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Abstract

In this paper we decompose odd-hole-free graphs (graphs that do not contain as
an induced subgraph a chordless cycle of odd length greater than three) with double
star cutsets and 2-joins into bipartite graphs, line graphs of bipartite graphs and the
complements of line graphs of bipartite graphs.

1 Introduction

In this paper, all graphs are simple. A cycle is even if it contains an even number of nodes,
and it is odd otherwise. A hole is a chordless cycle with at least four nodes. An odd-hole-free
graph is a graph that does not contain an odd hole. When we say that a graph G contains a
graph H, we mean that H appears in G as an induced subgraph.

Given a graph G and a node set S, we denote by G \ S the subgraph of G obtained by
removing the nodes of S and the edges with at least one node in S. A node set S C V(G)
is a cutset of G if the graph G \ S is disconnected. For S C V(G), N(S) denotes the set of
nodes in V(G) \ S that are adjacent to at least one node in S. A node set S is a K,,-star if
S contains a clique C of size m and S C C U N(C). We also refer to a Ki-star as a star and
to a Ko-star as a double star.

A graph G has a 2-join, denoted by H;|Hj, if the nodes of G' can be partitioned into sets
H; and Hs with nonempty and disjoint subsets Ay, By € Hi, As, Bo C Ho, such that all
nodes of A; are adjacent to all nodes of As, all nodes of B; are adjacent to all nodes of By
and these are the only adjacencies between H; and Hs. Also, for i = 1,2, |H;| > 2 and if
A; and Bj (resp. Ay and Bsg) are both of cardinality 1, then the graph induced by H; (resp.
Hy,) is not a chordless path. 2-joins were introduced by Cornuéjols and Cunningham [9].

The main result of this paper is the following.

Theorem 1.1 If G is an odd-hole-free graph, then G s a bipartite graph or the line graph of
a bipartite graph or the complement of the line graph of a bipartite graph, or G has a double
star cutset or a 2-join.

In [7] Conforti, Cornuéjols, Kapoor and Vuskovié obtain a polynomial time recognition
algorithm for the class of even-hole-free graphs. This algorithm is based on the decomposition
of even-hole-free graphs by 2-joins, double star and triple star (K3-star) cutsets obtained in [6].
It would be of interest to try to use Theorem 1.1 to construct a polynomial time recognition
algorithm for the class of odd-hole-free graphs. This problem is currently not even known to
be in NP.

Odd-hole-free graphs are related to perfect graphs introduced by Berge. A graph G is
perfect if every induced subgraph H of G has a chromatic number equal to the size of a
largest clique in H. A graph is Berge if it contains neither an odd hole nor its complement.
Every perfect graph is Berge and the strong perfect graph conjecture (SPGC) states that
every Berge graph is perfect. Well known classes of Berge graphs are bipartite graphs, line
graphs of bipartite graphs, and the complements of such graphs. It is easy to verify that these
graphs are perfect. Ongoing research (in March 2001) is aimed at obtaining a decomposition
theorem for Berge graphs that uses more refined cutsets that would allow for the proof of the
SPGC. For example, when G is a square-free Berge graph, Conforti, Cornuéjols and Vuskovié¢



[8] showed that “double star cutset” can be replaced by “star cutset” in the statement of
Theorem 1.1. Since star cutsets cannot occur in minimally imperfect graphs (Chvatal [1])
and neither can 2-joins (Cornuéjols and Cunningham [9], see also [11, 4]), it follows that
the strong perfect graph conjecture holds for square-free graphs. A skew cutset is a cutset
S = AU B where A, B are disjoint and nonempty, and every node of A is adjacent to every
node of B. Note that a star cutset is a skew cutset which itself is a double star cutset.
Chvétal [1] introduced skew cutsets and conjectured that they cannot occur in a minimally
imperfect graph. This conjecture implies that a decomposition theorem for Berge graphs
similar to Theorem 1.1, in which “double star cutsets” are replaced by “skew cutsets”, would
prove the SPGC. Such a decomposition theorem and the proof of the skew cutset conjecture
were recently obtained by Chudnovsky, Robertson, Seymour and Thomas [2].

1.1 Proof Outline

To obtain Theorem 1.1, we prove the following more general result. We sign a graph by
assigning 0,1 weights to its edges in such a way that, for every triangle in the graph, the
sum of the weights of its edges is odd. A graph G is even-signable if there is a signing of its
edges so that for every hole in G, the sum of the weights of its edges is even. Clearly, every
odd-hole-free graph is even-signable (assign weight 1 to all the edges).

Theorem 1.2 If G is an even-signable graph, then G is a triangle-free graph or the line
graph of a triangle-free graph or the complement of the line graph of a complete bipartite
graph, or G has a double star cutset or a 2-join.

The proof outline of Theorem 1.2 is as follows. Undefined terms will be defined later.

Theorem 1.2 holds for graphs that contain no proper wheels and no parachutes (Section
2).

If G contains a proper wheel that is not a beetle, then G has a double star cutset (Section
3).

If G contains an L-parachute, then G has a double star cutset (Section 4).

If G contains a T-parachute or a beetle, then G has a double star cutset or G contains a
3PC(A,A) with a Type t2, t2p, t4 or t5 node (Section 6).

If G contains a 3PC(A,A) # Cs with a Type t4 or t5 node, then G' has a double star
cutset (Section 8).

If G contains a 3PC(A, A) with a Type t2 or t2p node, then G has a double star cutset
or a 2-join (Section 9).

If G contains a Cs with a Type t4 or t5 node, then G has a double star cutset or a 2-join,
or G is the complement of the line graph of a complete bipartite graph (Section 10).



1.2 Notation and Background

Let G be a graph and H an induced subgraph of G. A node v € V(H) is strongly adjacent
to H, if |[N(v) NV (H)| > 2.

By Cs we denote a hole of length 6, and by Cg its complement.

A path P is a sequence of distinct nodes x1,...,z,, n > 1, such that z;xz;,1 is an edge,
for all 1 <4 < n. If n > 1 then nodes 1 and z,, are the endnodes of the path. The nodes
of P that are not endnodes are called intermediate nodes of P. The intermediate nodes of
P are also referred to as the interior of P. Where clear from context we write P instead of
V(P). Let x; and x; be two nodes of P, where [ > i. The path z;,2;11,...,2; is called the
z;x-subpath of P and is denoted by P,,.,. A cycle C is a sequence of nodes z1, x2, ..., Ty, %1,
n > 3, such that the nodes z1,z9,...,z, form a path and z;z, is an edge. The node set of
a path or a cycle @ is denoted by V(Q). The length of a path P is the number of edges in
P and is denoted by |P|. Similarly the length of a cycle C' is the number of edges in C' and
is denoted by |C].

Let A, B, C be three disjoint node sets such that no node of A is adjacent to a node of B.
A path P = z1,...,x, connects A to B if either n = 1 and z; has neighbors in A and B or
n > 1 and z1 is adjacent to at least one node in A and x,, is adjacent to at least one node in
B. The path P is a direct connection from A to B if, in the subgraph induced by the node
set V(P) U AU B, no path connecting A to B is shorter than P.

A wheel, denoted by (H,z), is a graph induced by a hole H and a node z ¢ V(H) having
at least three neighbors in H, say z1,...,z,. Node x is the center of the wheel. A subpath
of H connecting x; and x; is a sector if it contains no intermediate node z;, 1 <1 < n. A
short sector is a sector of length 1 (i.e. it consists of one edge), and a long sector is a sector
of length at least 2. A wheel is odd if it contains an odd number of short sectors. A wheel
with k sectors is called a k-wheel.

A line wheel is a 4-wheel (H,v) that contains exactly two triangles and these two triangles
have only the center v in common. A twin wheel is a 3-wheel containing exactly two triangles.
A wuniversal wheel is a wheel (H,v) where the center v is adjacent to all the nodes of H. A
triangle-free wheel is a wheel containing no triangle. These four types of wheels are depicted
in Figure 1, where solid lines represent edges and dotted lines represent paths. A proper wheel
is a wheel that is not any of the above four types.

A 3PC(z1z273,y) is a graph induced by three chordless paths P! = zy,...,y, P? =
Zo,...,y and P3 = x3,...,y, having no common nodes other than y and such that the only
adjacencies between nodes of P'\ y and P7\ y, for i,j € {1,2,3} distinct, are the edges of
the clique of size three induced by {z1,z2,23}. Also, at most one of the paths P!, P P3
is an edge. We say that a graph G contains a 3PC(A,.) if it contains a 3PC(zzex3,y) for
some 11, L2, 23,y € V(G).

The following theorem is an easy consequence of a theorem of Truemper [12].

Theorem 1.3 ([5]) A graph is even-signable if and only if it does not contain an odd wheel
or a 3PC(A,.).

The fact that even-signable graphs do not contain odd wheels and 3PC(A,.)’s will be
used throughout the paper.
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Figure 1: Wheels



Figure 2: L-parachutes

2 WP-Free Graphs

In this section, we state a result proven in [3]. First, we need some definitions.

Definition 2.1 An L-parachute LP(ca,db,v,z) is a graph induced by a line wheel (H,v)
where H = a,...,z...,b,d,...,c,a, where a, b, ¢, d are the neighbors of v in H, together
with a chordless path P = v,...,z of length greater than one. Furthermore, no node of
H\ {z,a} is adjacent to an intermediate node of P.

Definition 2.2 A T-parachute T'P(t,v,a,b,z) is a graph induced by a twin wheel (H,v)
where H = a,t,b,...,z,...,a, where t, a, b are the neighbors of v in H, together with a
chordless path P = v, ...,z of length greater than one. Furthermore, no node of H\ {z,a} is
adjacent to an intermediate node of P.

Definition 2.3 A parachute is either an L-parachute or a T-parachute.

Definition 2.4 A graph G is WP-free if it contains neither a proper wheel nor a parachute.

Theorem 2.5 Let G be an even-signable WP-free graph that is neither a triangle-free graph
nor a line graph of a triangle-free graph. Then G contains a double star cutset or a 2-join.



Figure 3: T-parachutes

In fact [3] proves a stronger result: “double star cutset or 2-join” in the statement of
Theorem 2.5 can be replaced by “star cutset or universal 2-amalgam”. Since star cutsets
cannot occur in minimally imperfect graphs (Chvétal [1]) and universal 2-amalgams cannot
occur in minimally imperfect Berge graphs (Conforti, Cornuéjols, Gasparyan and Vuskovié
[4]), it follows that the strong perfect graph conjecture holds for WP-free graphs. In this
paper we only need the weaker statement 2.5.

As a consequence of Theorem 2.5, it suffices to prove Theorem 1.2 when G contains a
proper wheel or a parachute.

3 Proper Wheels
In this section, we prove the following theorem.

Definition 3.1 A beetle is a wheel with four sectors, exactly two of which are short and are
furthermore adjacent.

Theorem 3.2 Let G be an even-signable graph. If G contains a proper wheel that is not a
beetle, then G has a double star cutset.

To prove this theorem, we use a result of [5].
A Mickey Mouse, denoted by M (xyz, Hi, Hs), is a graph induced by the node set H; U H,
with the following properties:

e the node set {z,y,z} induces a clique,
e H; is a hole that contains edge zy but does not contain node z,
e H, is a hole that contains edge xz but does not contain node y, and

e the node set H; U Hy induces a cycle with exactly two chords, xy and zz.



In [5] we obtained the following decomposition theorem for Mickey Mouses. Note that in
[5] Mickey Mouse defined as above is called a Mickey Mouse with long ears.

A node set S is an extended star if three nodes z,y,z of S induce a triangle and § C
N(z)U(N(y) N N(z)). Clearly, an extended star cutset is always a double star cutset, since
S C N(z)UN(y).

Theorem 3.3 If an even-signable graph G contains a Mickey Mouse M (zyz, Hy, Hs), then
N(xz) U (N(y) N N(z)) is an extended star cutset separating nodes of Hy from H.

A butterfly is a wheel (H, z) with six sectors exactly two of which are long, and, if z1, ...,z
are the neighbors of z in H encountered in this order, then zix9, zoxs, z425 and zs5zg are
edges. Denote by S; and Sy the two long sectors of a butterfly (H,z) whose endnodes are
1, T¢ and x3, x4 respectively.

Lemma 3.4 Let G be an even-signable graph that does not contain o Mickey Mouse and let
(H,z) be a butterfly in G. If u is strongly adjacent to (H,x) but is not adjacent to x, then u
is one of the following types.

Type a: All the neighbors of u in H are contained in either Sy or Ss.
Type b: The neighbors of u in H are contained in Sy U Se and u is not of Type a.

Type c: u is adjacent to x1,x2,z3 and the neighbors of uw in H are all contained in H \ x5,
or u is adjacent to x4,x5,x6 and the neighbors of u in H are all contained in H \ xs.

Type d: u is adjacent to z1,...,x¢ and has possibly more neighbors in Sy and Ss.
Type e: u is adjacent to xo, x5 and to no other node of H.

Type f: u has ezxactly two neighbors in H, that are furthermore adjacent and contained in
{*/‘Cla s 7$6}'

Proof: If u is adjacent to neither x5 nor x5, then v is of Type a or b. So w.l.o.g. assume that
u is adjacent to z9. Suppose that u is adjacent to neither x; nor z3 and is not of Type e.
Then v must have a neighbor in S \ z; or Sy \ z3, say it has a neighbor in S; \ ;. Let u; be
the neighbor of » in S7 that is closest to z¢ and let S| be the ujxzg-subpath of Sy. If u does
not have a neighbor in Sy, then the node set {u,z} U S] U Sy induces a Mickey Mouse. So
u must also have a neighbor in S, \ z3. Let uy be the neighbor of w in Sy that is closest to
x3, and let S}, be the zgug-subpath of S3. Then the node set {u,z} US| U S) induces an odd
wheel with center x3. So if u is adjacent to neither x; nor zs, it must be of Type e.

We now assume that v is adjacent to exactly one of x1,x3, say x1. Suppose u is not
of Type f. We first show that u cannot have a neighbor in So. Suppose it does and let u;
(resp. ug) be the neighbor of u in Sy that is closest to x3 (resp. x4). If ujug is not an edge,
then in the graph induced by Se U {u,z,z2} there is either a 3PC(zozsz,u1) (if up = ug)
or a 3PC(zoxsx,u) (if uy # ug). If ujug is an edge, the node set Sy U {u,z,z;} induces a
3PC(ujuou,x). Hence u does not have a neighbor in S;. Node v must have a neighbor in
S1\ z1, else (H,u) is an odd wheel. Let u; be the neighbor of u in S7 \ z; that is closest to
zg. Then the ujzg-subpath of S; together with S, z, zo and u induces a Mickey Mouse.



Now assume that u is adjacent to both z; and x3. If u is not adjacent to x5, then wu is
of Type c. Assume u is adjacent to 5. By symmetry, we can assume that u is adjacent to
both x4, zg, and so it is of Type d. m|

Lemma 3.5 Let G be an even-signable graph that does not contain Mickey Mouses. If (H,z)
is a butterfly, then S = N(z)U (N(z1) N N(z3)) \ z2 is a double star cutset separating xs
from the rest of H.

Proof: Suppose not and let P =y, ...,y, be a direct connection from zy to H \ (S U z2) in
G\ S. By Lemma 3.4, n > 1, y; is either not strongly adjacent to H or is of Type e or f, and
Yn is either not strongly adjacent to H or is of Type a, b or ¢ (adjacent to z4, z5, ¢ and with
at least one more neighbor in (S; U S2) \ {z1,z3}).

First we show that x4 and z¢ do not have a neighbor in P\ y,. Suppose not and let y;
be the node of P\ y, with lowest index that is adjacent to z4 or zg. W.l.o.g. assume y;
is adjacent to z¢. If z; does not have a neighbor in {y,...,y;} then S; U {y1,...,yi,z,z2}
induces an odd wheel with center z. If z3 does not have a neighbor in {yi,...,y;} then
either T'= Sy U {y1,...,¥;, T, 2, ¢} induces a Mickey Mouse (if x4 is not adjacent to y;) or
T\ zg induces an odd wheel with center z (if 24 is adjacent to y;). So z; and z3 both have a
neighbor in {y1,...,y;}. Let y; (resp. yi) be the node of P with lowest index adjacent to x3
(resp. 1). Then j =1 or i, since otherwise Sy U {y1,...,¥;,%, 22} induces a Mickey Mouse.
If j =4 then {y1,...,i,%,22,x3,7¢} induces an odd wheel with center z3. So j = 1 and
hence k # 1. If k # i then Sy U {y1,...,yk, z,x2} induces a Mickey Mouse. So k = i. But
then {y1,...,v;, ¢, 21,72, 26} induces an odd wheel with center z;. Therefore, x4 and z¢ do
not have a neighbor in P\ y,,.

Next we show that if y; is not of Type f then z; and z3 do not have a neighbor in P\ yj,.
Assume otherwise and let y; be the node of P\ y,, with lowest index adjacent to x; or z3, say

z1. Then Sy U {yi,...,yi,x,z2} induces a Mickey Mouse. The same argument shows that
if y; is of Type f adjacent to z; (resp. z3) then x3 (resp. z;) does not have a neighbor in
P\ yp.

We now consider the following two cases.

Case 1: y, is either not strongly adjacent to H or is of Type a.

W.lLo.g. y, has a neighbor in S;. Let u; (resp. us) be the neighbor of y, in S; that is
closest to z; (resp. zg). Let S| (resp. S7) be the zjui-subpath (resp. ugzg-subpath) of Sj.
Node z3 must have a neighbor in P, since otherwise Sy U P U S} U {z, 22} induces a Mickey
Mouse. So y; is of Type f adjacent to z3, and hence x; does not have a neighbor in P \ y,.
If ujuy is not an edge, then P U ST U S U {z, 22} induces a 3PC(z1222,.). So ujus is an
edge. Let yx be the node of P with highest index adjacent to x3. Then Sy U{yk,...,Yn, T, 23}
induces a 3PC(ujuayn, ).

Case 2: y, is of Type b or c.

W.lo.g. y, has a neighbor in S; \ zg. Let u; be the neighbor of y,, in S; that is closest to
x1. Let ug be the neighbor of y,, in Sy that is closest to x4 (such a neighbor always exists).
Let S} (resp. S)) be the zjuj-subpath of Sy (resp. ugzs-subpath of Sy). If 21 does not have
a neighbor in P\ yp, then P US] U S5 U {z,z2} induces a 3PC(z1z22,y,). Hence y; is of
Type f adjacent to z;, and z3 does not have a neighbor in P\ y,. Let us (resp. u4) be the



neighbor of y,, in Sy (resp. S1) that is closest to z3 (resp. ), and let S5 (resp. S7) be the
zsug-subpath of Sy (resp. ugzg-subpath of S1). If ug # x4 then SYUPUS) U{z,z9} induces
a 3PC(zox32,yp). Otherwise P U Sy U {z,z2} induces an odd wheel with center . m|

A bat is composed of a chordless path yi,...,y, and a node z such that, for some 2 <
i <j<n-—1,zis adjacent to yi if and only if k € {1,1,...,j,n}.

In the remainder of this section, when we refer to a wheel (H, z) we denote with z1,...,z,
the neighbors of z in H in the order in which they appear. For ¢ = 1,...,n, we denote with
S; the sector of (H,z) with endnodes z; and z;41 (note x,11 = x1).

Lemma 3.6 Let G be an even-signable graph that does not contain Mickey Mouses and
butterflies. Let (H,x) be a wheel with a bat in G that has fewest number of sectors. Suppose
that sectors Sp,S1,...,Sk together with node x induce a bat where S, and Sy are the two
long sectors. If node w € G\ (H U x) is adjacent to x2, but not to x and not to 1, then u
has no neighbors in H \ {x2,x3}.

Proof: Since G contains no Mickey Mouse, k£ > 3. We first show that « has no neighbors
in S;,. Suppose not and let u' (resp. u”) be the neighbor of u in S, that is closest to z1
(resp. z). Let S/ (resp. SI') be the u'z;-subpath (resp. u”z,-subpath) of S,,. Note that
u' # xy, since otherwise S, U {u,z,z2} induces an odd wheel with center z. Node u must
have a neighbor in H \ (S, Uzz), else (H \ S,,) US! U{u,z} induces an odd wheel with center
z. If u is adjacent to z; for some i € {3,...,n — 1}, then S}, U {u, z,z2,2;} induces an odd
wheel with center z5. Otherwise, there is a shortest subpath S’ of H \ (S, U {z2,z3}) such
that one endnode of S’ is adjacent to u and the other to x, and hence S}, U S" U {u,x,x2}
induces an odd wheel with center 2. Therefore, u has no neighbors in S,,.

Let z], be the neighbor of z,, in S,,_; and suppose that v has a neighbor in H\ {z2, 3, 2}, }.
Then there is a shortest subpath S’ of H \ {2, x3, 2!, } such that one endnode of S’ is adjacent
to u and the other to z, and hence S,, U S' U {u,z, 25} induces a Mickey Mouse. Therefore,
u has no neighbors in H \ {z2,x3,2],}. Finally suppose that u is adjacent to z],. Then u
cannot be adjacent to x3, since otherwise (H,u) is an odd wheel. Node z!, must be adjacent
to z, else S, U{u,z, 2,2} } induces an odd wheel with center z. Let H' be the hole induced
by (H \ Sp)Uu. (H',z) is a line wheel, else the choice of (H,z) is contradicted. But then
(H, z) is a butterfly. O

Lemma 3.7 If G is an even-signable graph that has o wheel with a bat, then there is a double
star cutset.

Proof: By Theorem 3.3 and Lemma 3.5, we may assume that G contains no Mickey Mouse
and no butterfly. Let (H,z) be a wheel with a bat in G that has fewest number of sectors.
Suppose that sectors Sy, S1,...,S; together with node z induce a bat. Since G does not
contain a Mickey Mouse, k > 3. Let 2} be the neighbor of z; in S,. We show that S =
(N(z) UN(z1)) \ {z2,24,...,2n, 2]} is a double star cutset that separates zo from the rest
of H. Suppose not and let P = yy,...,y, be a direct connection from zs to H \ (S U z2) in
G\ S. By Lemma 3.6, y; is either not strongly adjacent to H or it has exactly two neighbors
in H, 9 and z3. So m > 2.
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Suppose that y,, has a neighbor in S,,. Let v’ (resp. u”) be the neighbor of y,, in S,, that
is closest to z1 (resp. z,). Let S! (resp. SI') be the u'z;-subpath (resp. u"z,-subpath) of
Sp. If v/ = u” then PU S, U {z,z9} induces a 3PC(zz1z2,u’). If u'u" is not an edge then
PUSUS!U{x,x2} induces a 3PC(zz122, Ym). So u'u" is an edge. Suppose z3 has a neighbor
in P and let y; be its neighbor in P with highest index. Then S, U{x, z3,v;,...,Yym} induces
a 3PC(ynu'u",x). So x5 does not have a neighbor in P. Node y,, must have a neighbor in
H\ Sy, since otherwise H U P induces a 3PC(y,u'u",x2). Hence there is a shortest subpath
S’ of H \ S,, such that one endnode of S’ is adjacent to y,, and the other to z. But then
S US"UPU{z,zo} induces a 3PC(zx122,ym). Therefore y,, does not have a neighbor in
Sn-

Node y,, must have a neighbor in H \ {z2,z3}. Let z], be the neighbor of z,, in S;,_1. If
ym has a neighbor in H \ {z2,z3, 2]} then there is a shortest subpath S" of H \ {2, z3,2),}
such that one endnode of S’ is adjacent to y,, and the other to z, and so S, U S" U {z, x5}
induces a Mickey Mouse. Hence 2, is the unique neighbor of y,,, in H \ {z2,z3}. Node 2, is
adjacent to z, else S, UP U{z,z9, 2, } induces an odd wheel with center z. Suppose z3 does
not have a neighbor in P. Let H' be the hole induced by (H \ S,) U P. (H',z) must be a
line wheel, since otherwise our choice of (H, z) is contradicted. But then (H,z) is a butterfly.
Hence x3 has a neighbor in P. Let y; be the neighbor of 23 in P with highest index. If 7 > 1,
then S, U {x,x9,z3,2),Yi,...,ymn} induces an odd wheel with center . Hence i = 1. But
then H U P induces a 3PC(zox3y1,2,). O

Proof of Theorem 3.2: Assume G has no double star cutset. Then by Lemma 3.7, G has
no wheel with a bat. Let (H,z) be a proper wheel that is not a beetle. Assume w.l.o.g.
that S, is a long sector and Sy is a short sector. Since (H,z) is not a wheel with a bat,
either S, is the only long sector, or n > 5 and S,, and S,,_; are the only long sectors. Let
S = (N(z) UN(z1)) \ {z2,xn, 2|}, where x} is the neighbor of z1 in S,,. We claim that S is
a double star cutset that separates zo from S, U S, 1\ {z1,zn-1}. Let P =y1,...,ym be a
direct connection from z9 to S, U S,—1 \ {z1,2,—1} in G\ S. Let s be the neighbor of z,, in
Sp—1-

Case 1: y,, has a neighbor in S),.

Let u; (resp. u,) be the neighbor of y,, in S, that is closest to z1 (resp. zp). Let S,
(resp. S!') be the ujz;-subpath (resp. wupz,-subpath) of S,.

If uy = uy, then PU S, U{z,z2} induces a 3PC(zx129,u1). If ujuy, is not an edge, then
PUS! US!U{z,z9} induces a 3PC(xz1z2,ym). Hence ujuy, is an edge.

A node of H \ (S1 U S,) must have a neighbor in P, since otherwise H U P induces a
3PC(u1upYm,x2). Let u be the node of H \ (57 US,,) that has a neighbor in P and is closest
to z3. Let y; be the node of P with highest index adjacent to u. If u # s there exists a
chordless path S’ from u to z in H \ (S; U S,). But then P, U S, US Uz induces a
3PC(u1upYm, ). Hence u = s.

Suppose that ¢ = m. Since (H,y,,) is not an odd wheel, u, = z,. If s does not have
a neighbor in P\ y,, then PU S/, US] U{z,22} induces a 3PC(zx122,Ym). So s has a
neighbor in P\ y,,. Let y; be the neighbor of s in P with lowest index. If s # x,_; then
Sp U Pyyy; U {x, 22,5} induces an odd wheel with center z. So s = z, 1. If j # m —1
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then P, U S! U{x,z2, %y 1,Ym} induces a 3PC(zx129,2,1). So j = m — 1. But then
PU{z,z9,z, 1,z,} induces an odd wheel with center z,,_;. Therefore i # m.

If i # 1 then Py, UH induces a 3PC(u1unYm,s). Soi = 1. But then S, UP,,,, U{x2,s}
induces a 3PC(u1UnYm, Yi)-

Case 2: y,, has no neighbors in S,.

Then S, 1 is a long sector. Let u be the neighbor of y,, in S, 1 that is closest to z,,
and let S}, _; be the uz,-subpath of S,,_;. Note that by the definition of S and P, u # xy_1.
Then PU S, US!,_, U{z,z2} induces a 3PC(zz 122, Tp). O

4 L-Parachutes

In this section we assume that G is an even-signable graph. We prove the following result.
Theorem 4.1 If G contains an L-parachute, then G has a double star cutset.

Definition 4.2 A crosspath w.r.t. a line wheel (H,x) is a chordless path P = y1,...,y, in
G\ (H Ux) such that = is not adjacent to any node of P and one of the following holds:

(i) n =1, (H,y1) is a line wheel, and each of the two long sectors of (H,x) contains two
adjacent neighbors of ;.

(1) n > 1, no intermediate node of P has a neighbor in H, y, (resp. yn) has exactly two
neighbors in H that are furthermore adjacent, the neighbors of y1 in H are contained
in one long sector of (H,x) and the neighbors of y, in H are contained in the other
long sector of (H,x).

Lemma 4.3 If G contains an L-parachute, then G contains a line wheel with no crosspath.

Proof: Suppose G contains an L-parachute II = LP(x122, 2473, 2,2). Let P be the zz-path
of IT\ {z1, z2, 3,24}, and let H be the hole induced by IT\ (P \ z). Let S; (resp. S2) be the
long sector of (H,z) with endnodes x1, x4 (resp. z2,z3). Suppose that the line wheel (H, z)
has a crosspath Q = y1,...,y,. W.Lo.g. y; has neighbors in S; and y, in Sy. Let Q' be the
shortest path from y; to z in (PUQ U S2) \ {z2,z3}. Then S; U Q' induces a 3PC(A, ).
Therefore line wheel (H,z) has no crosspath. O

Lemma 4.4 If G contains a line wheel with no crosspath, then G has a double star cutset.

Proof: Let (H,z) be a line wheel with no crosspath. Let x1,x9,x3,z4 be the neighbors of x
in H that appear in this order when H is traversed clockwise. W.l.o.g. x1z2 and x3x4 are
edges. Let Sy (resp. S2) be the long sectors of H with endnodes z1, x4 (resp. za,z3). Let 2
be the neighbor of z; in S;. Let S = (N(z) UN(z1)) \ {z],z2,23}. Suppose that S is not a
double star cutset and let P = yi,...,y, be a direct connection from S; to Sy in G\ S. Let
up (resp. uy) be the neighbor of y; in S; that is closest to 1 (resp. z4). Let uy (resp. us)
be the neighbor of y,, in Sy that is closest to z2 (resp. z3).

If up = x3 then (H U P Ux) \ x4 contains a 3PC(zix9z,x3). So uy # x3. Suppose
a node of P\ y; is adjacent to z4 and let y; be such a node with highest index. Then
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(H U Py,y, Uz) \ 23 contains a 3PC(z1222,24). So no node of P\ y; is adjacent to x4. If
u; = uq then (H U P Ux) \ z3 contains a 3PC(z1x9z,u1). So uy # ug. If ujug is not an
edge, then there is a 3PC(z1222,y1). So ujuy is an edge. If uy = uz then H U P induces
a 3PC(y1uiug,uz). So ug # ug. If ugus is not an edge then (H U P U z) \ z4 contains a
3PC(x1z9m,ypn). So ugug is an edge. But then either P is a crosspath w.r.t. (H,z), or (H,y1)
is an odd wheel. O

Theorem 4.1 follows.
By the results of Sections 2-4, it suffices to prove Theorem 1.2 when G contains a beetle
or a T-parachute.

5 Nodes Adjacent to a 3PC(A,A)

Given node disjoint triangles {a;,a9,a3} and {b1,bs,b3}, a 3PC(ajazas,bibobs) is a graph
induced by three chordless paths, P! = ay,...,b;, P> = as,...,by and P3 = a3, ..., b3, having
no common nodes and such that the only adjacencies between the nodes of distinct paths are
the edges of the two triangles. A 3PC(aja2as, b1bsbs) is also referred to as a 3PC(A, A).

Throughout this section we assume that G is an even-signable graph. By ¥ we denote
a 3PC(ajazaz, bibobs) with the three paths P = Py, P? = P,,;, and P? = P,,;,,. For
i =1,2,3, we denote by a! the neighbor of a; in P and by b the neighbor of b; in P*. For
distinct 4,7 € {1,2,3}, we denote by H;; the hole induced by P*U P’.

Lemma 5.1 Let G be an even-signable graph and let ¥ be a 3PC(A, A). If node u is adjacent
to %, then it is one of the following types.

Type tj for j = 1,2,3: Node u has exactly j neighbors in 3 and they are all contained in
{a1,a2,a3} or all in {by, by, bs}.

Type pl: Node u has exactly one neighbor in X and u is not of Type t1.

Type p2: Node u has exactly two neighbors in X, that are furthermore adjacent and are
contained in P*, for some i € {1,2,3}.

Type p3: Node u has at least two nonadjacent neighbors in X, and all the neighbors of u in
Y are contained in P', for some i € {1,2,3}.

Type p4: Node u has exactly four neighbors in X, uy, us, us and ug, where uiug s an
edge that belongs to some P!, i € {1,2,3}, and uzuy is an edge that belongs to some
Pi,je{1,2,3}\ {i}. Furthermore, u is not adjacent to both a; and aj, and it is not
adjacent to both b; and b;.

Type t2p: For distinct indices i,j,k € {1,2,3} and for z € {a,b}, u is adjacent to z;
and zj, it has at least one neighbor in Pk \ {z}, and is not adjacent to any node in

(Pi uUPI U {Zk}) \ {Zi, Zj}.

Type t3p: Node u has at least four neighbors in X. For some z € {a,b}, u is adjacent to
21, z2 and z3, and all the other neighbors of u in ¥ belong to P* for some i € {1,2,3}.
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Type tdd: For some distincti,j € {1,2,3}, N(u)N{a1,a9,as3,b1,bs,b3} = {a1,az,as, by, by, b3}\
{ai, b;}.

Type tds: For some i € {1,2,3}, N(u) N {a1,a9,as3,b1,b2,b3} = {ai,as,a3,b1,b2,b3} \
{a;,b;}. Furthermore, if G does not contain a Mickey Mouse, then for j € {1,2,3}\{i},
a;bj is not an edge.

Type t4: Node u is of Type t4d or t}s w.r.t. 3.

Type tj for j =5,6: Node u is adjacent to j nodes in {ai,as,as,bi,be,b3} and possibly
other nodes of .

Proof: First we show that if for some i € {1,2,3}, N(u)N{a1,as,as, b1, be, b3} = {a1,a2,as,bi,ba, bs}\
{ai,b;}, then for j € {1,2,3} \ {i}, a;b; is not an edge. Suppose not. Assume w.lo.g.
that + = 3 and a1b; is an edge. Node u must have a neighbor in P3, since otherwise
P3 U {a1,a2,b1,u} induces an odd wheel with center a;. Let uz (resp. ws) be the neigh-
bor of u in P? that is closest to a3 (resp. b3). If uz = v3 then (Hi3,u) is an odd wheel. If
u3v3 is not an edge then Pg’m U P33b3 U {a1,b1,u} induces a Mickey Mouse. So usvs is an
edge, and hence P3 U {ay, by, u} induces a Mickey Mouse.
Assume that u is not of Type t1, pl, p2 or p3. Then, w.Lo.g. u has neighbors in both P!

and P2.

Case 1: u does not have a neighbor in P3.

First assume that « has a unique neighbor in P' or P2, say P'. Let u; be the neighbor of
v in P!, and w.Lo.g. assume that u; # a;. Let up be the neighbor of v in P? that is closest to
as. If uy # by, then the node set P! UPa22u2 U P3U{u} induces a 3PC(ayazas,u1). If ug = bo,
then either u is of Type t2 or the node set Py, UP?U P? U {u} induces a 3PC/(a1azas,us).

Now assume that u has at least two neighbors in both P! and P?. Let u; (resp. v1) be
the neighbor of v in P! that is closest to a; (resp. b;). Let us (resp. vz) be the neighbor
of w in P? that is closest to a9 (resp. b2). First suppose that both ujv; and ugve are edges.
If u is adjacent to both a; and as, then P? U P3 U {u,a;} induces an odd wheel with center
as. So u is not adjacent to both a1 and a9, and similarly u is not adjacent to both b; and bs.
Hence w is of Type p4. Now assume w.l.o.g. that ujv; is not an edge. If w is not adjacent

to all four of the nodes a1, ag, b1 and by, then either P, UP;, UPZ UP3U{u} or
Py, UPL, UP2, UP>U{u} induces a 3PC(A,u). So u is adjacent to a1, az, by and by,

and hence it is of Type t4s.

Case 2: u has a neighbor in P3.

For i € {1,2,3}, let u; (resp. v;) be the neighbor of u in P’ that is closest to a; (resp. b;).
If u is adjacent to at most one node in {a1,as, a3} and at most one node in {by, by, b3}, then
the node set Py, UP2, UP}, U{u} induces a 3PC(b1bobs, u). So assume w.lo.g. that u
is adjacent to by and by. If u does not have a neighbor in (P! U P?)\ {by, by}, then u is of
Type t2p, t3 or t3p. So assume w.l.o.g. that u; # b;. Suppose u is not of Type t4, t5 or t6.
Then u is adjacent to at most one node of {a;,as,as}. If ug = by and ug = b3, then u is of
Type t3p. Otherwise, PL, UP2,  UP3 U{u} induces a 3PC(a1aza3,u). a

ajul az2u2 azus3

Type t6 nodes w.r.t. ¥ are further classified as follows.
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Type t6a: A node u that is of Type t6 w.r.t. %, such that v has no neighbors in the interior
of any of the paths of ¥, and either ¥ = Cg or none of the paths of 3 is an edge.

Type t6b: A node u that is of Type t6 w.r.t. 3, but is not of Type t6a.

Lemma 5.2 If u is of Type t6b w.r.t. &, then ¥ # Cg and u has a neighbor in the interior
of one of the paths of 3.

Proof: Assume u is of Type t6b w.r.t. 3, but v has no neighbor in the interior of any of the
paths of . Then w.l.o.g. a1b; is an edge and asby is not. Then P! U P?2 U induces an odd
wheel with center u. O

If node w is of Type p3, t2p or t3p w.r.t. X, then a subset of the node set ¥ U{u} induces
a Y =3PC(A,A) that contains u. We say that ¥/ is obtained by substituting u into X. If u
is of Type t2p or t3p w.r.t. X, and for some z € {a,b} and i € {1,2,3}, ¥’ does not contain
z;, then we say that u is a sibling of z;.

6 Beetles and T-Parachutes

Theorem 6.1 Let G be an even-signable graph that does not contain a double star cutset.
If G contains a beetle, then G contains a 3PC(A,A) with a Type t2 node. If G contains a
T-parachute, then G contains a 3PC(A, A) with a Type t2, t2p, t4 or t5 node.

Proof: By Theorem 3.2, every proper wheel of G is a beetle.

Suppose G contains a beetle or a T-parachute. For a beetle II = (H,v), we denote
the neighbors of v on H by a, t, b and z, where at and bt are edges. For a T-parachute
Il =TP(t,v,a,b,z), we denote by (H,v) the twin wheel of II. In both cases, we denote by
P the path of II from v to z that uses no edge of H, and by H,, and H,; the subpaths of H
from z to a and from z to b that do not contain ¢. Let C' be the hole of I containing b, v, z.
Let S = (N(v) UN(b)) \ {t,m,b'}, where m is the neighbor of v in P and ¥ is the neighbor
of bin H,y. Let Q = x1,...,z, be a direct connection from ¢ to I\ {a,b,v,¢} in G'\ S.

If z,, has no neighbor in C then, since z,, must have a neighbor in H,, \ a, (Il \ a) UQ
contains a 3PC(bvt,z). So z, has a neighbor in C. If z,, has exactly one neighbor p in C,
then CUQUt contains a 3PC(bvt, p). If x,, has two nonadjacent neighbors in C, then CUQUt
contains a 3PC(bvt, xy). So x, has exactly two neighbors in C and they are adjacent. Then
C UQ Ut induces a X = 3PC(A,A). By Lemma 5.1, a is of Type t2, t2p, t4 or t5 w.r.t. X.
When (H,v) is a beetle, both neighbors of z,, are in H,;. It follows from Lemma 5.1 that a
is of Type t2. a

7 Crosspaths and Attachments

Throughout this section we assume that G is an even-signable graph that contains a ¥ =
3PC(A,A) and does not contain a Mickey Mouse.
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Figure 5: Crosspath

7.1 Crosspaths

Definition 7.1 A crosspath w.r.t. ¥ = 3PC(A,A) is a chordless path P = xy,...,x, in
G \ X that satisfies one of the following:

e n=1 and x1 is of Type p4 w.r.t. %, or

e n>1, x1 and z, are of Type p2 w.r.t. X, with neighbors in different paths of %, and
no intermediate node of P has a neighbor in 3.

If z1 or z, has neighbors in a path P' of ¥, we say that P is a P'-crosspath w.r.t. 3.

Lemma 7.2 Let X =3PC(A,A) and let P = x1,...,z,, n > 1, be a chordless path in G\ X.
If ) £#N(@z)NX C P, ) # N(zp,) NX C P?, 45 +# 4, and no intermediate node of P has a
neighbor in X, then P is a crosspath w.r.t. 3.

Proof: Suppose that there exist 3, P satisfying the assumptions of the lemma such that P
is not a crosspath w.r.t. 3. Choose such 3, P with shortest possible P = z1,...,z,, n > 1.
Assume w.l.o.g. that i = 1 and j = 2. Since N(z1)NY C P! and N(z,)NY C P?, 21 and =,
are of Type t1, pl, p2 or p3 w.r.t. ¥. Since P is not a crosspath and P!, P? are symmetrical,
we may assume w.l.o.g. that z; is of Type t1, pl or p3 w.r.t. 3. If x1 is of Type p3 w.r.t.
¥, then consider the 3PC(A,A) = X' obtained by substituting z; into ¥. P\ z; is not a
crosspath w.r.t. ¥’. Therefore, by the choice of X, P, the pair ¥, P\ 21 does not satisfy the
assumptions of the lemma. Thus n —1 = 1. It follows from Lemma 5.1 that z, is of Type
p4 w.r.t. ¥/, which is impossible as z, has no neighbor on P!. So we may assume that z;
is of Type t1 or pl w.r.t. X and similarly that z,, is of Type t1, pl or p2 w.r.t. X. If z,, is
of Type p2 w.r.t. 3, then the node set P! U P? U P induces a 3PC(A,.). Hence z, is also
of Type t1 or pl w.r.t. 3. Let u; (resp. uz2) be the unique neighbor of x; (resp. x,) in X.
W.lo.g. uy # ay. If uy = by and up = by, then the node set P U P? U P3 U {b;} induces a
Mickey Mouse. Otherwise us # by w.l.o.g. and the node set P! U P2 U P3 U P induces a

asus

3PC(a1a2a3,u1). d
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7.2 Attachments

Lemma 7.3 Let © be a Type t1 node w.r.t. ¥ = 3PC(ajazas,b1b2b3), adjacent to say a.
Suppose that S = (N(a1) U (N(a2) N N(a3))) \ = is not a cutset and let P = x1,...,%, be a
direct connection from x to ¥\ S in G\ S. Then no node of P\ z,, is adjacent to a node of
Y\ a} and one of the following holds:

(i) m, is of Type t1 or pl w.r.t. ¥ and its unique neighbor in ¥ is in P!,
(ii) xy, is of Type pS w.r.t. X, with neighbors in P*,
(113) xy, is of Type t2 w.r.t. 3, adjacent to bs and bs,
(iv) x, is of Type t2p w.r.t. X, adjacent to by and b,
(v) xy, is of Type t3p w.r.t. 33, adjacent to by, by, bs and with a neighbor in P!\ by,
(vi) x,, is of Type p2 w.r.t. ¥, adjacent to ), and ) has a neighbor in P\ x,, or

(vii)  is of Type t3 w.r.t. 3, adjacent to by, by and bs, a} = by and a} has a neighbor in
P\ z,.

Proof: First we show that no node of P\ z,, is adjacent to a node of ¥\ a}. Suppose not and
let z; be the node of P with lowest index adjacent to a node of X\ a). By the definition of
S, x; is adjacent to exactly one of as or a3, and no other node of 3. W.l.o.g. assume z; is
adjacent to as. Then Py, U P?U P3U{z,a;} induces a Mickey Mouse. Hence, no node of
P\ z, is adjacent to a node of ¥\ a].

Node x,, cannot be of Type t4, t5 and t6 w.r.t. X, since all these types of nodes are in
S. Suppose that z,, is of Type t1 or pl with the unique neighbor v in . If u is not in P?,
then the node set P? U P> U P Uz induces a 3PC(ajazasz,u). Similarly, if z,, is of Type p3,
then it must satisfy (ii), else there is a 3PC/(ajazas3,z,). Suppose z, is of Type p2, with
neighbors u and v in ¥, and w.l.0.g. assume that u and v are not in P3. If @} has no neighbor
in P\ x,, then P' UP?2U P Uz induces a 3PC(z,uv,a1). So a} has a neighbor in P\ z,,.
Let z; be the node of P\ x, with highest index adjacent to a. If z, is not adjacent to a},
then P U P? U P,,,, induces a 3PC(z,uv,a}). Hence (vi) holds. If z,, is of Type t2 and
it does not satisfy (iii), then w.l.o.g. we may assume that it is adjacent to b; and b3, and
hence the node set P U P? U P? Uz induces a 3PC/(ayazas,bs). Suppose z,, is of Type t2p
or t3p and does not satisfy (iv) or (v). Then w.l.o.g. x, is adjacent to by, b3 and it has a
neighbor in P?\ by, and hence (P U P?U P3Ux) \ {by} contains a 3PC(ajasas, z,). Suppose
T, is of Type t3. If a} does not have a neighbor in P\ z,, then P U P! U P? U z induces a
3PC(x,b1b3,a1). So a) has a neighbor in P\ z,,. Suppose that a| # b; and let z; be the node
of P\ z,, with highest index adjacent to a}. Then Py, UP'UP? induces a 3PC(x,b1b3,a}).
Hence (vii) holds. Finally suppose that z, is of Type p4 with neighbors in P? and P, for
some 7,5 € {1,2,3}. Let u; (resp. v;) be the neighbor of z,, in P’ that is closest to a; (resp.
b;). Similarly define u; and v;. If i = 2 and j = 3, then the node set P2, UP2 UPUgz

azus
induces a 3PC(ajaza3,xy,). Else we may assume w.l.o.g. that 4 = 1 and j = 2. Then the
node set Pvllbl U Pa22u2 U P3U P Uz induces a 3PC(ajasa3, Ty)- O
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Figure 6: Attachments of a node of Type t1
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Figure 7: Attachments of a node of Type t2
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Lemma 7.4 Let x be a Type t2 node w.r.t. ¥ = 3PC(ajagas, bibabs), adjacent to say a1 and
as. Suppose that S = (N(a2)U(N(a1)NN(a3)))\{z,d,} is not a cutset and let P = z1,..., 2y,
be a direct connection from x to ¥\ S in G\ S. Then no node of P\ z,, is adjacent to a node
of X and one of the following holds:

(i) xy, is of Type t1 or pl w.r.t. ¥ and its unique neighbor in X is in P?,

(ii) ©, is of Type p3 w.r.t. ¥, with neighbors in P?,
(113) xy, is of Type t2 w.r.t. 3, adjacent to by and bs,

(iv) x, is of Type t2p w.r.t. ¥, adjacent to by and bz, or

(v) xy, is of Type t3p w.r.t. 3, adjacent to by, by, b3, and with a neighbor in P? \ by.

Proof: First we show that no node of P \ z, has a neighbor in ¥. Suppose not. By the
definition of S, the only nodes of ¥ that can have a neighbor in P \ z,, are a; and a3, and
no node of P is adjacent to both a; and a3. Suppose that both a; and a3 have a neighbor in
P\ z,. Then P\ z;, contains a subpath P’, such that one endnode of P’ is adjacent to a1,
the other to a3, and these are the only adjacencies between P’ and ¥. Then P’ UP'UP?Uas
induces a Mickey Mouse. Now assume w.l.o.g. that only a; has a neighbor in P\ z,. Let
@ be the shortest path from z,, to az in ¥ Uz, \ {a1,a2}. Then @Q U P Uz induces a hole
H and (H,a1) is a wheel. Let @' be the shortest path from z, to ag in XUz, \ {a1,a3}. If
Q' U P U{z,a3} induces a hole H', then (H',a1) is a wheel with one more short sector than
(H,a,) and either (H,ay) or (H',ay) is an odd wheel. Hence H' cannot be a hole. That is,
either z,, is adjacent to a3 or the unique neighbor of z, in ¥ is af. If z, is a Type t1 or pl
node adjacent to a}, then P? U P3U P contains a 3PC(ajazas,a}). If z, is of Type p2 or p3
adjacent to as, there is a contradiction to Lemma 7.2. If z, is of Type t2p or t3p adjacent
to as, there is a 3PC(b1bexy,a1). If z, is of Type p4d adjacent to as, let v and v be its two
neighbors in P! U P2. Then P! U P? U P contains a 3PC(uvzy,,a1). Therefore, no node of
P\ z, is adjacent to a node of X.

Node z, cannot be of Type t4, t5 and t6 w.r.t. X, since all these types of nodes are in
S. Suppose z,, is of Type t1 or pl with the unique neighbor w in ¥ that is in P! or P3,
say in P'. Then the node set P* U P3 U P U x induces a 3PC(za1a3,u). Hence if z,, is of
Type t1 or pl, then it must satisfy (i). Similarly, if z,, is of Type p3, then it must satisfy
(ii), else there is a 3PC(zajas,x,). Suppose that z, is of Type p2, with neighbors v and
v in ¥. W.lo.g. assume that 4 and v are not in P3. If z,, is not adjacent to a1, then the
node set P! U P? U P Uz induces a 3PC(z,uv,a1). So z, is adjacent to a;. If n = 1 then
PYU P3 U {z,21} induces an odd wheel with center a;, and otherwise P! U P?U P U {z, a3}
induces an odd wheel with center a,. If z,, is of Type t2, adjacent to b, and say by, then the
node set P UP2UPUz induces a 3PC(z,b1b2,a1). So if z,, is of Type t2, then it must satisfy
(iii). Similarly, if z,, is of Type t3, then there is a 3PC(x,b1b2,a1). If z,, is of Type t2p or
t3p, and it does not satisfy (iv) or (v), then w.l.o.g. we may assume that x, has a neighbor
in P\ b3, and hence the node set P! UP?U P Uz induces a 3PC(z,b1b2, a1). Finally assume
that x,, is of Type p4 with neighbors in P* and P7, for some i,j € {1,2,3}. Let u; (resp. v;)
be the neighbor of z,, in P’ that is closest to a; (resp. b;). Similarly define uj and v;. Ifi =1
and j = 3, then w.l.o.g. z, is not adjacent to a3, and hence P}, UP3, UP2UPU{x, a3}

v1b1 v3bs
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induces a 3PC/(b1babs, x,). Otherwise, w.l.o.g. we may assume that ¢ = 1 and 5 = 2. Then
the node set P}, UP2, UP3UPUg induces a 3PC(bybybs, x,). a

v1b1 vab2

Lemma 7.5 Let x be a Type t3 node w.r.t. ¥ = 3PC(ayazas,b1bab3), adjacent to say a1, as
and az. Assume G has no extended star cutset, let S = (N(az2) U (N(a1) N N(a3))) \ {z, a5}
and let P = x1,...,z, be a direct connection from x to £\ S in G\ S. Then one of the
following holds:

(i) No node of ¥ has a neighbor in P\ x,, and x,, is of Type p2 or t3 w.r.t. X.
(ii) n =1, z, is a sibling of by or by w.r.t. ¥, adjacent to ay or ag.

(11i) Ezactly one of ai,as has a neighbor in P\ z,, no other node of ¥ has a neighbor in
P\ z,, and x, is as described in Lemma 7.4.

Proof: First note that by the definition of S, no node of P can be of Type t4, t5 or t6 w.r.t.
Y. Also, the only nodes of ¥ that can have a neighbor in P \ z,, are a; and a3, and there is
no node of P adjacent to both a; and a3. Suppose that both a; and as have a neighbor in
P\ z,. Then P\ z,, contains a subpath P’ such that one endnode of P’ is adjacent to aj, the
other to ag and these are the only adjacencies between P\ z,, and ¥.. Then P'U P'UP?Uag
induces a Mickey Mouse. Hence, at most one of a;, as has a neighbor in P\ z,. If a1 or a3
has a neighbor in P \ z, then by Lemma 7.4 (iii) holds.

We now assume that no node of ¥ has a neighbor in P\ z,,. Suppose z, is of Type t1 or
pl and let u be its unique neighbor in ¥. W.Lo.g. assume that u is in P'. Then the node set
P'UP?UPUz induces a 3PC(zajaz,w). Similarly, if z, is of Type p3 there is a 3PC(A, z,,).
If z,, is of Type t2, with neighbors say b; and b3, then the node set P'UP?U P U {z} induces
a 3PC(zayag,by). If x, is a sibling of by, there is a 3PC(xayas9,z,). Suppose that z, is a
sibling of b;. Let u be the neighbor of z,, in P! that is closest to a;. If u # a1 or n > 1, then
Pallu U P2 U P Uz induces a 3PC(zaias,,). So if z, is of Type t2p or t3p w.r.t. X, then
it must satisfy (ii). Finally assume that x,, is of Type p4 w.r.t. 3. Then P U X contains a
3P0(b1b2b3,$n). d

Definition 7.6 For a node x and a path P described in Lemmas 7.3, 7.4 and 7.5, we say that
the path P is an attachment of node x to 3. Also, a subset of the node set XU P Uz induces
a 3PC(A, A) that contains x. We say that this 3PC(A, A) is obtained by substituting x and
its attachment P into .

Theorem 7.7 If G is an even-signable graph that has no extended star cutset, then every
node x of Type t1, t2 or t3 w.r.t. ¥ = 3PC(A,A) has an attachment P to ¥.. Furthermore,
every direct connection from x to £\ S (for an appropriate extended star S) is an attachment.

Proof: Follows from Theorem 3.3 and Lemmas 7.3, 7.4 and 7.5. a

8 Type t4, t5 and t6 Nodes

Theorem 8.1 Let G be an even-signable graph that contains a ¥ = 3PC(A,A) and a node
u such that one of the following holds:

22



(i) u is of Type t}s w.r.t. X,
(ii) ¥ # Cgs and u is of Type t{d w.r.t. 3, or

(iii) ¥ = Cg, u is of Type t{d w.r.t. ¥, say adjacent to ay,as, by, bs, and G does not contain
two nodes v and w that are both of Type t4d w.r.t. X, uv and vw are not edges, v is
adjacent to a1, as,ba, b3 and w is adjacent to as,as, by, bs.

Then G has a double star cutset.

Proof: Suppose G has no double star cutset. Then by Theorem 3.3, G contains no Mickey
Mouse. Let C be the set of all ordered pairs ¥, u that satisfy (i), (ii) or (iii). Let ¥,u € C. If
u is of Type t4d w.r.t. 3, then we assume w.l.o.g. that u is adjacent to a1, as,b1,b3. If u is
of Type tds w.r.t. 3, then we assume w.l.o.g. that u is adjacent to a1, as, b1, bo.

Claim 1: If X, u € C satisfy (ii), then G cannot contain nodes v and w that are of Type t4d
w.r.t. X, such that wv and uw are not edges, v is adjacent to a1, as,bs,bs and w is adjacent
to as, as, bl, bg.

Proof of Claim 1: Suppose not. Then a1b; must be an edge, since otherwise {a1, ag, a3, by, u, w}
induces an odd wheel with center ag. Also agbs must be an edge, since otherwise {ag, b1, b2, b3, u, w}
induces an odd wheel with center b;. Since ¥ # Cg, asbs is not an edge. But then
{a1,a9,a3,b3,u,v} induces an odd wheel with center a;. This completes the proof of Claim

1.

By Claim 1 and the hypothesis in Theorem 8.1(iii), we may assume w.l.o.g. that if ¥, u € C
and u is of Type t4d w.r.t. 3, then there is no node v of Type t4d w.r.t. 3 such that uv is
not an edge and v is adjacent to ay,as, ba, bs.

For ¥,u € C define the corresponding sets S as follows. If u is of Type t4d w.r.t. 3,
then let S = (N(u) U N(a2)) \ (X \ {a1,a2,b3}). If u is of Type t4s w.r.t. X, then let
S = (N(u)UN(a2)) \ (£\ {a1,a2,b1,b2}). Since S is not a double star cutset, there exists a
direct connection P = x1,...,7, in G\ S from (P' UP?)\ S to P3\ S. Let C' be a subset of
C with the property that for all ¥, v/ € ¢’ and all ¥,u € C, |[N(u') N X'| < |N(u) NX|. Let
¥, u be chosen from C' so that the size of the corresponding P is minimized.

Claim 2: No node of P is of Type t4, t5 or t6 w.r.t. 3.

Proof of Claim 2: By definition of S, no node of P is of Type t6 w.r.t. . Suppose that some
x; is of Type t4 or t5 w.r.t. 3. Since z; cannot be adjacent to ae, it must be adjacent to a;
and asz. If z; is adjacent to by, then {ay, ag,as, by, u,z;} induces an odd wheel with center a;.
So z; is not adjacent to b;, and hence it is of Type t4d w.r.t. X, adjacent to by and b3. By
the assumption following Claim 1, this cannot occur if u is of Type t4d w.r.t. X. Hence u
is of Type t4s w.r.t. ¥, and so a;b; is not an edge. But then {ay, b1, bs, b3, u, z;} induces an
odd wheel with center by. This completes the proof of Claim 2.

Claim 3: If x; is of Type p4 w.r.t. X3, then i = 1 and the neighbors of x; in X are contained
in PU P2
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Proof of Claim 8: Suppose z; is of Type p4 w.r.t. . Then ¢ = 1 since z; has a neighbor in
(PtuP?)\S.

Suppose that the neighbors of z; in ¥ are contained in P U P3. For j = 1,3, let u; (resp.
v;) be the neighbor of z; is P/ that is closest to a; (resp. b;). First suppose that z; is adjacent
to az. Then z; is not adjacent to a; and so (XJU:Jci)\P%b3 induces a ¥/ = 3PC(aja2a3, u1v1%;).
Note that X' # Cg. Since u is adjacent to ay,as,b; and it is not adjacent to as,z;, it must
be of Type t4s w.r.t. ¥'. Hence u is adjacent to u; and v;. Node u cannot have neighbors
in P3, since otherwise ', u would contradict the choice of ¥,u. So u is of Type t4s w.r.t.
3, and hence asby is not an edge. But then P3 U {as, by, u, u1,z;} induces a 3PC(z;u3v3, u).
Therefore z; is not adjacent to as.

Let ¥’ = 3PC(ajaga3, rjvsus) induced by (X U z;) \ Pvllbl. Note that X' # Cgs. Since u
is adjacent to aq, a2 and at least one of by, bs (i.e. it has a neighbor in the agvs-path of X'),
and it is not adjacent to az and x;, it must be of Type t4d w.r.t. ¥'. Since v is adjacent to
by, it has fewer neighbors in ¥’ than in ¥, contradicting our choice of ¥, u.

Now suppose that the neighbors of z; in ¥ are contained in P? U P3. By symmetry, the
above proof shows that v is of Type t4d w.r.t. X. For j = 2,3 let u; (resp. v;) be the
neighbor of z; in P/ that is closest to a; (resp. b;). By the definition of S, z; is not adjacent
to az, and hence (X U ;) \Pg?)b3 induces a ¥/ = 3PC(ajazas3, v2usz;). Note that ¥/ # Cs.
Since u is adjacent to ay,a9,b; and it is not adjacent to as,z;, it must be of Type t4s w.r.t.
Y. Since u is adjacent to bz, u has fewer neighbors in ¥’ than in ¥, contradicting our choice
of 3, u. This completes the proof of Claim 3.

Claim 4: If x; is of Type t2p or t3p w.r.t. %, then u is of Type t4d w.r.t. 3, i =1 and z;
s a sibling of by.

Proof of Claim /: Suppose that x; is of Type t2p or t3p w.r.t. ¥ and let ¥’ be obtained
from ¥ by substituting z; for its sibling. By the definition of S, x; cannot be a sibling of a;
or az. Suppose that x; is a sibling of ae. Since u is adjacent to aq,b; and exactly one node
in {bo, b3}, and it is not adjacent to as,x;, it violates Lemma 5.1 w.r.t. ¥'. Suppose z; is
a sibling of b3. Since u is adjacent to ai,as,b; and it is not adjacent to a3z and z;, it must
be of Type t4s w.r.t. ¥'. So u is adjacent to by and it is of Type t4s w.r.t. X. Since z;
has a neighbor in P3 \ b3, i = n. Since b1,bo € S, n > 1. But then ¥',u and P' = P\ z,,
contradict our choice of 3,4 and P. Suppose z; is a sibling of bs. Then u must be of Type
t4d w.r.t. X', and hence w.r.t. ¥ too. By the definition of S, z; is not adjacent to az, and
hence ¥’ # Cg. Also i = 1 and n > 1. But then X', u and P’ = P\ z; contradict our choice
of ¥, u and P. Finally suppose that z; is a sibling of b;. If w is of Type t4s w.r.t. X, then
u violates Lemma 5.1 w.r.t. ¥'. So u is of Type t4d w.r.t. ¥ and t2p w.r.t. ¥'. Since z; is
adjacent to be, ¢ = 1. This completes the proof of Claim 4.

Claim 5: No node of P is of Type p8 w.r.t. 3.

Proof of Claim 5: Suppose z; is of Type p3 w.r.t. . Let Y be obtained from X by
substituting z; into X. Note that ¥ # Cg. Then ¥/, u and P’, where P’ = zy,...,z;_1 or
P'=z;.1,...,2,, contradict our choice of ¥, u and P. This completes the proof of Claim 5.

Claim 6: n > 1, z1 s either a sibling of by or it is of Type t1, pl, p2, t2, t3 or p4 w.r.t. 3,
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and z,, is of Type t1, pl, p2, t2 or t3 w.r.t. %.
Proof of Claim 6: Follows from Claims 2, 3, 4 and 5.
Claim 7: If a1 has a neighbor in the interior of P, then by and bs do not.

Proof of Claim 7: Suppose not. Let z; and x; be nodes of the interior of P so that z; is
adjacent to a1, z; is adjacent to by or b3, and no proper subpath of P, has this property.
By the definition of S, at most one of bo,bs has a neighbor in the interior of P. Then
P2uPuU Py.z; U ay induces a 3PC(ajazas, bo) or a 3PC(ajazas,bs). This completes the
proof of Claim 7.

By Claim 6, we now consider the following cases.

Case 1: z, is of Type t1, pl or p2 w.r.t. 3.

First we show that a; does not have a neighbor in the interior of P. Suppose not and let
x; be the node of P\ z, with highest index adjacent to a;. By Claim 7, be and b3 do not
have a neighbor in the interior of P. If b; does not have a neighbor in P, _,, then P,
contradicts Lemma 7.2. So by has a neighbor in P, . By the definition of S, u is of Type
tds w.r.t. X, and so a1b; is not an edge. Let x; be the node of P,,,,_, with highest index
adjacent to b;. Then Pxﬂ;n contradicts Lemma, 7.2. Therefore a; does not have a neighbor
in the interior of P.

Next we show that if b; or by has a neighbor in the interior of P, then u is of Type t4s
and z, is of Type t1 w.r.t. X adjacent to bs. Suppose that b; or b has a neighbor in the
interior of P. Then, by definition of S, u is of Type t4s. Suppose now that b3 is not the
unique neighbor of z, in 3. By definition of S, b3 does not have a neighbor in the interior of
P. Let z; be the node of P\ z,, with highest index adjacent to by or by. If z; is adjacent to
exactly one of by, b, then P, contradicts Lemma 7.2. Hence z; is adjacent to both b; and
by. Let ¥/ = 3PC(ayagas,biboz;) contained in (X \ b3) U Py,4,. Note that u is of Type t4s
w.r.t. X'. But then ¥',u and P, 4, , contradict our choice of ¥, u and P.

Case 1.1: z; is of Type t1, pl or p2 w.r.t. X.

First suppose that b3 is the unique neighbor of x, is 3. Then u is of Type t4s w.r.t. 3
and so z1 has a neighbor in (P' U P?) \ {a1,a2,b1,b2}. We may assume w.l.o.g. that the
neighbors of 1 in ¥ are contained in P?. Then (X \ b2) U P contains either a 3PC/(ajazas, b3)
(if by has no neighbors in the interior of P) or a 3PC(ajazas,b;) (otherwise). So bs is not
the unique neighbor of z, in 3, and hence by and b2 do not have neighbors in the interior of
P.

If b3 has a neighbor in the interior of P, let z; be the node of P \ z; with lowest index
adjacent to b3. Then Py, contradicts Lemma 7.2. So b3 does not have a neighbor in the
interior of P. By Lemma 7.2 applied to P, z; and z, must both be of Type p2 w.r.t. 3.

Suppose that the neighbors of z1 in ¥ are contained in P?. Let uy (resp. v3) be the
neighbor of z; in P? that is closest to ap (resp. bs). Let ug (resp. w3) be the neighbor of
z, in P? that is closest to a3 (resp. b3). Let ¥’ be the 3PC(uovaz1,usv3z,) induced by
P?U P3 U P. Suppose that ¥/ = Cs. Then ayby and asbs are edges, and hence u is of Type
t4d w.r.t. 3. Since wu is adjacent to as and bz, and it is not adjacent to P U a3, it violates
Lemma 5.1 w.r.t. to ¥'. Hence X' # Cs. Let P,,,, be the upuz-path of ¥', and similarly

U2
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define P/

us- Since u is adjacent to ay, it has a neighbor in P, , .\ u3. Since u is adjacent to by

ua2Uu
or by, it has a neighbor in P, ,.. Node u cannot be of Type tfl 3v.r.t. Y, since otherwise X/, u
would contradict our choice of ¥, u. Node u cannot be of Type t2 w.r.t. ¥’ since, otherwise,
u is of Type t4s w.r.t. X and asbs is an edge, a contradiction. Also, since u has no neighbors
in P, it cannot be of Type t3, t2p, t3p, t5 or t6 w.r.t. X’'. Therefore u is of Type p4 w.r.t.
¥'. So the neighbors of u in P,,,. are ay and a). But then P, ,. U P U{u,a;} induces an
odd wheel with center as.

An analogous argument holds when the neighbors of z; in ¥ are contained in P'.

Case 1.2: z; is of Type t2 or t3 w.r.t. 3.

Then the neighbors of xz; in ¥ are contained in {by,be,b3}. First suppose that z; is
adjacent to b; and bs. Then u is of Type t4d w.r.t. X, and so b; and by do not have neighbors
in the interior of P. Hence (X \ b3) U P contains a 3PC/(ajagas,bibyxy). Since u is adjacent
to a1, as, by, and it is not adjacent to as, bo, 71, it violates Lemma 5.1 w.r.t. ¥’. So we may
assume that z; is adjacent to b3, and is not adjacent to one of b; or by. Since n > 1, bs € 5,
and so u is of Type t4d w.r.t. 3, and hence b; and ba do not have neighbors in the interior of
P. If z, is adjacent to by then (X '\ b3) U P contains a 3PC/(ajaz2as, be) and if z; is adjacent
to by, then (X \ b3) U P contains a 3PC(ajazas, b).

Case 1.3: z; is a sibling of b;.

By Claim 4, w is of Type t4d w.r.t. . So b; and by do not have neighbors in the interior
of P. Let ¥/ be obtained from ¥ by substituting z; for its sibling. Then (X'\ b3) U P contains
a 3PC(a1a2a3,x1).

Case 1.4: z; is of Type p4 w.r.t. 3.
Then (XU P) \ {b1, b2} contains a 3PC(ajazas,x1).

Case 2: z,, is of Type t2 w.r.t. X, adjacent to a; and as.

First we show that by, b2 and b3 do not have neighbors in the interior of P. Suppose b3
does and let z; be the node of P with highest index adjacent to bs. Here v must be of Type
tdd w.r.t. X. By Claim 7, a; does not have a neighbor in the interior of P. If b; has no
neighbor in Py, , then P! U P3U P, induces a 3PC(ajaszy,,bs). So by has a neighbor
in Py,z,. Let z; be the node of P,,,, with highest index adjacent to b;. If z; # z;, then
PlUP3U Pyz, induces a 3PC(a1a32n,b1). So xj = z;. Let Y be the 3PC(aia3xy, bibsz;)
induced by P! U P3 U Py, Since u is adjacent to aj, by and b3 but not a3, z,, or z;, node
u violates Lemma 5.1 w.r.t. 3'. Hence b3 does not have a neighbor in the interior of P.
Suppose b; has a neighbor in the interior of P and let x; be the node of P with highest
index adjacent to b;. Here u must be of Type tds w.r.t. . If by does not have a neighbor
in Py, , then P2U P3 U P,,,, induces a 3PC(bybobs, a3), since az has no neighbor in Py,
by definition of S. So by has a neighbor in P, , and by Claim 7, a; does not. But then
PlUP3U Pz, induces a 3PC(ajas3zy,bi). Therefore, by does not have a neighbor in the
interior of P. Finally suppose that b, has a neighbor in the interior of P and let z; be the
node of P with highest index adjacent to by. By Claim 7, a; does not have a neighbor in
the interior of P, and hence P! U P? U P, induces a ¥’ = 3PC(ayz,a3,b1bobs). Since by
has a neighbor in the interior of P, by € S and hence w is of Type t4s w.r.t. 3. But then u
is adjacent to ap, b1, be, and it is not adjacent to as,xy,bs, and hence it violates Lemma 5.1
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w.r.t. X'

Case 2.1: z; is of Type t1, pl or p2 w.r.t. 3.

If the neighbors of z; in ¥ are contained in P! then (3\a1)UP contains a 3PC(b1bybs, a3).
Hence the neighbors of z; in ¥ are contained in P2. Suppose a; has a neighbor in the
interior of P and let z; be the node of P with lowest index adjacent to a;. Then P 4,
contradicts Lemma 7.2. Hence a; does not have a neighbor in the interior of P. Let X' =
3PC(a1znas,bibebs) contained in (X '\ ag) U P. Since u is adjacent to a1, b; and exactly one
of by, b3, and it is not adjacent to az and z,, it violates Lemma 5.1 w.r.t. X'

Case 2.2: z; is of Type t2 or t3 w.r.t. 3.

Then the neighbors of 1 in X are contained in {by, be, b3}. If 21 is adjacent to by and by,
then P! U P?U P contains a 3PC(bybax1,a1). Therefore 1 is adjacent to by and exactly one
of by,by. If z; is adjacent to by, then P? U P3 U P induces a 3PC(bybsz1,a3). Hence, the
neighbors of z; in ¥ are b; and bs. Since n > 1, by € S and so u is of Type t4d w.r.t. .
Let x; be the neighbor of a; in P with lowest index. If i # n, then P'UP3U P, ;, induces a
3PC(b1b3r1,a1). Hence i = n. Then P! UP3UP induces a ' = 3PC(ayzn,a3,bix1b3). Since
u is of Type t4d w.r.t. X, u is adjacent to ay, by, b3, and it is not adjacent to a3, z1,z,, and
hence it violates Lemma 5.1 w.r.t. X',

Case 2.3: z; is a sibling of b;.
Then P? U P? U P induces a 3PC(z1bob3,a3).

Case 2.4: z; is of Type p4 w.r.t. X.
Then P? U P3 U P induces a 3PC(z12)2!,a3), where x| and z/ are the neighbors of z;
in P2,

Case 3: z,, is of Type t2 or t3 w.r.t. 3, and Case 2 does not apply.

Then x,, is adjacent to b3, and hence by & S. So u is of Type tds w.r.t. 3, and b3 has no
neighbors in the interior of P. We now show that a; has no neighbors in the interior of P.
Suppose it does and let z; be the node of P with highest index adjacent to a;. By Claim 7,
by has no neighbors in the interior of P. Node by must be adjacent to z,,, else P?U P3 UPyz,
induces a 3PC(ajazas,bs). But then P2 U P3 U Py, induces a ¥’ = 3PC(ajaza3, ,bobs).
Since u is adjacent to ap,as,bs, and it is not adjacent to as, bs, x,, it violates Lemma 5.1
w.r.t. 3'. Therefore a; has no neighbors in the interior of P.

Case 3.1: z; is of Type t1, pl or p2 w.r.t. 3.

We may assume w.l.o.g. that the neighbors of z; in ¥ are contained in P'. Suppose by
has a neighbor in the interior of P, and let z; be the node of P with lowest index adjacent to
ba. Then (3\b1)UP;,,, contains a 3PC(ajagas, bz). Hence by has no neighbors in the interior
of P. If by is not adjacent to x,, then (X \ b;) U P contains a 3PC/(ajaqas,bs). Therefore
by is adjacent to z, and hence (X\ by) U P contains a ¥/ = 3PC(ayaz2a3, x,babs). Since u is
adjacent to ay,as9, by, and it is not adjacent to as, bs, z,, it violates Lemma 5.1 w.r.t. X',

Case 3.2: z; is of Type t2 or t3 w.r.t. ¥ or it is a sibling of b;.
Since u is of Type tds w.r.t. X, by,by € S and b3 € S. By Claim 6, n > 1 and so this case
cannot happen.
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Case 3.3: z; is of Type p4 w.r.t. X.
Then (XU P) \ {b1, b2} contains a 3PC(ajazas3,x1). O

Theorem 8.2 Let G be an even-signable graph that contains a ¥ = 3PC(A,A) and a node
u such that one of the following holds:

(i) ¥ # Cgs and u is of Type t5 or t6b w.r.t. T, or
(i) ¥ = Cs, u is of Type t5 w.r.t. ¥ and there is no node of Type t{d w.r.t. ¥.

Then G has a double star cutset.

Proof: Suppose G has no double star cutset. Then by Theorem 3.3, G has no Mickey Mouse.

Let C be the set of all ordered pairs X, u such that X = 3PC(A,A) # Cs and u is of Type
t5 or t6b w.r.t. X, or ¥ = Cg, u is of Type t5 w.r.t. ¥ and no node is of Type t4d w.r.t. X.
If there exists X, u € C such that u is of Type tb w.r.t. X, then remove from C all X', v’ such
that u' is of Type t6 w.r.t. X'

Let ¥,u € C. If u is of Type tb w.r.t. X, then we assume w.l.o.g. that « is not adjacent
to a3 and that, if one of P!, P? is an edge, then P! is an edge. If u is of Type t6b w.r.t.
Y, then we assume w.lo.g. that « has a neighbor in the interior of P3. For ¥,u € C let the
corresponding set S = (N(u) U N(az2)) \ (£ \ {a2,as,b1,b2}). Since S is not a double star
cutset, there exists a direct connection P = z1,...,z, in G'\ S from P! U P? to P3. Choose
3, u € C and a corresponding P so that the size of P is minimized.

Claim 1: No node of P is of Type t4, t5 or t6 w.r.t. 3.

Proof of Claim 1: By Theorem 8.1, no node can be of Type t4s w.r.t. X. By the definition
of S, no node of P is of Type t6 w.r.t. 3. Suppose that z; is of Type t5 w.r.t. 3. Then z;
is not adjacent to as. By our choice of ¥, u, node u is also of Type tb w.r.t. X. But then
{a1,a9,a3,b1,u,x;} induces an odd wheel with center a;. Now suppose that z; is of Type
t4d w.r.t. . Then by Theorem 8.1 ¥ = C, u is of Type t5 w.r.t. 3, and hence our choice
of 3, u is contradicted. This completes the proof of Claim 1.

Claim 2: If x; is of Type p4 w.r.t. 33, then i = 1 and the neighbors of x; in X2 are contained
in P1U P2

Proof of Claim 2: Suppose z; is of Type p4 w.r.t. . If the neighbors of z; in 3 are contained
in P*UP? then i = 1.

Suppose that the neighbors of z; in ¥ are contained in P! U P3. For j = 1,3 let u; (resp.
v;) be the neighbor of z; in P/ that is closest to a; (resp. bj). First suppose that z; is adjacent
to az. Then z; is not adjacent to a; and so (EUxi)\P33b3 induces a ¥/ = 3PC(aja2a3, u1v1%;).
Note that X' # Cy. Suppose u is not adjacent to a3. Since u is adjacent to a1, as, by, and it is
not adjacent to ag, z;, it must be of Type t4s w.r.t. ¥’ a contradiction to Theorem 8.1. So u is
adjacent to ag, i.e. it is of Type t6 w.r.t. 3, and hence it must have a neighbor in the interior
of P3. Then z; is not adjacent to b3 and so (EUgci)\Pallu1 induces a X = 3PC(z;a3vs, by1babs).
Note that X" # Cg. Since u is adjacent to by, by, b3, as, az and it has a neighbor in the interior
of P3, and it is not adjacent to z;, it must be of Type t5 w.r.t. X". But then X", u contradict
our choice of ¥, u. Hence z; is not adjacent to as.
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Let ¥’ = 3PC(a1a2a3, z;vsuz) induced by (X U ;) \Pvllbl. Note that ¥/ # Cs. Suppose
u is not adjacent to as. Since u is adjacent to aj,as, b, and it is not adjacent to as,z;,
it must be of Type t4d w.r.t. ¥, a contradiction to Theorem 8.1. Hence u is adjacent to
as, i.e. it is of Type t6 w.r.t. X. Then u must be of Type t3p w.r.t. ¥’. So w cannot
have neighbors in P}, \ a1 and P, . \ a3. Since u is of Type t6 w.r.t. ¥, it must have a
neighbor in the interior of P?. Hence z; is not adjacent to b and so (X U ;) \ Py, induces
a X" = 3PC(z;u3vs, bibabs). Note that X # Cg. Since u is adjacent to by, by, b3, az and it
has a neighbor in PU33,73 \ b3, and it is not adjacent to z;, it must be of Type t5 w.r.t. X". But
then our choice of ¥, u is contradicted.

An analogous argument holds if the neighbors of z; in ¥ are contained in P2 U P3. This

completes the proof of Claim 2.
Claim 3: No node of P is of Type t2p or t3p w.r.t. X.

Proof of Claim 3: Suppose that z; is of Type t2p or t3p w.r.t. ¥ and let ¥’ be obtained from
3} by substituting z; for its sibling. By definition of S, z; cannot be a sibling of a; or as.
Suppose that z; is a sibling of ay. Suppose u is of Type t6 w.r.t. ¥. Then P3 is not an edge
and so X' # Cgs. But then u is of Type t5 w.r.t. Y/, contradicting our choice of ¥, u. Hence
u is of Type t5 w.r.t. ¥. First assume that ¥ # Cs. Suppose X' = Cs. Then z;b2, a1b; and
agbs are all edges, and since ¥ # Cg, asbo is not an edge. So {ai,as,as,bs,u, z;} induces an
odd wheel with center a;. Therefore ¥/ # Cg. Since u is adjacent to by, by, b3, a; and it is
not adjacent to z;,as, it must be a sibling of b; w.r.t. ¥'. Let X" be obtained from ¥’ by
substituting « for b;. Since a9 is adjacent to aj,as, v and it is not adjacent to b3, z;, it must
be of Type t4d w.r.t. ¥”. Hence asbs is an edge and, by Theorem 8.1(ii), X" = Cs. But then
agbs is also an edge. Since X # Cs, a1by is not an edge, contradicting our assumption on
node u. Hence ¥ = Cs. Let ¥ be the 3PC(a1z;a3, ubybs) induced by {a1, a3, b, b3, z;, u}.
Note that ay is of Type t4d w.r.t. X", adjacent to ay, as,bs,u. We obtain a contradiction by
showing that X" and as satisfy (iii) of Theorem 8.1. Suppose there is a node v, not adjacent
to ay, whose neighbors in X" are x;, a3, u, bs. Node v must be adjacent to by, else it violates
Lemma 5.1 w.r.t. X'. But then {ag,as,bi,bs,2;,v} induces an odd wheel with center x;.
Hence, X" and ag satisfy (iii) of Theorem 8.1.

Now suppose that z; is a sibling of by. Since z; is not adjacent to ay, X' # Cs. If u is of
Type t6 w.r.t. 3, then it is of Type t5 w.r.t. X', contradicting our choice of ¥, u. So u is of
Type t5 w.r.t. X. But then u is of Type t4d w.r.t. X', a contradiction to Theorem 8.1(ii).

Next suppose that z; is a sibling of b;. First assume that ¥ # Cs. Suppose X/ = Cg.
Then z;a1, asbs and asbs are all edges. Since asbs is an edge, u cannot be of Type t6 w.r.t.
¥, and so it is of Type t5 w.r.t. 3. Since ¥ # Cg, a1b; is not an edge. Since a1b; is not an
edge and asb, is an edge, our assumption on ¥ and u is contradicted. Hence X' # Cg. If u is
of Type t6 w.r.t. 3, then it is of Type t5 w.r.t. X', contradicting our choice of ¥, u. So u is
of Type t5 w.r.t. X. But then u is of Type t4d w.r.t. X', a contradiction to Theorem 8.1(ii).
Hence ¥ = Cs. Then u is of Type t5 w.r.t. ¥ and of Type t4d w.r.t. ¥’. We obtain a
contradiction by showing that >’ and w satisfy (iii) of Theorem 8.1. Suppose there is a node
v, not adjacent to w, whose neighbors in X' are ag,as, b3, z;. By Lemma 5.1, v is of Type
t4d w.r.t. X. But then our choice of X, u is contradicted. Hence, ¥’ and wu satisfy (iii) of
Theorem 8.1.
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Finally suppose that x; is a sibling of b3. If w is of Type t5 w.r.t. 3, then u is of Type t4s
w.r.t. X', a contradiction to Theorem 8.1(i). Hence u is of Type t6 w.r.t. X. In particular
¥ # Cs. But then u is of Type t5 w.r.t. ¥'. So X' = Cg and there is a node v of Type t4d
w.r.t. X', else our choice of X, u is contradicted. By Theorem 8.1, no node is of Type t4 w.r.t.
3} and by our choice of ¥, u, no node is of Type t5 w.r.t. 3. So by Lemma 5.1 v must be of
Type t2p w.r.t. X being a sibling of a1 or as. Let X" be obtained by substituting v into X.
Note that ¥ # Cs. Then w; is of Type t4d or t5 w.r.t. ¥, contradicting Theorem 8.1 or
our choice of ¥, u. This completes the proof of Claim 3.

Claim 4: If z; is of Type p3 w.r.t. X, then u is of Type t6 w.r.t. 3, a1by and asby are
not edges, u has no neighbors in the interior of P and P?, and the neighbors of z; in ¥ are
contained in P3 (i.e. i =n).

Proof of Claim J: Suppose x; is of Type p3 w.r.t. 3. Let ¥’ be obtained by substituting xz;
into 3. Note that X' # Cs. So, if u is of Type t5 w.r.t. ¥, or u is of Type t6 w.r.t. ¥ with a
neighbor in the interior of one of the paths of X', then ¥’ u and P’, where P' = x,...,x; 1
or P = z;11,...,xy, contradict our choice of ¥, u and P. Hence u is of Type t6 w.r.t. X,
the neighbors of x; in ¥ are contained in P2, and u has no neighbors in the interior of P!
and P?. Let P, ,, be the agbs-path of ¥X'. If a1b; is an edge, then P, , U P! U v induces an
odd wheel with center w. Hence a1b; is not an edge, and similarly a2by is not an edge. This
completes the proof of Claim 4.

Claim 5: n > 1, z s of Type t1, p1, p2 or p4 w.r.t. X or it is of Type t2 w.r.t. X adjacent
to a1 and as, and x, is of Type t1, pl, p2 or p3 w.r.t. 3, or it is of Type t2 or t3 w.r.t. %
with neighbors in {by,be,bs}.

Proof of Claim 5: Follows from the definition of S and Claims 1, 2, 3 and 4.
Claim 6: No intermediate node of P is strongly adjacent to 3.

Proof of Claim 6: Assume not and let z; be an intermediate node of P with lowest index
that is strongly adjacent to . By the definition of S, the only nodes of ¥ that can have a
neighbor in the interior of P are as, b1 and bs. Hence x; is of Type t2 w.r.t. 3 adjacent to
b1 and bg.

First we show that at most one node of {a3,b1,b2} has a neighbor in P,,,. ,. Suppose
not. Then P, , contains a subpath P’ such that the endnodes of P’ are adjacent to distinct
nodes of {as, b1, b2} and no intermediate node of P’ has a neighbor in {as, b1,b2}. If by and by
have neighbors in P’, then P? U P3U P’ induces a Mickey Mouse. So we may assume w.l.o.g.
that one endnode of P’ is adjacent to a3 and the other to by. But then P' U P? U P’ induces
a 3PC(ajaza3,b2). Hence, at most one node of {as, by, b2} has a neighbor in Py, ,, .

We now show that a3 does not have a neighbor in P;,;, ,. Suppose it does and let z; be
the node of P,,;, , with highest index adjacent to a3. Then b; and by do not have neighbors
in Py, and hence P' U P? U P,,,, induces a X' = 3PC(ayaas,biboz;). Since i # j,
Y # Cg. If u is of Type t6 w.r.t. X, then it is of Type t5 w.r.t. X', contradicting our choice
of X, u. So u is of Type tb w.r.t. 3, and hence it is of Type t4s w.r.t. X', a contradiction to
Theorem 8.1. Therefore, a3z has no neighbors in Py, ;.

Suppose 1 is of Type t1, pl or p2 w.r.t. X. W.l.o.g. assume that its neighbors in X are
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contained in P2. Then (X \ by) U Py, 4, contains a 3PC(ajazaz,by). If 71 is of Type t2 w.r.t.
Y, then (X \ b2) U Py, contains a 3PC(a1z1a3,b1). Hence z; is of Type p4 w.r.t. ¥. Then
x1 cannot be adjacent to both b; and b2, so assume w.l.o.g. that it is not adjacent to b,. But
then (X \ b1) U Py, 4, contains a 3PC(ajagas,x1). This completes the proof of Claim 6.

Claim 7: At most one node of {as,b1,b2} has a neighbor in the interior of P.

Proof of Claim 7: Assume not. Then, by Claim 6, P, , contains a subpath P’ such
that the endnodes of P’ are not strongly adjacent to X, they are adjacent to distinct nodes
of {as,b1,b2}, and no intermediate node of P’ is adjacent to a node of {as,by,bo}. If the
endnodes of P’ are adjacent to b; and by, then P’ U P2 U P3? induces a Mickey Mouse. So we
may assume w.l.o.g. that the endnodes of P’ are adjacent to a3 and by. But then P'UP'UP?
induces a 3PC(aiaz2as, by). This completes the proof of Claim 7.

By Claim 5, we now consider the following cases.

Case 1: z,, is of Type t1, pl, p2 or p3 w.r.t. X.

First we show that b; and by do not have neighbors in the interior of P. Suppose not and
let x; be the node of P with highest index adjacent to b; or by. W.l.o.g. assume that z; is
adjacent to by. Then, by Claim 7, a3 and b; do not have neighbors in the interior of P and
so X and Py, contradict Lemma 7.2. Hence, b; and b2 do not have neighbors in the interior
of P.

Case 1.1: z; is of Type t1, pl or p2 w.r.t. 3.

By a similar argument as above, a3z does not have a neighbor in the interior of P. By
Lemma 7.2 applied to % and P, both z; and z, must be of Type p2 w.r.t. 3.

Suppose that the neighbors of z1 in ¥ are contained in P'. Let u; (resp. v;) be the
neighbor of 1 in P! that is closest to a; (resp. b1). Let ug (resp. v3) be the neighbor of x,
in P3 that is closest to a3 (resp. b3). Let ¥/ = 3PC (uyviz1, u3v3z,,) induced by P*UP3U P.
Since u is adjacent to ay, b1, b3 and it is not adjacent to any node of P, it must be of Type p4
or t4s w.r.t. X'. If w is of Type t4s w.r.t. X', then Theorem 8.1(i) is contradicted. So w is of
Type p4 w.r.t. ¥'. Then u must be of Type t5 w.r.t. ¥, N(u) N (P! U P3) = {a1,ad},b1,b3},
and P! is of length greater than 2. But then P! U P? Uu induces a proper wheel with center
u that is not a beetle.

Analogous argument holds when the neighbors of 21 in ¥ are contained in P?.

Case 1.2: z; is of Type t2 w.r.t. 3.
Then (X \ a3) U P contains a 3PC(b1bsbs, a1).

Case 1.3: z; is of Type p4 w.r.t. 3.
Then (Z \ {al, ag, a3}) U P contains a 3P0(b1b2b3, .Tl).

Case 2: z, is of Type t2 or t3 w.r.t. 3.

Then z, is adjacent to b3. Suppose as has a neighbor in the interior of P and let z;
be the node of P with highest index adjacent to a3. Then, by Claim 7, b; and b2 do not
have a neighbor in the interior of P. If z,, is adjacent to by, then P U P3 U P,,,, induces a
3PC (byznbs,a3). Otherwise, P? U P3 U P,,,., induces a 3PC(z,babs,a3). Therefore a3 has
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no neighbors in the interior of P.

Case 2.1: z; is of Type t1, pl or p2 w.r.t. 3.

W.Lo.g. we assume that z, is adjacent to b;. First suppose that the neighbors of ; in 3
are contained in P2. Suppose b; has a neighbor in the interior of P and let x; be the node
of P with lowest index adjacent to b;. Then, by Claim 7, by does not have a neighbor in the
interior of P, and hence ¥ and P, ,, contradict Lemma 7.2. Therefore b; has no neighbors in
the interior of P. So (X \ b2) U P contains a ¥’ = 3PC(ajazas, biz,b3). Note that %' # Cg.
If u is of Type t6 w.r.t. X, then it is of Type t5 w.r.t. X', and hence our choice of X, u is
contradicted. So u is of Type t5 w.r.t. ¥. But then u is of Type t4d w.r.t. ¥, a contradiction
to Theorem 8.1(ii).

Now suppose that the neighbors of z; in ¥ are contained in P'. Suppose by has a neighbor
in the interior of P and let x; be the node of P with lowest index adjacent to b;. Then, by
Claim 7, b; has no neighbors in the interior of P and hence ¥ and P, ;, contradict Lemma
7.2. Therefore b has no neighbors in the interior of P. If x, is not adjacent to by, then
(X\ b1) U P contains a 3PC(ajazas, bs). Hence x,, is adjacent to by. So (X \ by) U P contains
a ¥ = 3PC(aiaza3,z,b2b3). Note that X' # Cs. If u is of Type t6 w.r.t. 3, then it is of
Type tb w.r.t. X', contradicting our choice of ¥, u. So u is of Type t5 w.r.t. 3. But then u
is of Type t4d w.r.t. X', a contradiction to Theorem 8.1(ii).

Case 2.2: z; is of Type t2 w.r.t. X.

First suppose that z, is adjacent to b;. We now show that b; cannot have a neighbor in
the interior of P. Suppose not and let z; be the node of P with lowest index adjacent to b;.
Then P'U P3U P contains a 3PC(aix1a3,b1). Hence by has no neighbors in the interior of P,
and so P! UP3U P induces a ¥/ = 3PC(ayz1a3, b1z,b3). Since u is adjacent to ay, by, b3 and
it has no neighbors in P, it must be of Type t4s w.r.t. ¥/, a contradiction to Theorem 8.1(i).

Now suppose that z, is adjacent to bs. Node b must have a neighbor in the interior of
P, since otherwise P2 U P3 U P induces a 3PC(z,b2b3,a3). Let z; be the node of P with
lowest index adjacent to by. Then, by Claim 7, b; has no neighbors in the interior of P, and
hence P U P3U P, Uby induces a X' = 3PC/(a171a3, bibabs). Note that X' # Cg. If u is of
Type t6 w.r.t. 3, then it is of Type tb w.r.t. X', contradicting our choice of X, u. So u is of
Type t5 w.r.t. X, and hence it is of Type t3p w.r.t. ¥’ (u being a sibling of b; w.r.t. ¥'). Let
¥" be obtained from X' by substituting u for b;. Note that X" # Cs. Since as is adjacent to
a1, a3,u and it is not adjacent to 1, b3, it must be of Type t4d w.r.t. X", a contradiction to
Theorem 8.1(ii).

Case 2.3: z; is of Type p4 w.r.t. X.
Then (X \ {b1,b2}) U P contains a 3PC(ajazas3,x1). a

Theorem 8.3 Let G be an even-signable graph that contains a ¥ = 3PC(ajazas, bibabs)
and a node u that is of Type t6a w.r.t. ¥. Assume that for some i € {1,2,3}, there is no
Pi-crosspath w.r.t. 3, and if ¥ = Cg then no node is of Type t4d w.r.t. ¥. Then G has a
double star cutset.

Proof: Assume there is no P3-crosspath w.r.t. ¥, and if ¥ = Cg then no node is of Type t4d
w.r.t. 2. Suppose G has no double star cutset. Then by Theorems 8.1 and 8.2, no node is of
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Type t4s or t6b w.r.t. a X' = 3PC(A, A), and if ¥’ # Cg, then no node is of Type t4d or t5
w.r.t. ¥'. In particular, no node is of Type t4d w.r.t. 3, and hence by Theorem 8.2 no node
is of Type t5 w.r.t. . Let S = (N(u) UN(a2)) \ (X \ {a1,a2,b3}) and let P = z4,...,z, be
a direct connection from P' U P? to P3 in G'\ S.

Claim 1: No node of P is of Type t2, t2p, t3p or tba w.r.t. 3.

Proof of Claim 1: By defenition of S, no node of P is of Type tb6a w.r.t. ¥. If x; is of Type
t2p or t3p w.r.t. X, then let ¥’ be obtained from X by substituting x; for its sibling. If z; is of
Type t2 w.r.t. X, then by Theorem 7.7, x; is attached to ¥ by an attachment QQ = y1, ..., ym.
Let ¥’ be obtained from X by substituting z; and @ into X. Since u is not adjacent to z;, it
is of Type t5 or tds w.r.t. /. By Theorems 8.1 and 8.2, u is of Type t5 w.r.t. ¥/, ¥/ = Cg
and there is a node v of Type t4d w.r.t. ¥'. Hence ¥ = Cs. Suppose z; is of Type t2 w.r.t.
Y. Since ¥ = Cs, by definition of attachment, m = 1 and y; is of Type t2 w.r.t. X. But
then ¥ U {z;,y1} contains a hole H of length 6 that contains z; and y;, such that (H,u) is
a proper wheel that is not a beetle, a contradiction. So z; is of Type t2p or t3p w.r.t. X.
Since z; is not adjacent to as, x; cannot be a sibling of by, a; or ag. If x; is a sibling of ao,
then every node that is of Type t4d w.r.t. X' is of Type t2p w.r.t. X being a sibling of by
or bg. If x; is a sibling of by, then every node that is of Type t4d w.r.t. ¥’ is of Type t2p
w.r.t. X being a sibling of as or as. If z; is a sibling of b3, then every node that is of Type
t4d w.r.t. X' is of Type t2p w.r.t. X being a sibling of a; or as. Therefore ¥’ and v satisfy
Theorem 8.1(iii), a contradiction. This completes the proof of Claim 1.

Claim 2: n > 1, xy is of Type t1, p1, p2, p3 or p4 w.r.t. X with neighbors contained in
PYU P2, or of Type t3 w.r.t. ¥ adjacent to by, by and bz, and =, is of Type t1, p1, p2 or p3
w.r.t. ¥ with neighbors contained in P3.

Proof of Claim 2: Since there is no P3-crosspath, if a node of P is of Type p4 w.r.t. ¥, then
its neighbors are contained in P! U P?. By definition of S, if a node is of Type t3 w.r.t. ¥
then it is adjacent to b1, b2,b3. Now the result follows from Claim 1. This completes the
proof of Claim 2.

Claim 3: No interior node of P has a neighbor in 3.

Proof of Claim 3: By definition of S, the only nodes of ¥ that can have a neighbor in the
interior of P are a; and b3. First we show that not both a; and b3 can have a neighbor in
the interior of P. Assume not and let z; and z; be nodes in the interior of P adjacent to a;
and to bg respectively so that the Py 5, subpath is shortest possible. Then Py 5 U P2uP3
induces a 3PC(ajazas, b3).

Now assume that bs has a neighbor in the interior of P. By Lemma 7.2, z; is of Type p4
with neighbors in P' U P2, or of Type t3 adjacent to by, by, bs. If 2 is of Type p4, there
is a 3PC(b1babs, z1) contained in (P UX) \ {a1,a2,as,z,}. If 21 is of Type t3 adjacent to
b1, by, b3, then (PUX)\ b3 contains a 3PC(ayazas, bibaxy) # Cs and u is of Type t5 w.r.t. it,
a contradiction. So no interior node of P is adjacent to bs.

Assume now that some interior node of P is adjacent to a;. Let x; be such a node with
highest index. Then P, ,, contradicts Lemma 7.2. This completes the proof of Claim 3.
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If 2, is of Type tl, pl, p2 or p3 w.r.t. ¥, by Lemma 7.2, P is a P3-crosspath, a con-
tradiction. Suppose z; is of Type t3 w.r.t. X. Let ¥ = 3PC(ajaza3,b1bex1) contained in
(X \ b3) U P. Note that ¥ # Cs. Then u is of Type t5 w.r.t. ¥, a contradiction. So z1 is of
Type p4 w.r.t. . But then (X\ {b1,b2,b3}) U P contains a 3PC(aaza3, z1). O

9 Type t2 and t2p Nodes

The main result of this section is the following.

Theorem 9.1 Let G be an even-signable graph. If G contains a 3PC (A, A) with a Type t2
or t2p node, then G has a double star cutset or a 2-join.

9.1 Decomposable 3PC(A,A)

Definition 9.2 A ¥ = 3PC(ajaza3,bibsbs) # Cs in G is decomposable if there exists a
node of Type t2 or t2p w.r.t. X, say adjacent to as and as, but there is no P'-crosspath w.r.t.
Y. AY = 3PC(a1aza3,bi1bebz) = Cg in G is decomposable if there exists a node of Type t2
w.r.t. B, say adjacent to as and az, but there is no P'-crosspath w.r.t. . In both cases path
P! of ¥ is called the middle path.

Denote by H the graph induced by a decomposable 3PC/(ajaqas,bibobs) together with
a node a4 of Type t2 or t2p adjacent to ao,a3. Let Hy = P'Uay and Hy = P? U P3.
Then Hi|H; is a 2-join of H with special sets A1 = {a1,a4}, By = {b1}, A2 = {ag,a3} and
By = {b2,b3}. In this section, we show that the 2-join H|Hy of H extends to a 2-join of G.
First, we prove the following results.

Lemma 9.3 If G contains a 3PC(A, A) with a Type t2 node, then G has a double star cutset
or G contains a decomposable 3PC(A, A) with a Type t2 node.

Proof: Assume G has no double star cutset.

Connected diamonds D(ajazagas,bibabsbs) consist of two node disjoint sets {a1,...,a4}
and {by,...,bs} each of which induces a diamond such that ajas and b1by are not edges,
together with four paths P!, ..., P* such that for ¢ = 1,...,4, P? is an a;b;-path. Paths
P',..., P* are node disjoint and the only adjacencies between them are the edges of the two
diamonds.

First suppose that G contains connected diamonds D(ajasasag,bibobsby). Let ¥ =
3PC(ajazas, bibobs) (resp. ¥’ = 3PC(agazas, bybabs)) induced by paths P!, P? and P? (resp.
P* P? and P3?) of D. Suppose that P = x1,...,z, is a Pl-crosspath w.r.t. 3. W.Lo.g. z;
has a neighbor in P! and z,, has a neighbor in P?. Let uy; and v; be the neighbors of x;
in PL. If no node of P* has a neighbor in P, then P' U (P?\ by) U b3 U P* U P contains a
3PC(x1u1v1,az). So anode of P* has a neighbor in P. Let x; be such a neighbor with highest
index. Let v be the neighbor of z; in P* that is closest to a4. By Lemmas 5.1 and 7.2 applied
to Py, and X', P, is a Pl-crosspath w.r.t. ¥'. Hence v # by. If i # 1 then Pl P...

aqv?

contradicts Lemma 7.4 applied to 3. So ¢ = 1. If z; is not adjacent to a;, then wa,xl
contradicts Lemma 7.4 applied to ¥. So z; is adjacent to a;, and hence P' U P3 U wa Uz
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induces a 3PC(z1ujvy,a3). Therefore, there is no P'-crosspath w.r.t. ¥, and hence ¥ is a
decomposable 3PC(A, A).

Now we may assume that G does not contain connected diamonds.

Let C be the set of all pairs X, u where ¥ = 3PC(A,A) and u is of Type t2 w.r.t. X.
Let ¥ = 3PC(aiaz2a3,b1b2b3) and a4 be a pair chosen from C so that ¥ has the shortest
middle path. W.l.o.g. a4 is adjacent to as and az. Suppose ¥ is not decomposable and let
P =zx,...,2, be a Pl-crosspath w.r.t. 3. W.Lo.g. x; has a neighbor in P! and z,, in P2
Let u; (resp. v1) be the neighbor of z; in P! that is closest to a; (resp. b;). Let uy be the
neighbor of x,, on P? that is closest to as.

First suppose that u; # a;. Let X' = 3PC(ajaza3,uiz1v1) contained in (X U P) \ bo.
By Lemma 5.1, a4 is of Type t2 w.r.t. ¥'. Since ¥’ has a shorter middle path than X, this
contradicts our choice of . Therefore, u; = a;.

By Theorem 7.7, let Q =y, ...,y be an attachment of ag to X. Let X' be obtained by
substituting a4 and @ into X. Suppose a4 has a neighbor in P and let x; be its neighbor in P
with highest index. If i = 1 then P*UP3U{ay,z;} induces a 3PC(z1u1vy,a3), and otherwise
a4, Py,z, contradicts Lemma 7.4 applied to ¥. So a4 does not have a neighbor in P. Next we
show that no node of @ \ y,,, is adjacent to or coincident with a node of P. Suppose not and
let y; be the node of @ with lowest index adjacent to a node of P, and let x; be the node
of P with highest index adjacent to y;. If j = 1, then P' U P3 U Qy,,, U {as, 21} induces a
3PC(z1uivi,a3). If 7 > 1, then a4, Qy,y;» Py, s, violates Lemma 7.4 applied to ¥. So no node
of @ \ ym is adjacent to or coincident with a node of P.

Assume y,, is of Type t1, pl or p3 w.r.t. 3. We show that y,,, does not have a neighbor
in P. Suppose not and let z; be the neighbor of y,, in P with highest index. Then P,,;,
contradicts Lemma 7.2 applied to ¥’ unless ¢ = 1 and y,, is of Type pl adjacent to a. But
then there is a 3PC/(aga3a4, 210} ym) and a; is a strongly adjacent node of Type t4s relative
to it, a contradiction to Theorem 8.1. Therefore vy, does not have a neighbor in P. Let v be
the neighbor of y,,, in P\ a1 that is closest to a}. Let H be the hole PUPal,lu UP2,,UQUay.
Then (H,aq) is an odd wheel.

Therefore, y,, is of Type t2, t2p or t3p w.r.t. X. We show that y,, does not have a
neighbor in P. Assume not and let x; be the neighbor of y,,, in P with largest index. If
i =n and z,, is adjacent to by, then P2U P? U {z,,y,,} induces an odd wheel with center by.
Otherwise, P2U P,,;;, UQUay induces a 3PC(A, yy,). So yp, does not have a neighbor in P.
If y,, is of Type t2, then ¥ U @ induces connected diamonds, contradicting our assumption.
So ym is of Type t2p or t3p w.r.t. ¥ and hence it has a neighbor in P!\ b;. Let v be the
neighbor of ¥, in P! that is closest to a;. Note that v # a1, by definition of attachment.
Then P! UP2, _ UPUQU ay induces an odd wheel with center a. O

a1v a2u2

9.2 Double Star Cutsets

Lemma 9.4 Let G be an even-signable graph that does not contain a 3PC(A, A) with a Type
t2 node. Suppose that G contains a ¥ = 3PC(ayazas,bibebs) where Py has length one and
suppose that there exists a sibling u of as w.r.t. 3, i.e. node u is of Type t2p or t3p adjacent
to ay,as,by (and possibly az). Then G has a double star cutset.
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Proof: Assume G has no double star cutset. Let S = (N(az) U N(b2)) \ {u,b1,bs} and let
P = z,...,z, be a direct connection from v to ¥\ S in G\ S. By our assumption, no
node is of Type t2 w.r.t. a 3PC(A,A). By Theorem 8.1, no node is of Type t4s w.r.t. 3.
By definition of S, no node of P is of Type t3, t2p, t3p, t4d, t5 or t6 w.r.t. X. Let X’ be
obtained by substituting w into 3.

Assume w.l.o.g. that z,, has a neighbor in P\ a3. Then z,, is of Type t1, pl, p2, p3 or
p4 w.r.t. ¥. Suppose z, is of Type p4 w.r.t. 3. Then (¥ U P Uuw) \ {a1,a2,a3} contains
a 3PC(b1bybs, z,). So x, is not of Type p4 w.r.t. ¥, and hence N(z,) NX C P3. If z,, is
adjacent to u, then z, contradicts Lemma 5.1 applied to ¥'. So z,, is not adjacent to u and
N(z1) N X C {a1,a3}. Since no node can be of Type t2 w.r.t. ¥ or ¥/, N(z1) NX = 0.

Suppose a; has a neighbor in P and let z; be such a neighbor with highest index. Since
x; is an interior node of P, N(z;) N X C {a1,a3}. Since z; cannot be of Type t2 w.r.t. X, ay
is the unique neighbor of z; in ¥. But then P, , or a subpath of it (if a3 has a neighbor in
P, ), contradicts Lemma 7.2 applied to X. So a; does not have a neighbor in P.

Ti4+1Tn—1
Let v be the neighbor of z, in P3 that is closest to b3. Then P U Pv3b3 U P U {u, by}
induces an odd wheel with center bs. O

Definition 9.5 A double line wheel (H, z,y) consists of a hole H and two nonadjacent nodes
x and y such that both (H,z) and (H,y) are line wheels and N(x) N H = N(y) N H.

Lemma 9.6 If an even-signable graph G contains a double line wheel (H,z,y) such that
H # (g, then G has a double star cutset.

Proof: Assume G contains a double line wheel (H,z,y) such that H # Cg, but G has no
double star cutset. Let z1,z2,x3, x4 be the neighbors of  in H encountered in this order
when H is traversed clockwise, and such that xy29 and z3z4 are edges. Let S 1 (resp. SQ) be
the sector of (H,x) with endnodes 21 and x4 (resp. z9 and z3). Let 2 be the neighbor of z1 in
S! and w.l.o.g. assume that S* is of length greater than two. Let S = (N (z)UN (z1))\ {7}, y}
and let P =yj,...,yn be a direct connection from y to H\ Sin G'\ S.

Claim 1: If x9 has a neighbor in P\ y,, then x3 and x4 do not.

Proof of Claim 1: Suppose that both zo and x4 have a neighbor in P\ y,. Let P’ be a
subpath of P\ y, such that one endnode of P’ is adjacent to z2, the other to z4 and no
proper subpath of P’ has this property. Then P’ U S* U {z, 22} induces an odd wheel with
center .

Now suppose that both zo and z3 have a neighbor in P\ y,. Let P’ be a subpath of
P\ y,, such that one endnode of P’ is adjacent to z, the other to z3 and no proper subpath
of of P’ has this property, and furthermore out of all such subpaths, P’ contains a smallest
indexed node of P. If P’ contains y;, then P' U S' U {z3, x3,y} induces a proper wheel with
center y that is not a beetle, contradicting Theorem 3.2. So P’ does not contain y;, and
hence S' U P’ U {z3, z3,y} together with the subpath of P that connects y to P', induces an
L-parachute, contradicting Theorem 4.1. This completes the proof of Claim 1.

Case 1: y, has a neighbor in both S' and S2.

Case 1.1: n =1 and y; is adjacent to xo.

36



If y; is not adjacent to z4 then (S'\ z1) U{z,y,y1,z2} contains a 3PC (yy1x2,4). So y1
is adjacent to 4. Node y; must have a neighbor in S'\ z4, else S' U {z,y1,z2} induces an
odd wheel with center x. Let u; be the neighbor of y; in S' that is closest to z1. If ujzy is
not an edge, then Sélxl U{x, x4, 22,y1} induces a 3PC(z1x92,y1). So ujzy is an edge. Let

= 3PC($4u1y1,xLx1$2) induced by S U {z,z2,y1}. Then y is of Type t4d w.r.t. ¥'. By
Theorem 8.1, ¥/ = Cs. But then S! is of length two, contradicting our assumption.

Case 1.2: n # 1 or y; is not adjacent to zs.

Note that x4 cannot be the unique neighbor of 4, in S', since otherwise ¥, must have a
neighbor in $?\ 3 and hence (H \ #3) U P Uz contains an odd wheel with center z. Suppose
73 has no neighbor in P\ y,. If y, has a neighbor in S? \ x3, then (H \ {z3,74}) UP Uy
contains a 3PC(x172y,y,). Otherwise, x3 is the unique neighbor of y, in S? and hence
(H \ z4) U{z,yn} contains a 3PC(z x2x,23). So x2 has a neighbor in P \ y,, and hence by
Claim 1, z3 and x4 do not. In particular, n > 1.

Node x5 cannot be the unique neighbor of y, in S2, since otherwise (H \ z1) U {y,yn}
contains an odd wheel with center y. If y, is not adjacent to both x3 and x4, then (H U
P Uy) \ z1 contains a 3PC(z324Y,Yn). So Yy, is adjacent to both z3 and z4. If 29 does not
have a neighbor in P\ y;, then z2 is adjacent to y; and hence P U {y,z,z2,z3} induces an
odd wheel with center y. So z2 has a neighbor in P\ y;. Since y, has a neighbor in S*\ zy4,
(S*\ z4) U (P \ y1) U{y,zo, 73} contains a 3PC(z172y, yn)-

Case 2: N(y,)NH C S!

Suppose z2 has a neighbor in P\ y,. Then, by Claim 1, z3 and x4 do not. But then
(H \ 1) U P Uz contains an odd wheel with center z. So z3 does not have a neighbor in
P\ yp,.

If 23 has a neighbor in P\ y,, then (H \ z4) U P Uz contains an odd wheel with center
z. So x3 does not have a neighbor in P\ y,.

If 4y, has a unique neighbor in S!, then H U P Uy induces an L-parachute, contradicting
Theorem 4.1. Suppose ¥, has two nonadjacent neighbors in S'. Let uy (resp. u;) be the
neighbor of y, in S' that is closest to z4 (resp. z1). Then S}, USs ., US?UPUy
induces either a proper wheel that is not a beetle (if n = 1) or an L-parachute (otherwise),
contradicting Theorem 3.2 or 4.1. So y, has exactly two neighbors in S', and they are
adjacent. If ugy = x4, then H U P Uy induces an L-parachute, contradicting Theorem 4.1.
If z4 has no neighbor in P \ y,,, then S' U P Uy induces a 3PC(A,y). Otherwise, H U P
contains a 3PC(A, z4).

Case 3: N(y,) NH C S?

Suppose z4 has a neighbor in P\ y,. Then by Claim 1, z2 does not, and hence (H \ z3) U
P U z contains an odd wheel with center z. So x4 does not have a neighbor in P\ y,,. By
Claim 1, at most one of z2, z3 has a neighbor in P\ y,, and so by an analogous argument as
in Case 2, there is either a proper wheel that is not a beetle or an L-parachute, contradicting
Theorem 3.2 or 4.1. O

Lemma 9.7 If G contains a 3PC(A,A) # Cg with a Type t2p node, then either G contains
a decomposable 3PC(A,A) or G has a double star cutset.
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Proof: By Lemma 9.3 we may assume that G does not contain a 3PC(A,A) with a Type
t2 node. Assume G has no double star cutset. Let C be the set of all pairs X, u where
Y = 3PC(A,A) # Cg and u is of Type t2p w.r.t. X, and assume that C # 0. Let ¥ =
3PC(ayazas,b1bebs),aq be a pair chosen from C so that ¥ has the shortest middle path.
W.lo.g. a4 is adjacent to as and ag. Suppose X is not decomposable and let P = zq,...,z,
be a P'-crosspath w.r.t. . W.lo.g. z; has a neighbor in P! and z, in P%. Let u; (resp.
v1) be the neighbor of z1 in P! that is closest to aj (resp. by).

First suppose that u; # a;. Let ¥’ = 3PC(ajaza3,uiz1v1) contained in (X U P) \ bo.
Note that X' # Cs. By Theorems 8.1 and 8.2, a4 cannot be of Type t4 or t5 w.r.t. ¥'. By
our assumption a4 cannot be of Type t2 w.r.t. ¥'. So by Lemma 5.1, a4 is of Type t2p w.r.t.
Y. Since Y’ has a shorter middle path than X, this contradicts our choice of X. Therefore,
Uy = aj.

Suppose a4 has no neighbor in P. Let H be the hole contained in PU(P\a1)U(P?\by)Uay.
Then (H,aq) is an odd wheel. So a4 has a neighbor in P. Let H be the hole contained in
(XU P)\{a1,b2}. By Theorem 3.2, (H,a4) cannot be a proper wheel. Since a4 is adjacent
to a2, a3 and a node of P!\ aj, and it is not adjacent to b3, (H,a4) must be a line wheel.
In particular, a4 is adjacent to ¢} and z;. So (H,ai,a4) is a double line wheel. By Lemma
9.6, H = Cg. In particular, z; is adjacent to by, i.e. P! is an edge. But then Lemma 9.4 is
contradicted. O

Lemma 9.8 If ¥ = Cs has a node of Type t{d and a node of Type t2, then G has a double
star cutset.

Proof: Let a4 be of Type t2 w.r.t. X, adjacent to as and as, let u be of Type t4d w.r.t. X,
and assume that G has no double star cutset. By Theorem 7.7, let Q@ = z1,...,x, be an
attachment of a4 to X. Let X' be the 3PC(A, A) obtained by substituting a4 and @ into X.
By Lemma 7.4, z,, is of Type t1, pl, p3, t2, t2p or t3p w.r.t. 3. Since ¥ = Cg and x,, cannot
be adjacent to a1, node z, cannot be of Type pl, p3, t2p or t3p w.r.t. X. Suppose that =,
is of Type t1 w.r.t. ¥. Then X' # Cs. By Theorems 8.1 and 8.2, u cannot be of Type t4d or
t5 w.r.t. 3. So by Lemma, 5.1, u is of Type t2p w.r.t. ¥/, being a sibling of by or b3. Let X"
be obtained by substituting u into 3. Note that X" # Cs. But then a; is of Type t4d w.r.t.
¥ contradicting Theorem 8.1. Hence z,, is of Type t2 w.r.t. 3. Note that z, is adjacent to
be and b3. By symmetry it is enough to consider the following two cases.

Case 1: N(u)NX = {aQ,ag,bl,bg}

By Lemma 5.1, u is of Type t4d, t5 or t3p w.r.t. X'. Suppose that u is of Type t3p
w.r.t. ¥'. Then N(u) N X" = {a2,a3,a4,b2} and hence Q U {a1,a2,a4,b1,bs,u} induces an
odd wheel with center u. Hence u is of Type t4d or t5 w.r.t. ¥’. By Theorems 8.1 and
8.2, ¥ = (5. Denote x; by bs. Suppose there exists a node v not adjacent to u, such
that N(v) MY = {a1,a9,b1,b3}. Then {ay,as,aq4,b1,bs, by, v} must induce an universal wheel
with center v, and hence v is adjacent to a4 and bs. If u is of Type t4d w.r.t. Y’, then
{ag,a3,a4,b1,u,v} induces an odd wheel with center as. If u is of Type t5 w.r.t. X', then
{a4,b2,b3,bs,u,v} induces an odd wheel with center by. Therefore, such a node v cannot
exist, and hence ¥ and u satisfy (iii) of Theorem 8.1, a contradiction.

Case 2: N(u)NX = {al,aQ,bl,bg}
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By Lemma 5.1, u is of Type t2p or t4d w.r.t. ¥X'. Suppose u is of Type t2p w.r.t. ¥'. Then
a4 or x, is the unique neighbor of u in Q U {a4}, and hence Q U {a1, as, a4, b1,bs,u} induces
a proper wheel with center u that is not a beetle, a contradiction. So u is of Type t4d w.r.t.
¥'. By Theorem 8.1, ¥/ = Cs. Denote x; by bs. Suppose there exists a node v not adjacent
to u, such that N(v) N ¥ = {a1,as3,b2,b3}. If v is adjacent to a4, then {bi,bs, b3, as,u,v}
induces an odd wheel with center bs3. So v is not adjacent to a4. By Lemma 5.1 applied to
¥, v is adjacent to by. But then {ai,a2,a4,b1,bs,bs,v} induces an odd wheel with center
v. Therefore, such a node v cannot exist, and hence ¥’ and u satisfy (iii) of Theorem 8.1, a
contradiction. a

9.3 Blocking Sequences for 2-Joins

In this section, we consider an induced subgraph H of G which contains a 2-join Hi|H;. We
say that a 2-join Hi|H, extends to G if there exists a 2-join of G, H{|H} with H; C H| and
H, C H). We characterize the situation in which the 2-join of H does not extend to a 2-join
of G.

Definition 9.9 A blocking sequence for a 2-join H1|H2 of a subgraph H of G is a sequence
of distinct nodes x1,...,xy, in G\ H with the following properties:

1. i) Hi|Hs Uz is not a 2-join of HU x4,

it) Hy Uxzy|Hy is not a 2-join of H Uz, and
i11) if n > 1 then, fori=1,...,n—1, HiUz;|HyUz;41 is not a 2-join of HU{x;, z;jy1}.

2. T1,...,Ty 18 minimal with respect to Property 1, in the sense that no sequence xj, ..., x;
with {xj,,...,x; } C{z1,...,2n}, satisfies Property 1.

k

Blocking sequences with respect to a 1-join were introduced and studied by Geelen in
[10]. Blocking sequences with respect to a 2-join were introduced in [6], where the following
results are obtained.

Let H be an induced subgraph of G with 2-join H;|Hj and special sets Aj, By, Az, Bs.

In the following remarks and lemmas, we let S = z1,...,x, be a blocking sequence for
the 2-join H1|H2 of a subgraph H of G.

Remark 9.10 H;|Hs U w is a 2-join in H Uw if and only if N(u) N Hy = 0, Ay or Bj.
Similarly Hy Uwu|Hz is a 2-join in H Uw if and only if N(u) N Hy = 0, Ay or Bs.

Lemma 9.11 If n > 1 then, for every node z;, j € {1,...,n — 1}, N(z;) N Hy = 0, Ay or
By, and for every node zj, j € {2,...,n}, N(z;) N Hy =0,A; or By.

Lemma 9.12 If n > 1 and z;z;41 is not an edge, where i € {1,...,n — 1}, then either
N(.TZ) NHy = Ay and N($i+1) NHy = Ay, or N(.TZ) NHy; = By and N($i+1) NH, =B.

Theorem 9.13 Let H be an induced subgraph of graph G that contains a 2-join Hi|Hs. The
2-join Hi|Hy of H extends to a 2-join of G if and only if there exists no blocking sequence
for Hi|Hy in G.
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Lemma 9.14 For 1l <i<n, HHU{zy,...,zi 1 }|HoU{Zit1,...,2n} @5 a 2-join in HU(S\
{zi}).

Lemma 9.15 If z;zp, n > k > i+ 1 > 2, is an edge then either N(x;) N Hy = As and
N(zg) NHy = Ay, or N(z;) N Hy = By and N(zx) N Hy = By.

Lemma 9.16 If z; is the node of lowest index adjacent to a node in Hs, then x1,...,x; is
a chordless path. Similarly, if z; is the node of highest index adjacent to a node in Hi, then
Zj,..., Ty 15 a chordless path.

Theorem 9.17 Let G be a graph and H an induced subgraph of G with 2-join Hi|Hy and
special sets Ay, By, Ag, Bo. Let H' be an induced subgraph of G with 2-join H{|Hy and special
sets A, B}, A, By such that AN Ay # 0 and Bi N By # 0. If S is a blocking sequence for
Hy|Hy and H{ NS # 0, then a proper subset of S is a blocking sequence for H{|Hs.

9.4 2-Join Decompositions

Throughout this section we assume that G is an even-signable graph that does not contain
a double star cutset. By Theorem 3.3 G' does not contain a Mickey Mouse. By Theorems
3.2 and 4.1, G does not contain a proper wheel that is not a beetle or an L-parachute. By
Theorems 8.1, 8.2 and 8.3, no node is of Type t4s w.r.t. a ¥ = 3PC(A, A), if ¥ # Cg then
no node is of Type t4d or t5 w.r.t. 3, and if a node w is of Type t6 w.r.t. X then either
¥ = Cs or none of the paths of 3 is an edge and u has no neighbors in the interior of any of
the paths of 3.

Lemma 9.18 Let ¥ = 3PC(ajaz2as,bibobs) and let y be a Type t2 or t2p node w.r.t. %,
adjacent to say by and bs. Then

(i) there cannot exist a node x that is of Type t1 w.r.t. ¥ adjacent to by and y;

(ii) every node x of Type t2 w.r.t. ¥ adjacent to by, b is adjacent to y, and every sibling
of bs w.r.t. X s adjacent to y.

Proof: We first prove (i). If y is of Type t2p w.r.t. X, let ¥ be obtained by substituting
y into X. Otherwise, by Theorem 7.7 let PY = y1,...,yn, be an attachment of y to X, and
let >¥ be obtained by substituting y and PY into . Assume there is a node z of Type t1
w.r.t. 3, adjacent to b3 and to y. By Lemma 5.1 applied to XY, z is of Type t2 w.r.t. Y.
By Theorem 7.7, let P* = xy,...,x, be an attachment of x to Y.

First we show that no node of P! is adjacent to or coincident with a node of P% \ .
Assume not and let z; be the node of P* \ z,, with lowest index that is adjacent to a node of
P'. Then z, Py ., contradicts Lemma 7.2 applied to Y. Therefore, no node of P! is adjacent
to or coincident with a node of P*\ z,,.

Suppose that z,, is of Type t1, pl or p3 w.r.t. Y. Then its neighbors in »¥ are contained
in P2, By Lemma 7.3 applied to z, P* and X, z, is of Type t2 w.r.t. X, adjacent to a;
and ag, y is of Type t2 w.r.t. X and y,, is of Type t2, t2p or t3p w.r.t. X. But then
P U P® U {z,y,by, b3} induces an odd wheel with center bs.
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So x,, is of Type t2, t2p or t3p w.r.t. X¥. So z,, is adjacent to as, and if it is of Type t2p
or t3p w.r.t. ¥¥ then it has a neighbor in P2\ ay. If z,, is adjacent to a;, then by Lemma
5.1 z, is of Type t2, t2p or t3p w.r.t. 3, and hence x, P* contradicts Lemma 7.3 applied to
3. So z,, is not adjacent to a;. Hence y is of Type t2 w.r.t. 3. By Lemma 5.1, z, is of Type
t1 w.r.t. 3. But then P! U P* U {x,y, b, b3,a3} induces an odd wheel with center bs.

Now we prove (ii). If z is of Type t2p or t3p w.r.t. 3, let X' be obtained by substituting
z for its sibling bs. If x is of Type t2 w.r.t. 3, then by Theorem 7.7, there is an attachment
Q =1z1,...,1, of z to X. In this case, let X' be obtained by substituting x and its attachment
Q into ¥. Note that P! U P? C X'. Suppose that y is not adjacent to x. Then by Lemma
5.1 applied to X', y is of Type t1 w.r.t. ¥’ and hence of Type t2 w.r.t. ¥. By Theorem 7.7
there is an attachment PY = yy,...,y, of y to . Let XY be obtained by substituting y and
PY into Y. Suppose z is of Type t2p or t3p w.r.t. 3. If a; is contained in >Y, then z and
>¥ violate Lemma 5.1. So a; is not contained in 3¥. In particular, y,, is of Type t2, t2p or
t3p w.r.t. X. By defenition of attachment, y,, is not adjacent to b;. But then y, PY and ¥’
contradict Lemma 7.3.

So z is of Type t2 w.r.t. . Let R be a shortest path from z to y in PYUX'\ (P2U{by, b3}).
Then R U by induces a hole H'. If b; has a neighbor in R\ z, then b, is adjacent to a; and
ay is in R, and hence (H',by) is an odd wheel. So b; has no neighbor in R\ z. Similarly b3
has no neighbor in R\ y. But then (Rbsby, bs) is an odd wheel. 0

Lemma 9.19 Let ¥ = 3PC(ajaza3,b1bebs) and let d be of Type t2 or t2p w.r.t. ¥ adjacent
to az and asz, or to by and by. Assume that if d is of Type t2p w.r.t. ¥ then ¥ # Cg. Suppose
u 1s of Type t2 w.r.t. % adjacent to ay or by, or of Type t2p or t3p w.r.t. ¥ being a sibling
of a2, ba,as or bs, or of Type t1 w.r.t. 3 adjacent to as,ba,as or bs. If u is of Type t2p or
t3p w.r.t. X let X' be obtained by substituting v into X. If u is of Type t1 or t2 w.r.t. ¥, let
Q =y1,..-,Yym be its attachment to X (which exists by Theorem 7.7) and let X' be obtained
by substituting u and @ into X. Then the following hold.

(i) If there is no P'-crosspath w.r.t. ¥, then there is no P'-crosspath w.r.t. ¥'.

(1) Node d is of the same type w.r.t. X' as it is w.r.t. 2.

Proof: First we prove (i). W.l.o.g. we may assume that if u is of Type t2, t2p or t3p w.r.t.
3 then it is adjacent to a1 and a9, and if u is of Type t1 w.r.t. 3 then it is adjacent to as.
Suppose there is no P'-crosspath w.r.t. 3, but that P = z1,...,, is a P'-crosspath w.r.t.
¥'. Note that P*UP? C X', Let P32 be the path of ¥'\ (P'UP?). W.l.o.g. = has a neighbor
in PL. If a node of P? has a neighbor in P\ x,, then by Lemma 5.1 and Lemma 7.2, a
subpath of P is a P'-crosspath w.r.t. 3, a contradiction. So no node of P? is adjacent to or
coincident with a node of P\ z,. Suppose that z, has a neighbor in P?. Then by Lemma
5.1, x, is of Type p2 or p4 w.r.t. ¥. Since P cannot be a P'-crosspath w.r.t. ¥, n > 1, z,
is of Type p4 w.r.t. &, and N(z,) N X C P2U P3. But then (X \ {a1,a2,a3}) U P contains a
3PC(bybyb3, z,,). So x, does not have a neighbor in P2, and hence it has a neighbor in P3.
If x,, has a neighbor in P3, then by Lemma 5.1 and Lemma 7.2, P is a P'-crosspath w.r.t.
3. So z,, does not have a neighbor in P3, and hence the neighbors of z,, in P> are contained
in P3\ P3. Since z, is of Type p2 or p4 w.r.t. X', z,, has a neighbor in Q. In particular,
is of Type t2 or t1 w.r.t. 3. Let y; be such a neighbor with highest index.
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Suppose u is of Type t2 w.r.t. X. If y,, is of Type t1, pl, p2 or p3 w.r.t. 3, then by
Lemma 7.2, P U Qy,y,, is a Pl-crosspath w.r.t. X. So y,, is of Type t2, t2p or t3p w.r.t.
3, adjacent to by, by and no node of (P! U P2)\ {b1,bo}. If yy, is of Type t2 w.r.t. 3, then
P U Qy,y,, contradicts Lemma, 7.4 applied to X. So y,, is of Type t2p or t3p w.r.t. X. Let
¥" be obtained by substituting y,, into . But then P U Qy,,,, , contradicts Lemma 7.2 or
Lemma 5.1 applied to X",

Now suppose that « is of Type t1 w.r.t. X. If a} has a neighbor in Qy,,,, , then Qyiy; UP
(where y; is its neighbor in Qy,y,,_, with lowest index) contradicts Lemma 7.2 applied to X.
So a does not have a neighbor in Qy,y,. .. If yp, is of Type t1, pl, p2 or p3 w.r.t. X, then by
Lemma 7.2 applied to X, the path P U Qy,y,, is a Pl-crosspath w.r.t. ¥. If y,, is of Type t2
w.r.t. 3, then P U Qy,y,, contradicts Lemma 7.4 applied to X. Suppose ¥, is of Type t2p or
t3p w.r.t. 3. Let X" be obtained by substituting y,, into 3. Then P U Qy,,,,_, contradicts
Lemma 7.3 applied to X". So y,, is of Type t3 w.r.t. X. Hence a} = b3 and a} has a neighbor
in @\ Ym. But then the shortest path from z; to b3 in P U (Q \ ym) U bg contradicts Lemma
7.2 applied to X. Therefore, there is no P'-crosspath w.r.t. ¥'.

Now we prove (ii). First suppose that u is of Type t2, t2p or t3p w.r.t. X. W.lLo.g. we
may assume that u is adjacent to a; and as. Suppose d is adjacent to ay and a3. Then by
Lemma 9.18(ii), d is adjacent to u. If d is of Type t2 w.r.t. X, then by Lemma 5.1, d is of
Type t2 w.r.t. ¥'. So we may assume that d is of Type t2p w.r.t. ¥ and that d is not of
Type t2p w.r.t. ¥’. Then by Lemma 5.1, d must be of Type t4d w.r.t. ¥’. In particular, u
is of Type t2 w.r.t. X, d is adjacent to y,, and vy, is of Type t2, t2p or t3p w.r.t. 3. Let X"
be obtained by substituting d into 3. By defenition of attachment y,, is not adjacent to as,
and hence y,, and X" violate Lemma 5.1.

Now assume that d is adjacent to b and b3. Suppose u is of Type t2p or t3p w.r.t. 3, or u
is of Type t2 w.r.t. 3 and y,, is of Type t1, pl or p3d w.r.t. . By Lemma 5.1, if d is of Type
t2 w.r.t. X, then d is of Type t2 w.r.t. X'. Suppose that d is of Type t2p w.r.t. ¥ and that
it is not of Type t2p w.r.t. ¥’. Then by Lemma 5.1, d is of Type t4d w.r.t. ¥’. By Theorem
8.1, ¥ = Cs. In particular, P' and P? are edges. Let X" be obtained by substituting d into
Y. Then u is of Type t4d or t5 w.r.t. ", and hence by Theorems 8.1 and 8.2, ¥ = Cj. So
P3 is an edge, and hence ¥ = (g, a contradiction. So now we may assume that u is of Type
t2 w.r.t. ¥ and y,, is of Type t2, t2p or t3p w.r.t. . By Lemma 9.18(ii), d is adjacent to
Ym- By Lemma 5.1, if d is of Type t2 w.r.t. X, then d is of Type t2 w.r.t. X'. Suppose d is
of Type t2p w.r.t. ¥. Let X" be obtained by substituting d into ¥. By Lemma 5.1 applied
to w and X", u is not adjacent to d. So by Lemma 5.1 applied to d and X', d is of Type t2p
w.r.t. X',

Now suppose that v is of Type t1 w.r.t. X, w.lo.g. adjacent to az. Then X' # Cg.
Assume d is adjacent to ag and az. If d is of Type t2 w.r.t. 3, then by Lemma 5.1, d is of
Type t2 w.r.t. ¥'. So we may assume that d is of Type t2p w.r.t. X. By Theorem 8.1, d
cannot be of Type t4d w.r.t. ¥, and hence by Lemma 5.1, d is of Type t2p w.r.t. X'. Now
assume that d is adjacent to b and b3. If y,, is of Type t1, pl, p2 or p3, then by Lemma
5.1, d is of the same type w.r.t. ¥’ as it is w.r.t. X. If y,, is of Type t2, t2p or t3p, then by
Lemma 9.18(ii) v, is adjacent to d and therefore by Lemma 5.1, d is of the same type w.r.t.
¥ as it is w.r.t. X. So we may assume that y,, is of Type t3 w.r.t. X. If y,, is adjacent to
d, then by Lemma 5.1, d is of the same type w.r.t. ¥’ as it is w.r.t. X. Assume y,, is not
adajacent to d. By Lemma 5.1 applied to ¥/, d is of Type t1 w.r.t. ¥’ and hence of Type
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t2 w.r.t. X. By Theorem 7.7, let P = z1,...,x, be an attachment of d to ¥. Let X% be
obtained by substituting d and P into ¥. Let H be the hole induced by Q U P U {u,a3}.
Then (H,b3) must be a beetle. In particular, y,,,—1 and ¥y, are the only neighbors of b3 in Q.
Suppose that a node of P\ z,, has a neighbor in (Q \ {¥m—1,ym}) Uu. Then there is a path
from wu to d that contradicts Lemma 7.4 applied to ¥. So no node of P\ z,, has a neighbor
in (Q\ {ym-1,Ym}) Uu. By Theorems 8.1 and 8.2, z,, cannot be of Type t4d or t5 w.r.t. X',
and hence z,, is not adjacent to a node of Q Uu. By Lemma 5.1 applied to £¢, y,,_1 cannot
have a neighbor in P. Suppose that y,, has a neighbor in P. Then PUQ U (X \ (P? Uby))
contains a 3PC(ym—1Ymbs,a3). So y,, does not have a neighbor in P. Let R be a shortest
path from d to y,, in (ZUPUQU{u,d})\ (P2U{b1,b3}). Then RU{bs, b3} induces a proper
wheel with center b3 that is not a beetle, a contradiction. a

Lemma 9.20 Let G be an even-signable graph that does not have a double star cutset. IfG
contains a 3PC(A, A) with a Type t2 node or a 3PC (A, A) # Cg with a Type t2p node, then
G has a 2-join.

Proof: By Theorems 3.2 and 4.1, G contains neither a proper wheel that is not a beetle nor
an L-parachute. By Theorems 8.1 and 8.2, there is no node of Type t4s or t6b w.r.t. a
3PC(A,A).

If G contains a 3PC(A,A) with a Type t2 node, then by Lemma 9.3, G contains a
decomposable 3PC(A, A). If G contains a 3PC(A, A) # Cg with a Type t2p node, then by
Lemma 9.7, G contains a decomposable 3PC(A,A). So we may assume that G contains a
decomposable ¥ = 3PC(aiazas3,b1bebs) together with a node d of Type t2 or t2p adjacent
to ag, ag or to by, bs. By Theorem 8.1 and Lemma 9.8, no node is of Type t4d w.r.t. X.
By Theorem 8.2, no node is of Type t5 w.r.t. 3. Since ¥ has no P!-crosspath, no node
is of Type t6a w.r.t. ¥ by Theorem 8.3. Suppose that the 2-join Hi|Hy of H = 3,d does
not extend to a 2-join of G. By Theorem 9.13, there is a blocking sequence S = x1,...,Ty.
W.l.o.g. assume that H and S are chosen as follows. Let H be the set of all decomposable
¥, d. If H contains a X, d where d is of Type t2 w.r.t. X, then remove from A all ¥, d’ where
d' is of Type t2p w.r.t. ¥'. Choose an H = X, d from H so that the size of the corresponding
blocking sequence S is minimized.

Claim 1: If z; is of Type p4 w.r.t. ¥, then N(x;) N H C P?>U P3. If z; is of Type pl or p2
w.r.t. ¥ and N(x;) X C P?U P3, then N(z;) N H C P2U P3.

Proof of Claim 1: W.l.o.g. assume that d is adjacent to ag, as. Suppose z; is of Type p4d
w.r.t. Y. Since there is no P'-crosspath w.r.t. X, N(z;) N ¥ C P?2U P3. Suppose z; is
adjacent to d. If d is of Type t2 w.r.t. X, then d, z; contradicts Lemma 7.4. So d is of Type
t2p w.r.t. X, and hence (X \ {a1,a2,a3}) U {d,z;} contains a 3PC(b1b2b3, z;). So z; is not
adjacent to d.

Now suppose that x; is of Type pl or p2 w.r.t. X, with neighbors in 3 w.l.o.g. contained
in P3. Tt is enough to show that z; is not adjacent to d. Suppose z; is adjacent to d. If d
is of Type t2 w.r.t. %, then d,z; contradicts Lemma 7.4. If d is of Type t2p w.r.t. X, then
(X\ {a1,a3}) U{d,z;} contains a 3PC(b1bsbs,d). This completes the proof of Claim 1.

Claim 2: No node of S is of Type t2 w.r.t. X, or of Type t2p or t3p w.r.t. ¥ being a sibling
of as,as,ba or bs, or of Type t1 w.r.t. ¥ adjacent to as,as,by or bs.
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Proof of Claim 2: If x; is of Type t2 w.r.t. X adjacent to as and as, or to be and b3, then X, z;
is decomposable and by Theorem 9.17 applied to H = X,d and H' = ¥, z;, the minimality of
S is contradicted. So by symmetry it is enough to consider the case when z; is adjacent to
a1, a2 and it is of Type t2, t2p or t3p w.r.t. X, or z; is adjacent to a3 and it is of Type t1 w.r.t.
Y. If z; is of Type t2p or t3p w.r.t. X, let ¥/ be obtained by substituting z; into X. If z; is of
Type t1 or t2 w.r.t. 3, then by Theorem 7.7, there is an attachment Q =y, ..., ym of z; to
Y. In this case let X' be obtained by substituting #; and @ into ¥. Note that P! U P? C ¥'.
By Lemma 9.19, there is no P'-crosspath w.r.t. ¥/, and node d is of the same type w.r.t.
¥ as it is w.r.t. X. If ¥/, d is decomposable then by Theorem 9.17, the minimality of S is
contradicted. So ', d is not decomposable. In particular, ¥’ = Cg and d is of Type t2p w.r.t.
Y and ¥'. By the choice of ¥,d and by Lemma 9.3, G has no 3PC(A,A) with a Type t2
node. But then X' and d contradict Lemma 9.4. This completes the proof of Claim 2.

Claim 3: No node of S is of Type p3 w.r.t. ¥ with neighbors in P? U P3.

Proof of Claim 3: Suppose x; is of Type p3 w.r.t. 3 and w.l.o.g. assume that its neighbors
in ¥ are contained in P?. Let X’ be obtained by substituting z; into X. Note that X' # Cs.
By Lemma 5.1, d is of the same type w.r.t. ¥’ as it is w.r.t. X.

Let P’ be the agbs-path of ¥'. Suppose P = yi,...,ymn is a Pl-crosspath w.r.t. X'
W.lo.g. 1 has a neighbor in P'. If a node of P \ y,, has a neighbor in P2, then by
Lemma 7.2, a subpath of P\ y,, is a P'-crosspath w.r.t. ¥, a contradiction. So no node of
P\ y, has a neighbor in P?. But then by Lemma 5.1 and Lemma 7.2, P is a P!-crosspath
w.r.t. ¥, a contradiction. Therefore, there is no P'-crosspath w.r.t. ¥’

But then by Theorem 9.17 applied to H = X,d and H' = ¥/, d, our choice of H = X, d is
contradicted. This completes the proof of Claim 3.

By Claim 2, no node of S is of Type t2 w.r.t. 3, or of Type t2p or t3p w.r.t. 3 being
a sibling of a9, as, bs or b3, or of Type t1 w.r.t. 3 adjacent to ag,as, by or bs. By Claims 1
and 3, n > 1. Since H{|Hy U 21 is not a 2-join of H U z1, 71 has a neighbor in P! Ud and
either (i) N(z1) N H C P! Ud, or (ii) z; is of Type t2p or t3p w.r.t. ¥ being a sibling of
ay or by, or (iii) z1 is of Type t3 w.r.t. ¥ adjacent to, say, a1, a2 and as, 1 is not adjacent
to d, and d is adjacent to ag, a3. Note that the case where z; is of Type t3 adjacent to
a1, a2, a3 and d where d is adjacent to by, by cannot occur since, in this case, there is a
3PC(r1a1a3,b3). Since Hy U z,|Hy is not a 2-join of H Uz, =,, has a neighbor in P? U P3,
and it is of Type pl, p2 or p4 w.r.t. ¥. By Lemma 9.11, for ¢ € {2,...,n — 1}, x; either has
no neighbor in H or N(z;) "X = {a1} or {b1} or {a1,a2,a3} or {b1,ba, b3} and, furthermore,
if say N(z;) N X = {a1} or {a1,a9,a3} then z; is adjacent to d if d is adjacent to ag, a3, and
x; is not adjacent to d if d is adjacent to bo, b3. Let z; be the node of S with highest index
adjacent to a node of H;. By Lemma 9.16, z;,...,z, is a chordless path. Note that j <n
and that nodes z;1,...,2,-1 have no neighbors in H.

Claim 4: Let X be a 3PC(ajazas, bybabs) with no P'-crosspath. Suppose that xj 15 of Type t3
w.r.t. 3, say adjacent to by, by and bz, and there is a ¥’ = 3PC(ayast, blngj) that contains
P U P? and such that t is not of Type t3 w.r.t. . Then there is no P'-crosspath w.r.t. ¥'.

Proof of Claim 4: Let P' be the path of X'\ (P! U P?). Suppose P = yi,...,yn is a Pl-
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crosspath w.r.t. ¥'. W.lo.g. y; has a neighbor in P'. Suppose y,, has a neighbor in P2.
Since P cannot be a P'-crosspath w.r.t. ¥, a node of P has a neighbor in P3. Let 1; be
such a node with lowest index. If ¢ # m then by Lemma 7.2, P, is a P!-crosspath w.r.t.
Y. So @ = m and hence y,, is of Type p4 w.r.t. 3. But then (X \ {a1,a9,a3}) U P contains
a 3PC(b1babs, ym). So ym has a neighbor in P'. Suppose that P U P> U P\ {z;,t} contains
a path from y; to P3. Then by Lemma 7.2 applied to the shortest such path, there is a
Pl_crosspath w.r.t. 3. So no such path exists and hence no node of P? is adjacent to or
coincident with a node of P U P"\ {z},t}. By a similar argument, ¢ # a3. So ¢ is of Type t2,
t2p or t3p w.r.t. X. Note that P U P\ z; contains a chordless path 7" from y; to ¢. If ¢ is
of Type t2 w.r.t. 3, then T contradicts Lemma 7.4 applied to X. So ¢ is of Type t2p or t3p
w.r.t. 3. Let X" be obtained by substituting ¢ into . Then T\ ¢ contradicts Lemma 7.2
applied to X”. This completes the proof of Claim 4.

We now consider the following cases.

Case 1: z; is of Type t3 w.r.t. 2.

If z,, is of Type pl or p4 w.r.t. X, then z;,...,z, contradicts Lemma 7.5. So z;, is of
Type p2 w.r.t. ¥. W.lo.g. x, has a neighbor in P? and d is adjacent to as, a3. Suppose
z; is adjacent to by, bo and b3. Then there is a Y = 3PC(aiaza3,by baxj) contained in
(Z\b3)U{zj,...,zn}. Note that &' # Cs. By Claim 4, there is no P'-crosspath w.r.t. ¥'. By
Lemma 5.1, d is of the same type w.r.t. X' as it is w.r.t. X, and hence X', d is a decomposable
3PC(A,A). But then, by Theorem 9.17, the minimality of S is contradicted. So z; is adjacent
to a1, ag and a3. Let X' = 3PC(a1a2x,b1bab3) be contained in (X \ a3) U{zj,...,z,}. Note
that X' # Cs. By Claim 4, there is no P'-crosspath w.r.t. ¥'. If d is adjacent to zj, then by
Lemma 5.1 applied to X', d is of the same type w.r.t. ¥ as it is w.r.t. X, and hence X', d is a
decomposable 3PC(A, A) and the minimality of S is contradicted. So d is not adjacent to z;,
and hence by Lemma 5.1, d is of Type t1 w.r.t. ¥’ and of Type t2 w.r.t. ¥. By Theorem 7.7,
let Q@ =wy1,...,ym be an attachment of d to 3.

First we show that no node of ) is adjacent to or coincident with a node of {z;,...,z,}.
Suppose not and let y; be the node of @ with highest index that has a neighbor in {z;,...,z,}.
Let z; be the neighbor of y;, in {x},...,z,} with highest index.

Suppose i # j. Consider the possibilities for ) allowed by Lemma 7.4. If y,, is of Type t1,
pl or p3 w.r.t. 3, then by Lemma 7.2 applied to 3, Qy,y,s Tiy---,Zp 1S a Pl-crosspath w.r.t.

Y, a contradiction. If y,, is of Type t2 w.r.t. X, then Qy,,.,%i,..., T, contradicts Lemma
7.4 applied to . So y,, is of Type t2p or t3p w.r.t. X. Let X" be obtained by substituting
Ym into X. Then either Qy,  y,._,,Ti,..., 2z, (if K #m) or z;,..., 2, (otherwise) contradicts

Lemma 7.3 or 5.1 applied to ¥”. Therefore, i = j.

If z; is adjacent to y,,, then y,, and ¥’ contradict Lemma 5.1 (since y,,, cannot be adjacent
to a; by definition of attachment). So z; is not adjacent to yy,, i.e. & < m. Then z;, Qy, ..
contradicts Lemma 7.5 applied to X.

Therefore, no node of @ is adjacent to or coincident with a node of {z;,...,z,}. Let
¥ = 3PC(azasd, A) be obtained by substituting d and @ into ¥. Then z;,...,z, contradicts
Lemma 7.4 applied to X",

Case 2: z; is of Type t1 adjacent to a; or by, or j =1 and z is of Type pl, p2 or p3 w.r.t.
3.
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If x,, is if Type pl or p2 w.r.t. 3, then by Lemma 7.2, z;,...,z, is a Pl-crosspath w.r.t.
2. If ¢, is of Type p4 w.r.t. 3, then (X\ {b2,b3})U{xj,...,2,} contains a 3PC(a1a2a3,2,).

Case 3: j =1 and d is the unique neighbor of ; in H.

W.lo.g. assume that d is adjacent to as, a3z. If d is of Type t2p w.r.t. X, let ¥’ be
obtained by substituting d into ¥. Then z1,..., 2, contradicts Lemma 7.3 applied to ¥'. So
d is of Type t2 w.r.t. . Then d,z,,...,z, contradicts Lemma 7.4.

Case 4: j =1 and z; is of Type t2p or t3p w.r.t. 2.
W.lo.g. z; is a sibling of b;. Let X' be obtained by substituting z; into ¥. Then
Z9,...,T, contradicts Lemma 7.3 or 5.1 applied to X'. a

Theorem 9.1 follows from Lemmas 9.4 and 9.20.

Corollary 9.21 Let G be an even-signable graph. If G contains a proper wheel, or an L-
parachute, or a 3PC(A,A) with a Type t2, t2p or t}s node, or a 3PC(A,A) # Cs with a
Type t4d or t5 node, then G has a double star cutset or a 2-join.

Proof: If G contains a proper wheel, the result holds by Theorem 3.2 when the wheel is
not a beetle, and by Theorems 6.1 and 9.1 when the wheel is a beetle. If G contains an
L-parachute, the result holds by Theorem 4.1. If G contains a 3 = 3PC(A, A) with a Type
t2 or t2p node, the result holds by Theorem 9.1. If ¥ has a Type t4s node or if ¥ # Cg has
a Type t4d node, the result holds by Theorem 8.1. If G contains a ¥ # Cg with a Type t5
node, then the result holds by Theorem 8.2. a

So, by Theorem 6.1, it only remains to consider the case when G contains a Cg with a
Type t4d or t5 node.

10 Cs with Type t4d or t5 Nodes
In this section we prove the following two theorems.

Theorem 10.1 If G is an even-signable graph that does not have a double star cutset nor a
2-join, then G cannot contain a Cg with a Type t5 node.

Theorem 10.2 Let G be an even-signable graph that does not have a double star cutset nor
a 2-join. If G contains a Cg with a Type t4d node, then G is the complement of the line graph
of a complete bipartite graph.

Throughout this section we assume that G is an even-signable graph that does not have
a double star cutset nor a 2-join.

Lemma 10.3 Let ¥ = 3PC(ajaza3,bibabs) be a Cg in G. Then the following hold.
(i) No node is of Type t1 or t3p w.r.t. 3.

(ii) If there is a node of Type t4d or t5 w.r.t. 3, then there is no node of Type t3 w.r.t. .
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Proof: By Theorem 9.1, no node is of Type t2 or t2p w.r.t. a 3PC(A,A). By Lemma 9.4,
there cannot be a node of Type t3p w.r.t. X.

Suppose node u is of Type t1 w.r.t. 3. By Theorem 7.7, there is an attachment P =
Z1,...,Zn of u to X. Then z, must be of Type t3 w.r.t. . W.lo.g. assume that v is
adjacent to a3. Then P? U P3 U P U induces a proper wheel with center bs, contradicting
Corollary 9.21. Therefore, no node is of Type t1 w.r.t. X, and (i) holds.

If a node is of Type t5 w.r.t. 3, then by Theorem 8.2, there is a node of Type t4d w.r.t.
Y. So to prove (ii) we may assume that there is a node u of Type t3 w.r.t. ¥ and a node v of
Type t4d w.r.t. . W.l.o.g. assume that u is adjacent to a1,a2,a3 and v to a1, as2,b1,b3. By
Theorem 7.7, let P = x1, ..., x, be an attachment of w to . Since no node is of Type t1, t2p
or t3p w.r.t. ¥, z, must be of Type p2 or t3 w.r.t. ¥ and no node of P\ z, is adjacent to a
node of X. First suppose that z, is of Type p2 w.r.t. X. Let ¥’ be obtained by substituting
v and P into ¥. Note that X' # Cs. By Lemma 5.1, v is of Type t2p, t4d or t5 w.r.t. X/,
contradicting Theorem 8.1, Theorem 8.2 or Theorem 9.1. So xz, is of Type t3 w.r.t. 3. Let
Y = 3PC(aiagu,bibyxy,) (resp. L' = 3PC(uazas, x,babs)) be obtained by substituting u
and P into ¥. By Lemma 5.1, v is of Type t3p, t4d or t5 w.r.t. ¥’. By Theorem 9.4 v
cannot be of Type t3p w.r.t. X'. Suppose v is of Type t4d w.r.t. ¥'. Then v is adjacent to
z,, and not adjacent to u, and hence v is of Type t2p w.r.t. ¥”, contradicting Theorem 9.1.
So v is of Type t5 w.r.t. X', i.e. it is adjacent to both v and z,,. By Theorem 8.1, there is a
node w of Type t4d w.r.t. 3 that is not adjacent to v and is adjacent to a1, as, ba, b3. By the
same argument as above, w must be adjacent to both v and z,,. But then {ay, by, by, u,v, w}
induces an odd wheel with center a;. O

Corollary 10.4 If there is a node of Type tjd or t5 w.r.t. ¥ = Cg, then nodes of G\ X that
have a neighbor in X are of Type p2, t4d, t5 or t6 w.r.t. 3.

Proof: Since ¥ = C§, no node is of Type pl, p3, p4 or t4s w.r.t. ¥. By Theorem 9.1, no node
is of Type t2 or t2p w.r.t. 3. By Lemma 10.3, no node is of Type t1, t3 or t3p w.r.t. 3. O

Proof of Theorem 10.1: Let G be an even-signable graph that does not have a double star
cutset nor a 2-join. Suppose that ¥ = 3PC(ajasas, bibabs) is a Cg in G and z is of Type t5
w.r.t. X. W.lo.g. z is not adjacent to az. Let S = (N(z) U N(a2)) \ (X \ {az,as3,b1,b2}).
Since S is not a double star cutset, there exists a direct connection P = z1,...,z, in G\ S
from a; to bs.

First we show that no node of S is of Type t4d or t5 w.r.t. X. Suppose z; is of Type t4d
or tb w.r.t. 3. Since z; cannot be adjacent to as, it is adjacent to a1, as, bs. If z; is adjacent
to by, then {a1,a9,as3,b1,z,x;} induces an odd wheel with center a;. So z; is not adjacent to
b1, and hence it is adjacent to b3. In particular, z; is of Type t4d w.r.t. 3. By Theorem 8.1,
there is a node u not adjacent to x;, that is of Type t4d w.r.t. X adjacent to as,as, by, bo.
Then {a1,as,x;, b1, be,u} induces a ¥ = 3PC(a12;a3, b1bou). Since x is adjacent to aq, by, ba,
and it is not adjacent to z; and a3, by Lemma 5.1 z must be of Type t3p w.r.t. ¥'. But then
Lemma 10.3 is contradicted. Therefore no node of S is of Type t4d or t5 w.r.t. X.

By Corollary 10.4 and by defenition of S, x; is of Type p2 w.r.t. X adjacent to a; and by,
Iy is of Type p2 w.r.t. X adjacent to ag and b3, and no iteremediate node of P has a neighbor
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in 3. Let ¥ = 3PC(a1b1z1,a3b3z,) induced by P U {ay,as,by,bs3}. Since z is adjacent to
a1,by, b3 and it is not adjacent to as,z1, Ty, it violates Lemma 5.1 applied to ¥'. a

In the following results we assume that G' contains a ¥ = 3PC/(ayazas, bibabs) = Cs with
a Type t4d node. In fact by Theorem 8.1, we may assume that there are at least three nodes
of Type t4d: node v; adjacent to a1, as, by, b3, node vy adjacent to ao, as, b1, b2, and node vs
adjacent to ay,as, by, b3. Furthermore, vive and vjvs are not edges. In fact, neither is vovs,
since otherwise {v1, va, v3, as, b2, b3} induces and odd wheel with center by. By Corollary 10.4
and Theorem 10.1, nodes of G \ X that have a neighbor in ¥ are of Type p2, t4d or t6 w.r.t.
Y. We now show that all nodes of G \ X are of Type p2, t4d or t6 w.r.t. X.

Lemma 10.5 Let u be of Type t4d w.r.t. % and v of Type p2 w.r.t. . Then uv is not an
edge if and only if N(v) N2 C N(u)NX.

Proof: First we show that if u is adjacent to a1, a9, b1, b3 and v is adjacent to as, b3, then uwv is
an edge. Suppose uv is not an edge. Let S = (N(a3) UN (b3)) \ {u,v} and let P = zy,..., 2z,
be a direct connection from u to v in G \ S. By definition of S, no node of P is of Type t4d
or t6 w.r.t. X. If ap has no neighbor in P, then P U {aq, as, b3, u,v} induces a 3PC(agbsv, u).
So az has a neighbor in P, and similarly so does a;. Let z; be the node of P with highest
index adjacent to a; or as. By Corollary 10.4, z; must be of Type p2 w.r.t. 3. If z; is
adjacent to ay and by, then Py, U P! U {as,bs,u,v} induces a proper wheel with center u,
contradicting Corollary 9.21. So z; is adjacent to a; and b;. Let X' = 3PC(a1b124, a3bsv)
induced by P,.., UP'U P3Uv. Then u is of Type t3p w.r.t. ¥/, contradicting Lemma 9.4.

Next we show that if u is adjacent to a1, a9, b1,bs and v is adjacent to ay, by, then uv is
not an edge. Assume uv is an edge. By Theorem 8.1, there exists a node w of Type t4d
w.r.t. X adjacent to ag,as,bi,bs and not adjacent to u. By the above paragraph, vw is an
edge. But then {u,v,w,b1,bs,bs} induces an odd wheel with center b;. O

Lemma 10.6 Nodes of G \ X are of Type p2, tjd or t6 w.r.t. .

Proof: We show that if u is a node of G \ ¥ that has a neighbor in 3, then there cannot exist
a node z adjacent to u and not adjacent to 3. Assume not.

First suppose that u is of Type t4d w.r.t. 3, say adjacent to ai,ag,b;,bs3. Let S =
(N(u) UN(a1)) \ z and let P = zy,...,z, be a direct connection from z to ¥\ S in G\ S.
By Lemma 10.5 and definition of S, no node of P is of Type p2 or t6 w.r.t. X, or of Type
tdd w.r.t. ¥ adjacent to a;. Let x; be the node of P with lowest index that is of Type t4d.
Then z; is adjacent to ay and a3, and hence P, ;. U{u,z,a1,a2,a3} induces a proper wheel
with center ag, contradicting Corollary 9.21.

Next suppose that v is of Type p2 w.r.t. X, say adjacent to az,bs. Let S = (N(a3) U
N(u))\z and let P = x1,..., 2z, be a direct connection from z to £\ S in G\ S. By Lemma
10.5 and definition of S, no node of P is of Type t4d or t6 w.r.t. X. So z, is of Type p2
w.r.t. X, and no node of P\ z,, has a neighbor in ¥. W.lLo.g. assume that z,, is adjacent to
az,by. Let X' = 3PC(agboxy, agbgu) induced by P?U P3U PU{u,z}. Note that ¥’ # Cs. By
our assumption there is a node vy of Type t4d w.r.t. X adjacent to aq,as, b1, b3. By Lemma
5.1, vy is of Type t2p or t4d w.r.t. ¥'. But this contradicts Theorem 9.1 or 8.1.
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Finally suppose that u is of Type t6 w.r.t. X. Let S = N(a;)Uay and let P = z1,...,z,
be a direct connection from z to 3\ S in G\ S. By definition of S, no node of P is of Type t6
w.r.t. . So z, is of Type p2 or t4d w.r.t. ¥ and no node of P\ z, has a neighbor in ¥. But
then either z,, and z,, 1 (if n # 1) or z,, and z (if n = 1) contradict the above paragraphs.
O

Lemma 10.7 X has exactly three Type p2 nodes, say ui,us and us, where u; is adjacent to
a;b;. Furthermore ui,us,us are pairwise adjacent.

Proof: Let S1 = (N(a1) UN(b1)) \ {a2,bs}. Since S; is not a double star cutset there exists a
direct connection P = z1, ..., x, from ay to b3 in G\ S;. By definition of S} and Lemma 10.6,
every node of P is of Type p2. So n = 2, z; is adjacent to asbs and zo is adjacent to asbs.
Repeating the same argument with So = (N (a2) UN(b2)) \ {a1, b3}, we get that ¥ has three
Type p2 nodes, say ui, us and us, where u; is adjacent to a;b;.

Next we show that u;,us and ugz are pairwise adjacent. W.l.o.g. assume that usug is not
an edge. By our assumption there exist nonadjacent nodes v; and vy, both of Type t4d w.r.t.
Y, such that v; is adjacent to ai,as,b1,b3 and vy is adjacent to as,as,bi,bs. By Lemma
10.5, vy is adjacent to both us and w3, and vy is adjacent to uz but not to ue. But then
{v1, va2,u2,us, b2, as} induces an odd wheel with center as.

Finally we show that there are exactly three Type p2 nodes. Assume w.l.o.g. that
there exists a Type p2 node u} that is adjacent to asbs and is distinct from us. By the
above paragraph, ugus and uguf are both edges. Let X' = 3PC/(agbaug, azbsusz) induced by
{ug,u3,as,as,bs,bs}. Then uf is of Type t2p or t3p w.r.t. X', contradicting Theorem 9.1 or
Lemma 10.3. O

Lemma 10.8 If u is of Type p2 w.r.t. % and v is of Type t6 w.r.t. %, then uv is an edge.

Proof: Assume w.l.o.g. that v is adjacent to a1, b; and that uv is not an edge. By Lemma 10.7
there is a node us of Type p2 w.r.t. X adjacent to as,bs and wus is an edge. Let ¥/ =
3PC(a1byu, agbousy) induced by {u,ug,a1,a9,b1,be}. By Lemma 5.1, v is of Type t5 w.r.t. .
But this contradicts Theorem 10.1. a

Lemma 10.9 If u and u' are both of Type t4d w.r.t. ¥ such that N(u) N2 = N(u') N3,
then uu’ is not an edge.

Proof: W.lo.g. N(u)NX = N(')NX = {a,as,b1,bs}. Suppose uu’ is an edge. By
Theorem 8.1 there exists a node v of Type t4d adjacent to ag,as, by, by and not adjacent to
u. Let ¥’ = 3PC(vagas, byubs) induced by {u,v, a9, as,b1,bs}. Then u' is of Type t3p or t5
w.r.t. ¥, contradicting Theorem 10.1 or Lemma 10.3. O

Note that the six nodes of ¥ together with the three nodes wy,ug,us from Lemma 10.7
actually form six distinct Cg with their three Type p2 nodes. Each of these nine nodes is
Type p2 in exactly two of the three Cg. In addition, the Type t4d nodes w.r.t. 3 are Type
t4d relative to all six of the Cg. It follows from Lemma 10.5 that the adjacencies between the
Type p2 nodes uq,u9,us and the Type t4d nodes vy, v9, v3 are totally determined. These six
nodes together with the six nodes of ¥ can be arranged on a 3 x 4 grid in such a way that
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the node in position (7, ) is adjacent to the node in position (p,q) if and only if i # p and
j # q. For example, we can set a1 = (3,3), a2 = (2,1), a3 = (1,2), by = (2,2), be = (1,3),
bs = (3,1) with the u;’s filling the remaining three positions (7, ) for 1 < 4,5 < 3 and the
v;’s in positions (i,4) for 1 <7 < 3. We call this 12-node graph G3 4.

More generally, for £ > 3 and [ > 4, denote by Gj; the graph whose nodes are labeled
(i,7) for 1 <i <k and 1 < j <[, where an edge exists between (4, ) and (p, ¢) if and only if
1 # p and j # q. The graph Gy, is the complement of the line graph of the complete bipartite
graph Kj;. Any three rows and three columns of Gy; induce a graph on nine nodes which is
a Cg plus its three Type p2 nodes. By symmetry every node of G}, is of Type p2 w.r.t. at
least one such Cg.

Lemma 10.10 Consider a mazimal subgraph Gy, of G which is the complement of the line
graph of a complete bipartite graph Ky, with k > 3 and | > 4. Then every node u €
V(G) \ V(Gg) is adjacent to all the nodes of Gy;.

Proof: Consider any X = Cg in G}, formed by three rows and three columns, say with nodes
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3). By Lemma 10.7, 4 cannot be of Type p2 w.r.t. 3 since
the three possible Type p2 nodes for X already exist in Gy;.

Suppose u is of Type t4d w.r.t. . W.l.o.g. node u is adjacent to (2, 2), (2,3), (3,1), (3, 3).
Every node w of Gy; is of Type p2 w.r.t. some ¥’ = Cs that contains node (1,1). Since u
is not adjacent to (1,1), it follows from Lemma 10.6 that u is of Type t4d w.r.t. ¥'. By
Lemma 10.5, the adjacency between u and w is determined. Specifically, node u is adjacent to
the nodes of G that are not in row 1 and is not adjacent to the nodes in row 1. Let us label
node u by (1,/+1). By Theorem 8.1 applied to ¥, G must contain nodes of Type t4d adjacent
to (1,1),(1,2),(3,1),(3,3) and to (1,1),(1,2),(2,2),(2,3) respectively. Furthermore, these
two nodes and u form a stable set. Therefore these two nodes are not in Gy;. By the same
argument as above, their adjacencies with the nodes of Gy are totally determined. Let us
label them (2,7 + 1) and (3,7 + 1) respectively. Node (i,{ + 1) is adjacent to all the nodes of
G} except those in row i. By Theorem 8.1 applied to X’ as defined above, there exist nodes
(2,1 4+ 1) in V(G) \ V(Gjy) that form a stable set for all 1 <14 <k and that are adjacent with
(p,q) in Gy if and only if ¢ # p. Therefore G contains a graph G}, ;41, a contradiction to the
maximality of G;. So node u is not of Type t4d w.r.t. 3.

By Lemma 10.6, it follows that « is of Type t6 w.r.t. . Since every node of Gy; belongs
to a Cg of Gy, it follows that v is adjacent to all the nodes of Gj;. a

Theorem 10.2 follows from Lemma 10.10 since, if G # Gy, then for any u & V(Gy;) the
set N((1,1)) UN(u)\{(1,2),(1,3)} is a double star cutset separating (1,2) from (1, 3).

Theorem 1.2 follows from Theorem 2.5, Theorem 6.1, Corollary 9.21, Theorem 10.1 and
Theorem 10.2.
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