H. Otherwise, vi and vy are both adjacent to uy and w.l.o.g. the two sectors of (H,vy) with
common endnode uy, contains all the neighbors of ve in H.

Proof: By Theorem 4.7, H has a z-path. Consider H' = py,p1,...,pmn obtained from H
as before, where pg is the z-node. Assume w.l.o.g. that ¢; = p;p;y1 where 0 < ¢ < m and
m + 1 = 0. Furthermore, assume w.l.o.g. that v; is adjacent to pq, i.e. the endnodes of P,
are adjacent to v;. By Lemmas 4.3 and 4.4, all the edges of H' are odd, except maybe q;
and gp—1-
Case 1: H' has an even edge.

W.lLo.g. ¢ is even. By Lemma 4.4, qo is a real edge, both py and p; are real nodes and
m > 3. If m = 3, we are done. Assume m = 4. As py and p; are real nodes, Lemma 4.1
implies that ps must be odd. But then, by Lemma 4.6, v; would be of Type b2. Hence m > 5.
As both ¢» and ¢3 are odd by Lemma 4.3, it follows that ps is odd. Hence, by Lemma 4.5
applied to ¢o and g4, g4 is even. But then ¢; and ¢4 contradict Lemma 4.5.
Case 2: All the edges of H' are odd.

By Lemma 4.3, po is odd. If m > 4, then the pair ¢; and ¢3 contradicts Lemma 4.5. If
m = 3, then, by Lemmas 4.1 and 4.6, vo would be of Type b2 w.r.t. H. Hence m = 2 and,
by Lemma 4.1 applied to H and ve, Py has two nodes up and u;. So we are done. O

This lemma implies the next result.
Theorem 4.9 Let H be a Type b2 node free smallest even hole. Let v1 be a Type b3 node

w.r.t. H and N(v1) NV (H) = {uy,uz,u3,us}, where ug is adjacent to uy and us. If vy is a
bad node w.r.t. H, then N(vy) N{ug,us,v1} # 0.
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PROCEDURE BAD
Input: A graph G that does not contain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.

Output: A family £ of induced subgraphs of G that satisfies the following: If G contains a
smallest even hole H, then, for some G' € L containing H, the family Cq (H) has no
Type b2 nodes. Moreover, if there is a Type bl or b3 node w.r.t. H but no Type b2
node w.r.t. a hole in Cg(H), then H is a spotless smallest even hole in some graph
G" e L.

Step 1: Set £ = {G}.

Step 2: For every (P, Py, u), where P, = xy,x1,%9,23 and P» = yo,y1,Yy2,y3 are disjoint
chordless paths in G and u € N(z1) N N(y1), add to £ the graphs obtained from G by
removing the node set N ({z1,z2,y1,y2,u}) \ (V(P1) UV (P)).

Theorem 4.10 Procedure BAD produces the desired output.

Proof: Let u be a Type bi node w.r.t. a smallest even hole H, where ¢ < 3. Take
P, = xy, 21,290,253 and Py = yo,y1,Y2,y3 to be disjoint subgraphs of H such that N(u) N
{z1,%2,y1,y2} has maximum cardinality. Denote by G’ the graph G \ (N ({z1, z2,y1, y2,u}) \
(V(PL)UV(P,))). Then G' € L and H C G".

Claim: In G, node u is a Type bi node w.r.t. all the holes in Cqr(H).

Proof of Claim: Indeed, in G', the nodes 1, 72, y; and ys have degree 2. Since they belong
to H, they also belong to all the holes in Cq(H). It follows that P, and P» are subpaths in
all the holes of Co/ (H). This completes the proof of the claim.

By Theorem 4.7, if i = 2, then every hole in C¢v (H) is Type b2 node free. By Theorem 4.9,
if i = 3 and all holes in C;(H ) are Type b2 node free, then H is a spotless smallest even hole
in G'. Finally, by Theorem 4.7, if i = 1 and all holes in Cg(H) are Type b2 node free, then
H is a spotless smallest even hole in G'. O

Lemma 4.11 Let H be a Type b2 node free smallest even hole and vi, vy and vs be three
pairwise nonadjacent bad nodes w.r.t. H. Then there exists a node u € V(H) that is adjacent
to vy, vy and vs.

Proof: By Theorem 4.7, there exists a node v € V(H) that is adjacent to v; and vy. Suppose
v3 is not adjacent to u.

As v and vy are two nonadjacent bad nodes w.r.t. H, by Lemma 4.8, we may let
H = ug,uq,...,uy, where u = ug, node uy is adjacent to v; (and possibly vy) and the two
sectors of (H,v1) with common endnode u; contain all the neighbors of ve in H. Consider
the following two cases.

Case 1: v3 is adjacent to u.

As vz is not adjacent to wug, and vy is adjacent to ug but not to wue, it follows from
Lemma 4.8 that the two sectors of v; sharing ug contain all the neighbors of vz in H. By
Theorem 4.7, nodes vy and w3 have a common neighbor in H. The only possibility is node
u1. So uy satisfies the lemma.
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Case 2: v3 is not adjacent to u;.

Suppose that v, v2 and v do not have a common neighbor in H. Let u; be adjacent to
v; and v3, and let u; be adjacent to vo and v3. Then ¢ > j. First assume that u; = u,,. It
follows from Lemma 4.8 applied to v; and vz that N(vi) NV (H) = {ug, u1, Upm—1,un}. But
then (H,vy) is a short 4-wheel, a contradiction.

It follows that < < m. Then i = j+1, otherwise the set {u;,u;,v1,v2,v3,up} would induce
a 6-hole. If v3 is not adjacent to u;_1, then by Lemma 4.8, the two sectors of (H,v3) sharing
u; must contain all the neighbors of vo. But then v3 is not adjacent to u; 1 and the two sectors
of (H,v3) sharing u; must contain all the neighbors of vy in H, a contradiction. Hence v3
is adjacent to both u;_; and u;1;. Now, by Lemma 4.8, the sectors of (H,v3) sharing u; 1
(uj—1) contain all the neighbors of vy (v2). So (H,v3) is a short 4-wheel, a contradiction. O

Theorem 4.12 Let H be a Type b2 node free smallest even hole. If there exist three nonad-
jacent bad nodes w.r.t. H, then there exists a node w in H such that all the bad nodes w.r.t.
H are adjacent to node u or to one of the neighbors of u in H.

Proof: Suppose v1, v2 and v3 are three nonadjacent bad nodes w.r.t. H and u is a common
neighbor in H (such a node exists by Lemma 4.11). Let u;,us denote the neighbors of u in
H. Suppose v is a bad node w.r.t. H that is not adjacent to a node in {u,u;,u2}. Then,
v is adjacent to at most one of the nodes vy, vy, vs3, else G contains a 4-hole. Say v is not
adjacent to v; and vs. Now, by Lemma 4.11, nodes vy, v2,v have a common neighbor in H,
say w. But then w, v, u, vy is a 4-hole, a contradiction. O

For a node set S, denote by «(S) the cardinality of a largest stable set in S.

Theorem 4.13 Let H be a Type b2 node free smallest even hole and S be the set of all bad
nodes w.r.t. H.

a. If a(S) = 1, then there are two nonadjacent nodes uy,ug in H such that either S = N'
where N' = N(u1)NN(uz), or there exists a € S\N' with the property that, if N denotes
the set of nodes of G\ (N'U{a}) adjacent to all nodes in N'U{a}, then |V(H)NN| <3
and S C NUN'U{a}.

b. If «(S) = 2, then there are two nonadjacent nodes uy,uy in H, and a third node w; in
H (not necessarily distinct from uy or ug) such that, if A = S\ N(w) and N" =
(N(u1) NN (ug2)) \ N(wy), then either a(A\ N") <1, or there exists a node a € A\ N"
and o node vi adjacent to ui, ue and wi with the property that, if N is the set of
nodes of G\ (N" U {a,v1}) that are adjacent to all the nodes in N" U {a,v.1}, then
[V(H)YNN| <3 and a(A\ (NUN"U{a})) <1.

Proof: a. Let u; and us be two nodes of H such that

(i) the shortest path of H connecting u; and uy has at least three edges,

(ii) N = N(u1) N N(uz2) has maximum cardinality.

By (i), N' C S. If N' = S, we are done. So, suppose a € S\ N'. Denote by N the
nodes of G\ (N'U{a}) adjacent to all nodes in N'U{a}. Then, since S is a clique containing
N'u{a}, SC NUN'U{a}.
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If |V(H)N N| >4, then H would contain two nodes z; and x2 satisfying (i) and having
more common neighbors in S than u; and ug, which contradicts (ii).

b. Suppose v1,v2 € S are nonadjacent.

By Theorem 4.7, nodes v; and v have a common neighbor in H, say w;. Let A be the
set of bad nodes that are not adjacent to wy. As G is 4-hole free, each node of A is adjacent
to exactly one of vy, vs. For 4 = 1,2, denote by A; the set of nodes of A adjacent to v;. Then
AiNAy =0 and A1 U Ay = A. As «S) = 2, it follows that both A; and Ay are cliques
(possibly empty). Now assume that u; and uy are two nodes of H such that

(i) v; is adjacent to both u; and ug,

(ii) the shortest path in H connecting u; and uy has at least three edges,

(iii) N” = (N(u1) N N(ug)) \ N(w;) has maximum cardinality.

As vy is a bad node w.r.t. H, such a pair of nodes u;,us always exists. (ii) and (iii)
imply that N” C A. As G is 4-hole free and N(v1) N Ay = 0, it follows that N C A;. If
Ay = N" then A\ N" = Ay, so a(A\ N”) <1 and we are done. So, suppose a € A; \ N”".
Denote by N the nodes of G\ (N" U {a,v,}) adjacent to all the nodes in N” U {a,v;}. Then,
since A; is a clique containing N” U {a}, it follows that A; C N U N" U {a}, and hence
a(A\ (NUN"U{a})) < 1.

If |V(H)NN| >4, then N would contain two nodes x; and x2 satisfying (i) and (ii) and
having more common neighbors in A; than u; and wug, which contradicts (iii). O

PROCEDURE b4
Input: A graph G that does not contain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.

Output: A family £ of induced subgraphs of G that satisfies the following: If G contains a
smallest even hole H such that Cq(H) is Type bi node free for i = 1,2, 3, then H is a
spotless smallest even hole in some G' € L.

Step 1: Set £L =Ly ={G} and £, = L3 = ().

Step 2: For every chordless path P = wy, w1, we, ws, ws in G, add to L the graph obtained
from G by removing the node set (Ui_; N (w;)) \ V(P).

Step 3a: For every chordless path P = wq, w1, ws in G and v1 # wy, ws adjacent to wy, add
to £, the graph obtained from G by removing the node set N(wy) \ {wo, we,v1}.
For k=1 to 2, do
begin

Step 3b: For every L € L, and for every nonadjacent uy,uy € V(L), add to L4 the graph
obtained from L by removing the node set N(u1) N N (ug).

Step3c: For every L € L and for every nonadjacent uy,us € V(L), let N' = N(u1) NN (u3).
For every a € V(L)\ N, let N denote the set of nodes of L\ (N'U{a}) that are adjacent
to all the nodes in N' U {a}. For i = 0,1,2,3, let N; denote the family of all subsets of
N with cardinality |N| —4. For every M € N;, add to Ly the graph obtained from L
by removing the node set M U N'U {a}.

end

20



Step 4: Add to £ all the graphs in L.
Theorem 4.14 Procedure b4 produces the desired output.

Proof: Let H be a smallest even hole in G that is Type b2 node free, and S be the set of all
bad nodes w.r.t. H.

If «(S) > 3, then, by Theorem 4.12, Step 2 produces a graph G’ in £ where H is clean.

If a(S) = 1, then, by Theorem 4.13a, Steps 3b and 3¢ applied to G € Lo when k = 2,
produces a graph G’ € L3 where H is clean.

Finally, if «(S) = 2, then Step 3a produces a graph L € L£; where the nodes of G in
N(wy) \ {wo, w2, v} are removed. The bad nodes that remain are v; and A = S\ N(w;). By
Theorem 4.13b, Steps 3b and 3c applied to L when k = 1 produce a graph in Lo that contains
H and such that the set Ay of remaining bad nodes w.r.t. H satisfies «(A4y) < 1 (Note that
N' in Step 3c (k=1) of the algorithm is equal to N” U {v1} as defined in Theorem 4.13b
whenever v; is adjacent to u; and uy.) Now, by Theorem 4.13a, Steps 3b and 3¢ when k = 2
produce some graph G’ € L3 where H is clean.

So, in all cases, the algorithm produces a graph G’ in £ where H is clean. To complete
the proof it remains to show that, if C;(H) is Type bi node free for ¢« = 1,2,3, then H is a
spotless smallest even hole in G’. This follows from the next two claims.

Claim 1: If H* is a clean smallest even hole and Ci(H*) is Type bi node free, for i = 1,2, 3,
then any hole obtained from H* through one special tent substitution is also clean.

Proof of Claim 1: Let zy be a special tent w.r.t. H*, with intermediate paths P; and P,
where P is of length 2, and let H be the hole induced by the node set V(P2)U{z,y}. W.Lo.g.
assume that x is of Type g2 w.r.t. H*, with neighbors z; and z9 in H*, and node y has a
unique neighbor y; in H*. Let p; be the intermediate node of P;, and w.l.o.g. let z2 and ¥
be the endnodes of P;. We will show that the strongly adjacent nodes to H are of Type g2
or g3.

Suppose not and let v be a strongly adjacent node to H that is not of Type g2 or g3.
Then u must have at least one neighbor in P». Let u; be the neighbor of v in P, that is
closest to z1, and let P’ be the zyu;-subpath of P,. Since H* is clean, u is either not strongly
adjacent to H* or is of Type g2 or g3 w.r.t. H*. Also u must be adjacent to a node in {z,y},
so we have the following three cases to consider.

Case 1: Node v is adjacent to both x and y.

First assume that v is adjacent to y;. Then uw must have at least two neighbors in P5,
since otherwise u is of Type g3 w.r.t. H. If u has two neighbors in P then u; is adjacent to
y1 and (H,u) is a short 4-wheel. If 4 has three neighbors in P, then it is of Type g3 w.r.t.
H* and the hole induced by the node set V(P') U {z,u} is even of length smaller than H*,
contradicting our choice of H*. Hence u is not adjacent to y;. By a similar argument v is not
adjacent to x; either. Since v must have a neighbor in P, and since it is either not strongly
adjacent to H™ or it is of Type g2 or g3 w.r.t. H*, this implies that v does not have any
neighbors in P;. Node u; is not adjacent to v, since otherwise u, y,y1,u1,u is a 4-hole. Let
H' be the hole induced by the node set V(P') UV (Py) U {y,u}. But now (H',z) is a short
4-wheel.

Case 2: Node v is adjacent to = but not to y.
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Node u is not adjacent to y;, since otherwise u, x,y, y1,u is a 4-hole. If u is adjacent to x
then u is of Type g3 w.r.t. H*, with all neighbors in P,. But then (H,u) is a short 4-wheel.
Hence u is not adjacent to 1 nor y;, which implies that it cannot have any neighbors in P;.
But now there is a short 3PC(z,y;), where two of the paths are z, P;,y; and z,y,y; and the
third path passes through w.

Case 3: Node u is adjacent to y but not to x.

Node u is not adjacent to 1, since otherwise u,y, z,z1,u is a 4-hole. If u is adjacent to y;
then u is of Type g3 w.r.t. H*, with all neighbors in P,. But then (H,u) is a short 4-wheel.
Hence u is not adjacent to 1 nor y;, which implies that it cannot have any neighbors in P;.
If w is of Type gl or g3 w.r.t. H*, then w is of Type bl or b3 w.r.t. H, contradicting the
assumption that Cq(H™) is Type bl and b3 node free. Since H* is clean, v must be of Type
g2 w.r.t. H*, contradicting Lemma 4.1 applied to H and .

Claim 2: If H* is a clean smallest even hole and Ci(H*) is Type bi node free, for i = 1,2, 3,
then any hole obtained from H™* through one Type g3 node substitution is also clean.

Proof of Claim 2: Let x be a Type g3 node w.r.t. H*, with neighbors z1, 2 and z3 in H*.
Assume that s is the middle neighbor of z in H* and let H be the hole obtained from H*
by substituting « for x3. We will show that the strongly adjacent nodes to H are of Type g2
or g3. Let u be a strongly adjacent node to H. We consider the following two cases.

Case 1: Node v is not adjacent to x.

Then u cannot be adjacent to both z; and x3, since otherwise z,z1,u,x3,x is a 4-hole.
Since w is strongly adjacent to H, it is also strongly adjacent to H*. Since H* is clean, u
is of Type g2 or g3 w.r.t. H*. But then, since u is not adjacent to both z; and x3, u is of
Type g2 or g3 w.r.t. H as well.

Case 2: Node u is adjacent to x.

If u is not adjacent to z; nor z3 then it is also not adjacent to zs, since otherwise
would be a bad strongly adjacent node w.r.t. H*. By Lemma 4.1 applied to H and u, node
u cannot be of Type g2 w.r.t. H*, and hence it is of Type gl or g3 w.r.t. H*. But then u
is of Type bl or b3 w.r.t. H, contradicting the assumption that Cq(H*) is Type bl and b3
node free. Therefore u must be adjacent to z1 or z3.

First assume that v is adjacent to both 1 and z3. Then u must also be adjacent to xo,
since otherwise u, x1, 2, x3,u is a 4-hole. Since H* is clean, u is of Type g3 w.r.t. H* and
hence w.r.t. H as well.

Now assume that u is adjacent to z1 but not to x3. Note that since H* is clean, u can
have at most three neighbors in V(H*) \ {z2}. If v has two neighbors in V(H*) \ {z2}, then
u is of Type g2 or g3 w.r.t. H* and hence of Type g3 w.r.t. H. If u has three neighbors in
V(H*)\ {z2}, then (H,u) is a short 4-wheel. This completes the proof of Claim 2 and of the
theorem. a

CLEANING ALGORITHM
Input: A graph G that does not contain a 4-hole, a 6-hole, a short 4-wheel nor a short 3PC.

Output: A family £ of induced subgraphs of G such that, if G contains an even hole, then
some G’ € L contains a spotless smallest even hole.
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Step 1: Set £ = {G}.

Step 2: Apply Procedure BAD to G and let £’ be the resulting output family.

Step 3: Apply Procedure BAD to each graph in £ and union the output with L.
Step 4: Apply Procedure b4 to each of the graphs in £ and union the output with L.

If G contains an even hole then, after Step 2, £’ contains a graph G’ with a smallest even
hole H such that Cq/ (H) is Type b2 node free. Now, if H has a Type bl or b3 node in G’,
we get the desired output in £ after Step 3 and otherwise we get it after Step 4. So the
Cleaning Algorithm produces the desired output. The size of the output can be estimated to
be O(n?).

5 2-Join Decompositions

In this section, we assume that G does not contain a 4-hole, a dominated node, a gem nor a
full k-star cutset, k = 1,2,3. So, by Lemma 1.14, G contains no k-star cutset.

Let V1|V; be a 2-join with special sets (A;, Aa, B, Ba). For i = 1,2, let P; be the family of
chordless paths P = z1,...,%, where z; € A;, z, € B; and z; € V;\ (4;UB;),2<j <n—1.

Lemma 5.1 The sets P; are nonempty and contain no path of length 1, for i =1,2.

Proof: Let u € Ay and v € By.

First, suppose that there is no path in V; from A; to By. Then, since |V;| > 2, either
{u} U Ag or {v} U By is a star cutset. Hence Py # ). Similarly, Py # 0.

Now, if wv is an edge, then no node of A, can be adjacent to a node of By (since G is
4-hole-free). As Py # (), it follows that V5 \ (A2 U Bg) # (. But then {u,v} U Ay U By would
be a double star cutset. a

The blocks of a 2-join decomposition are graphs GG; and Gg defined as follows. Block G
consists of the subgraph of G induced by node set V) plus a marker path P> = ao, ..., by that
is chordless and satisfies the following properties. Node as is adjacent to all the nodes in Ay,
node by is adjacent to all the nodes in By and these are the only adjacencies between P, and
the nodes of Vi. Furthermore, let () € Po. The marker path P, has length 4 if () has even
length, and length 5 otherwise. Block G3 is defined similarly.

Theorem 5.2 Let Gy and Gy be the blocks of a 2-join decomposition of G. Then, G 1is
even-hole-free if and only if G1 and G5 are even-hole-free.

Proof: First assume that G or G2 has an even hole, say G does. Replacing in G; the marker
path P, by a path @ € Py of the same parity yields a graph G that contains an even hole.
Since G is a subgraph of G, this hole is also an even hole of G.

Conversely, suppose that G contains an even hole. If P; (resp. P2) has paths of different
parities then, clearly, G2 (resp. G1) has an even hole. If all the paths of P; U Py have the
same parity, then both G; and G2 have even holes. So, we may assume that all the paths
of P, are odd and all the paths of Py are even. But then each even hole H of G must be
contained in V3 U Ao U Bs or Vo U Ay U B;. Hence H belongs either to G or Gs. O
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Lemma 5.3 If G does not contain a full k-star cutset, k = 1,2,3, then neither do the blocks
of a 2-join decomposition of G.

Proof: Let G and G5 be the blocks of a 2-join decomposition of G and suppose that one of
them, say G, contains a full k-star cutset S, £ = 1,2,3. We will obtain a contradiction by
showing that this implies that G also contains a full k-star cutset. We consider the following
three cases.

Case 1: S = N[z]

If z is not a node of the marker path P, then S is also a cutset in G. First assume that =
coincides with as or bo, say £ = ao. Since Ps is not an edge, the nodes of By are all contained
in the same component of G1\S. Let u be a node of G\ S that is not in the same component
as B1. But then N(a) U {a}, where a € Ay, is a full star cutset in G breaking u from Bj.
Now assume that « is an intermediate node of P. Note that the graph induced by the node
set V1 U{ag, be} is connected since otherwise G would have a star cutset. Hence z is adjacent
to ag or by, say as. Let u € A; and v € By be the endnodes of a path in P;. Since P, is
of length greater than 2, the nodes of B; U {u} are all contained in the same component of
G1\ S. Let y be a node of G \ S that is not in the same component as By. Then N(u)U{u}
is a full star cutset in G breaking y from v.

Case 2: S = N(z) UN(y)

If P, contains neither = nor y, then S is also a cutset in G. If P contains both = and y,
then since P, is of length greater than 3, either N(z) U{z} or N(y) U{y} is a full star cutset
in Gy, and we are done by Case 1. So assume w.l.o.g. that z = a2 and y € A;. Let u be a
node of Ay. Then N(u) U N(y) is a full double star cutset in G.

Case 3: S = N(z) UN(y) UN(z)

If P, does not contain a node in {z,y, z}, then S is also a cutset in G. So w.l.o.g. assume

that z = a2 and y,z € A;. But then N(z) U N(y) is a full double star cutset in G. O

We now present an algorithm that decomposes a graph using 2-joins.

Remark 5.4 In [8], a set of forcing rules is given that decides in polytime whether a pair of
edges ayay and byby belong to a 2-join with special sets (A1, Ao, By, Ba) such that for i =1,2
a; € A; and b; € B;. The algorithm either outputs such a 2-join or it concludes that no such
2-join exists. We outline here this algorithm for the sake of completeness. As pointed out
to us by Jim Geelen and Paul Seymour, these forcing rules can be formulated as o 2-SAT
problem, thus providing an alternate, and elegant, proof that a 2-join can be found in polytime.

Let a1, a2,b1,b2,u be five distinct nodes such that aias and biby are edges but neither
a1by nor agby is an edge and u is adjacent to at most one of the nodes ag, by (possibly none).
The following rules yield a 2-join V;|Va with ai,b;,u € V; and ag,bs € Va2 or show that no
such 2-join exists.

During the algorithm, the nodes h in V;j are partitioned into three sets:

e Node h belongs to A; if it is adjacent to as but not by,
e Node h belongs to B; if it is adjacent to by but not as,

e Node h belongs to Sy if it is adjacent to neither ao nor bs.
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The case where some node h in V; is adjacent to both ay and by will not be permitted.
Initially, a1, b1, u are in V; and all the other nodes of G are in V5. Forcing rules are used
to move nodes from V5 to Vi as follows.

e If v € V5 is adjacent to at least one node in S7, add v to Vi and delete it from Vs,

e If v € V5 is adjacent to at least one node in A; UB; and N(v) N (4; UBy) # Ay or By,
then add v to V7 and delete it from V5.

If some node v moved from Vo to Vi is adjacent to both ao and be, then the algorithm
terminates since no 2-join with a1,b1,u € V7 and ag, by € Vo exists. If this situation never
occurs, we continue moving nodes from V5 to V; until no forcing rule applies. At this stage,
denote by As the nodes of Vo adjacent to Ay, by Be those adjacent to Bs and by S> the rest.
The only adjacencies between nodes of V; and V5 are between node sets Ay, As and between
B, By. There are three possibilities.

o If |Vo| = 2 or if |Ay| = |B2| = 1 and V5 induces a path, then no 2-join exists with
a1,b1,u € Vi and ag, by € V.

e If the first case does not occur and if |[A1| > 2 or |By| > 2 or |A;| = |B1| =1 but V}
does not induce a path, then V1|V, is a 2-join with special sets (A;, Ag, By, B3).

e Finally, when neither of the above two cases occur, then |A;| = |B;| = 1 and V; induces
a path. For each h € Vo, move h from V5 to Vi and use the above forcing rules to find
a 2-join with a1,b1,u,h € V; and a9, by € Va. If this fails for all h € Vo, then no 2-join
exists with a1,b1,u € Vi and ag,bs € Vo.

Remark 5.5 Constructing blocks of a 2-join decomposition can be done in polynomial time.

By Remarks 5.4 and 5.5, one can see that every step of the following algorithm can be
implemented to run in polynomial time.

2-JOIN DECOMPOSITION ALGORITHM

Input: A graph G that does not contain a 4-hole, a gem, a full k-star cutset, & = 1,2, 3, nor
any dominated nodes.

Output: A list £ of graphs, with the following properties:

e The graphs in £ do not contain a 4-hole, a gem, a full k-star cutset, £ = 1,2,3, a
2-join nor any dominated nodes.

e (G is even-hole-free if and only if all the graphs in £ are even-hole-free.
Step 1: Let £' = {G} and £ =.

Step 2: If L' = (), stop. Otherwise, remove a graph F from L'. Let L£"” be the set of all
{{a1,b1,u}, {a2,ba}} where a1, by, as,bs,u are five distinct nodes of F' with the property
that a1b; and agby are edges but not agb; nor a;bs, and node v is adjacent to at most
one of the nodes as, bo.
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Step 3: If £ = ), add F to £ and go to Step 2. Otherwise, remove {{ay,b1,u},{az,b2}}
from L.

Step 4: Check whether there is a 2-join V1|V, with special sets (A;, As, B1, By) such that
u € Vy, forv = 1,2, a; € A; and b; € B;. If there is such a 2-join, go to Step 5.
Otherwise, go to Step 3.

Step 5: Construct the blocks of the 2-join decomposition, add them to £’ and go to Step 2.

Remark 5.6 The number of graphs in list L produced by the 2-Join Decomposition Algorithm
is O(|lV(G)|). This is easily seen by observing that in each 2-join decomposition, the sum of
the number of nodes in the two blocks is at most 12 more than the number of nodes in the
original graph. If we stop doing 2-join decompositions when the size of the blocks is smaller
than 24, then the number of blocks created is only linear in the number of nodes in the original
graph.

Lemma 5.7 The 2-Join Decomposition Algorithm produces the desired output.

Proof: By constructing blocks of a 2-join decomposition we do not create any gems, dominated
nodes nor any 4-holes. So by Lemma 5.3, at every point in the algorithm the graphs in £’
have the property that they do not contain a 4-hole, a gem, a full k-star cutset, £ = 1,2, 3,
nor any dominated nodes. By the construction of £, the graphs in £ do not contain a 4-hole,
a gem, a full k-star cutset, k = 1,2,3, a 2-join nor any dominated nodes. Furthermore, by
Theorem 5.2, G is even-hole-free if and only if all the graphs in £ are even-hole-free. a
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