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Even-hole-free graphs: a survey

Kristina Vušković ∗

August 11, 2010

Abstract

The class of even-hole-free graphs is structurally quite similar to the class of perfect
graphs, which was the key initial motivation for their study. The techniques developed
in the study of even-hole-free graphs were generalized to other complex hereditary graph
classes, and in the case of perfect graphs led to the famous resolution of the Strong
Perfect Graph Conjecture and their polynomial time recognition. The class of even-hole-
free graphs is also of independent interest due to its relationship to β-perfect graphs.
In this survey we describe all the different structural characterizations of even-hole-free
graphs, focusing on their algorithmic consequences.

1 Introduction

All graphs in this paper are finite, simple and undirected. We say that a graph G contains a
graph F if F is isomorphic to an induced subgraph of G. A graph G is F -free if it does not
contain F . Let F be a (possibly infinite) family of graphs. A graph G is F-free if it is F -free
for every F ∈ F .

A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains
an even (resp. odd) number of nodes. A hole of length n is also called an n-hole. In this
survey we focus on the class of even-hole-free graphs, i.e. graphs that are F-free where F
denotes the family of all even holes.

Many interesting classes of graphs can be characterized as being F-free for some family
F . The most famous such example is the class of perfect graphs. A graph G is perfect if for
every induced subgraph H of G, χ(H) = ω(H), where χ(H) denotes the chromatic number
of H, i.e. the minimum number of colors needed to color the vertices of H so that no two
adjacent vertices receive the same color, and ω(H) denotes the size of a largest clique, where
a clique is a graph in which every pair of vertices are adjacent. The famous Strong Perfect
Graph Theorem (conjectured by Berge [2], and proved by Chudnovsky, Robertson, Seymour
and Thomas [10]) states that a graph is perfect if and only if it does not contain an odd hole
nor an odd antihole (where an antihole is a complement of a hole). The graphs that do not
contain an odd hole nor an odd antihole are known as Berge graphs.
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The structure of even-hole-free graphs is in many ways quite similar to the structure of
Berge graphs. Note that by excluding the 4-hole, one also excludes all antiholes of length
at least 6, so the similarity between even-hole-free graphs and Berge graphs is higher than
simply with the class odd-hole-free graphs.

Another motivation for the study of even-hole-free graphs is their connection to β-perfect
graphs introduced by Markossian, Gasparian and Reed [34]. For a graph G, let δ(G) be
the minimum degree of a vertex in G. Consider the following total order on V (G): order
the vertices by repeatedly removing a vertex of minimum degree in the subgraph of vertices
not yet chosen and placing it after all the remaining vertices but before all the vertices
already removed. Coloring greedily on this order gives the upper bound χ(G) ≤ β(G), where
β(G) =max{δ(G′) + 1 : G′ is an induced subgraph of G}. A graph is β-perfect if for each
induced subgraph H of G, χ(H) = β(H). It is easy to see that β-perfect graphs belong to
the class of even-hole-free graphs, and that this containment is proper.

The first major structural study of even-hole-free graphs was done by Conforti, Cornuéjols,
Kapoor and Vušković in [15] and [16]. They were focused on showing that even-hole-free
graphs can be recognized in polynomial time (a problem that at that time was not even
known to be in NP), and their primary motivation was to develop techniques which can
then be used in the study of perfect graphs. In [15] a decomposition theorem is obtained for
even-hole-free graphs, based on which the first known polynomial time recognition algorithm
for even-hole-free graphs is constructed in [16]. This research kick-started a number of other
studies of even-hole-free graphs which we survey in this paper.

The essence of even-hole-free graphs is actually captured by their generalization to signed
graphs, called the odd-signable graphs, which we introduce in Section 2. Decomposition the-
orems for even-hole-free graphs are described in Section 3, recognition algorithms in Section
4, and combinatorial optimization algorithms in Section 5.

2 Odd-signable graphs

In 1982 Truemper proved a theorem that characterizes graphs whose edges can be labeled so
that all chordless cycles have prescribed parities. Truemper’s interest in this theorem at the
time was to obtain a co-NP characterization of balanceable matrices, that are a generalization
of regular matrices. This theorem also provided the first insight into the structure of even-
hole-free and odd-hole-free graphs.

Theorem 2.1 (Truemper [47]) Let β be a {0, 1} vector whose entries are in one-to-one
correspondence with the chordless cycles of a graph G. Then there exists a subset F of the
edge set of G such that |F ∩ C| ≡ βC mod 2 for all chordless cycles C of G, if and only if
for every induced subgraph G′ of G that is a Truemper configuration (Figure 1), there exists
a subset F ′ of the edge set of G′ such that |F ′ ∩C| ≡ βC mod 2, for all chordless cycles C of
G′.

Truemper configurations are depicted in Figure 1, where a solid line denotes an edge and
a dashed line denotes a chordless path containing one or more edges. We now define these
configurations.
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3PC(·, ·) 3PC(∆, ·) 3PC(∆,∆) wheel K4

Figure 1: Truemper configurations

The first three configurations in Figure 1 are referred to as 3-path configurations (3PC’s).
They are structures induced by three paths P1, P2 and P3, in such a way that the nodes of
Pi ∪ Pj , i 6= j, induce a hole. More specifically, a 3PC(x, y) is a structure induced by three
paths that connect two nonadjacent nodes x and y; a 3PC(x1x2x3, y), where x1x2x3 is a
triangle, is a structure induced by three paths having endnodes x1, x2 and x3 respectively
and a common endnode y; a 3PC(x1x2x3, y1y2y3), where x1x2x3 and y1y2y3 are two node-
disjoint triangles, is a structure induced by three paths P1, P2 and P3 such that, for i = 1, 2, 3,
path Pi has endnodes xi and yi. We say that a graph G contains a 3PC(·, ·) if it contains
a 3PC(x, y) for some x, y ∈ V (G), a 3PC(∆, ·) if it contains a 3PC(x1x2x3, y) for some
x1, x2, x3, y ∈ V (G), and it contains a 3PC(∆,∆) if it contains a 3PC(x1x2x3, y1y2y3) for
some x1, x2, x3, y1, y2, y3 ∈ V (G). Note that the condition that nodes of Pi ∪ Pj , i 6= j,
must induce a hole, implies that all paths of a 3PC(·, ·) have length greater than one, and
at most one path of a 3PC(∆, ·) has length one. 3PC(·, ·)’s are also known as thetas (as in
[8]), 3PC(∆,∆)’s are also known as prisms (as in [8]), and 3PC(∆, ·)’s are also known as
pyramids (as in [7]).

A wheel consists of a hole and a node called the center that has at least three neighbors
on the hole. Finally, a K4 is a clique on four vertices. We note that in [47] K4’s are also
referred to as wheels, but in this paper we choose to separate these two structures.

We sign a graph by assigning 0, 1 weights to its edges. A graph is odd-signable if there
exists a signing that makes every triangle odd weight and every hole odd weight. This class is
clearly a generalization of even-hole-free graphs. In analogous way odd-hole-free graphs can
be generalized. A graph is even-signable if there exists a signing that makes every triangle
odd weight and every hole even weight. Odd-signable and even-signable graphs were first
introduced in [14], where the following two characterizations of these classes are obtained.
These characterizations in fact follow easily from Theorem 2.1.

We say that a wheel (H,x) is even if x has an even number of neighbors on H, and it
is odd if the center x and the hole H induce an odd number of triangles. Note that a wheel
may be both even and odd.

Theorem 2.2 [14] A graph is odd-signable if and only if it does not contain an even wheel,
a 3PC(·, ·) nor a 3PC(∆,∆).
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Theorem 2.3 [14] A graph is even-signable if and only if it does not contain an odd wheel
nor a 3PC(∆, ·).

All decomposition theorems for even-hole-free graphs described in the next section are in
fact proved for 4-hole-free odd-signable graphs, and the above characterization of odd-signable
graphs is repeatedly used in the proofs. Similarly when one works with odd-hole-free graphs
one relies on odd wheels and 3PC(∆, ·)’s as excluded structures.

3 Decomposition Theorems

In a connected graph G, a subset S of nodes and edges is a cutset if its removal disconnects
G. If S consists only of nodes then it is referred to as a node cutset, and if it consists only
of edges then it is referred to as an edge cutset. A decomposition theorem for a class of
graphs C states that every graph in C either has a particular type of a cutset or belongs to
a basic (i.e. undecomposable) subclass of C. The following cutsets are used in decomposition
of even-hole-free graphs.

For A ⊆ V (G), G[A] denotes the subgraph of G induced by A, N(A) denotes the neigh-
borhood of A (i.e. the nodes of V (G) \A that have a neighbor in A), and N [A] = N(A) ∪ A.
A node cutset S ⊆ V (G) is a k-star cutset of G if S is comprised of a clique C of size k and
nodes with at least one neighbor in C, i.e. C ⊆ S ⊆ N [C]. We refer to C as the center of S.
A 1-star is also referred to as a star, a 2-star as a double star, and 3-star as a triple star. If
S = N [C], then S is called a full k-star.

The following edge cutset was first introduced by Cornuéjols and Cunningham [21]. A
graph G has a 2-join V1|V2, with special sets (A1, A2, B1, B2), if the nodes of G can be
partitioned into sets V1 and V2 so that the following hold.

(i) For i = 1, 2, Ai ∪ Bi ⊆ Vi, and Ai and Bi are nonempty and disjoint.

(ii) Every node of A1 is adjacent to every node of A2, every node of B1 is adjacent to every
node of B2, and these are the only adjacencies between V1 and V2.

(iii) For i = 1, 2, the graph induced by Vi, G[Vi], contains a path with one endnode in Ai

and the other in Bi. Furthermore, G[Vi] is not a chordless path.

We note that slightly different definitions of 2-joins are used in different papers.
Let Σ be a 3PC(∆, ·). If one of the paths of Σ is of length 1, then Σ is also a wheel that

is called a bug. If all of the paths of Σ are of length greater than 1, then Σ is called a long
3PC(∆, ·). Note that long 3PC(∆, ·)’s are even-hole-free but have no k-star cutset nor a
2-join. So in a decomposition theorem for even-hole-free graphs that uses k-star cutsets and
2-joins, long 3PC(∆, ·)’s form a basic class. We now introduce another basic class.

Let L be the line graph of a tree. Note that every edge of L belongs to exactly one
maximal clique, and every node of L belongs to at most two maximal cliques. The nodes
of L that belong to exactly one maximal clique are called leaf nodes. A clique of L is big if
it is of size at least 3. In the graph obtained from L by removing all edges in big cliques,
the connected components are chordless paths (possibly of length 0). Such a path P is an
internal segment if it has its endnodes in distinct big cliques (when P is of length 0, it is
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called an internal segment when the node of P belongs to two big cliques). The other paths
P are called leaf segments. Note that one of the endnodes of a leaf segment is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent nodes x and y,
called the special nodes. The graph L induced by R \ {x, y} is the line graph of a tree and
contains at least two big cliques. In R, each leaf node of L is adjacent to exactly one of the
two special nodes, and no other node of L is adjacent to special nodes. The last condition
for R is that no two leaf segments of L with leaf nodes adjacent to the same special node
have their other endnode in the same big clique. The internal segments of R are the internal
segments of L, and the leaf segments of R are the leaf segments of L together with the node
in {x, y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graph R with special nodes x and y. R∗

is an extended nontrivial basic graph of G if R∗ consists of R and all nodes u ∈ V (G) \ V (R)
such that for some big clique K of R and for some z ∈ {x, y}, N(u) ∩ V (R) = V (K) ∪ {z}.
We also say that R∗ is an extension of R. See figure 2.

x

y

Figure 2: An extended nontrivial basic graph.

The following was the first decomposition theorem obtained for even-hole-free graphs.

Theorem 3.1 (Conforti, Cornuéjols, Kapoor and Vušković [15]) A connected 4-
hole-free odd-signable graph is either a clique, a hole, a long 3PC(∆, ·) or a nontrivial basic
graph, or it has a 2-join or k-star cutset, for k ≤ 3.

This theorem was strong enough to be used in construction of the first known polynomial
time recognition algorithm for even-hole-free graphs [16], as we shall see in Section 4, but even
at that time it was suspected that a stronger decomposition theorem was possible. After that
work was completed the efforts were concentrated on trying to apply the same techniques to
the study of perfect graphs. This approach turned out to be fruitful. Conforti, Cornuéjols
and Vušković in [17] proved the Strong Perfect Graph Conjecture for 4-hole-free graphs, by
decomposing 4-hole-free Berge graphs using star cutsets and 2-joins into bipartite graphs and
line graphs of bipartite gaphs. Finally, using the same approach, the famous Strong Perfect
Graph Conjecture was proved by Chudnovsky, Robertson, Seymour and Thomas in [10], by
decomposing Berge graphs using skew cutsets, 2-joins and their complements. A node cutset
S is a skew cutset (or skew partition) if there exists a partition (S1, S2) of S such that every
node of S1 is adjacent to every node of S2. Star cutsets and skew cutsets were first introduced
by Chvátal [12]. Note that skew cutsets are a generalization of star cutsets, and a special
case of double star cutsets.
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In a graph that does not contain a 4-hole, a skew cutset reduces to a star cutset, and a
2-join in the complement implies a star cutset. The decomposition of Berge graphs with skew
cutsets, 2-joins and their complements provided a motivation to believe that it is also possible
to decompose even-hole-free graphs with just the star cutsets and 2-joins. This strengthening
of the decomposition theorem was obtained by da Silva and Vušković in [42].

Let us say that an even-hole-free graph is basic if it is one of the following graphs:

• a clique,

• a hole,

• a long 3PC(∆, ·), or

• an extended nontrivial basic graph.

Theorem 3.2 (da Silva and Vušković [42]) A connected 4-hole-free odd-signable graph
is either basic or it has a 2-join or a star cutset.

Here is a simple restatement of Theorem 3.2, that is sufficient for algorithms described in
the following sections. A graph is a clique tree if each of its maximal 2-connected components
is a clique. A graph is an extended clique tree if it can be obtained from a clique tree by
adding at most two vertices.

Corollary 3.3 A connected even-hole-free graph is either an extended clique tree, or it has
a 2-join or a star cutset.

The key difference in the proof of Theorem 3.1 and the proof of Theorem 3.2 is that in the
proof of Theorem 3.1 bugs are decomposed with double star cutsets. Since only star cutsets
are used in Theorem 3.2, it is not possible to decompose all bugs in the graph, and hence
the class of basic (undecomposable) graphs needed to be enlarged to include the extended
nontrivial basic graphs.

The following intermediate result, that is used as one of the steps in the proof of Theorem
3.2, is of an independent interest, as we shall see in Section 5.3. It is used to prove that
(diamond, even hole)-free graphs are β-perfect (where a diamond is the graph obtained from
a clique on 4 nodes by removing an edge). A bisimplicial cutset is a node cutset that either
induces a clique or two cliques with exactly one common node. Note that a bisimplicial cutset
is a very special type of a star cutset.

Theorem 3.4 (Kloks, Müller and Vušković [30]) A connected (diamond,4-hole)-free
odd-signable graph is either basic, or it has a bisimplicial cutset or a 2-join.

4 Recognition algorithms

In this section we describe polynomial-time recognition algorithms for even-hole-free graphs
[16, 9, 42]. Perfect graphs can also be recognized in polynomial time [7], but it is still not
known whether odd-hole-free graphs can.

A recognition algorithm for even-hole-free graphs can be used to find an even hole in a
graph G, if one exists, in the following way. Let v1, . . . , vn denote the nodes of G and let
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H = G. In Iteration i, test whether H \ {vi} contains an even hole. If the answer is yes, set
H = H \ {vi} and otherwise keep H unchanged. Perform n iterations. At termination, the
graph H is the desired even hole.

With two calls to the recognition algorithm we can also check whether for a given graph
G and a node v of G, all the even holes of G contain v. On the other hand, it is NP-complete
to decide for a given graph G and a node v of G, whether there exists an even (resp. odd)
hole that contains v [3].

We now describe the ideas behind a decomposition based recognition algorithm. To use
a decomposition theorem to recognize a class of graphs C, basic graphs need to be simple
in the sense that they can easily be recognized, and the cutsets need to have the following
property. The removal of a cutset S from a graph G disconnects G into two or more connected
components. From these components blocks of decomposition are constructed by adding some
more nodes and edges. A decomposition is C-preserving if it satisfies the following: G belongs
to C if and only if all the blocks of decomposition belong to C. A recognition algorithm takes
a graph G as input and decomposes it using C-preserving decompositions into a polynomial
number of basic blocks, which are then checked, in polynomial time, whether they belong to
C.

This is an ideal scenario, which works for example for obtaining a recognition algorithm
for regular matroids [40]. On the other hand, it does not work for obtaining a recognition
algorithm for even-hole-free graphs. The problem is that for star cutsets one does not know
how to construct the blocks of decomposition that would, at the same time, be class-preserving
as well as guarantee polynomiality of the decomposition tree. For 2-joins this is possible, by
constructing blocks of decomposition G1 and G2 of a graph G with respect to a 2-join X1|X2

with special sets (A1, A2, B1, B2) in the following way: G1 is obtained from G by replacing X2

by a marker path P2 that is a chordless path from a vertex a2 complete to A1 to a vertex b2

complete to B1, and whose interior vertices are all of degree two in G1. Block G2 is obtained
similarly by replacing X1 by a marker path P1. For i = 1, 2 let Qi be any chordless path
from Ai to Bi whose intermediate vertices are in Xi \ (Ai ∪Bi), and let the length of marker
path Pi be of the same parity as Qi. It can then be shown that G is even-hole-free if and
only if G1 and G2 are even-hole-free. Furthermore, it can be shown that a graph can be
completely decomposed with 2-joins (into blocks that do not have any 2-joins) using linearly
many decompositions.

Let S be a node cutset of a graph G, and let C1, . . . , Ck be the connected components of
G\S. A standard way to construct blocks of decomposition w.r.t. a node cutset would be to
define blocks to be graphs G1, . . . , Gk, where Gi = G[Ci ∪S] for i = 1, . . . , k. Such definition
of blocks is not preserving for the class of even-hole-free graphs. For example when the graph
G on the left in Figure 3 is decomposed with star cutset S = N [x], then both of the blocks
of decomposition, G1 and G2, are like the graph on the right. Observe that G does contain
an even hole, but blocks G1 and G2 do not.

This problem was first encountered when trying to construct a polynomial time recogni-
tion algorithm for balanced matrices (that correspond to bipartite graphs in which all holes
are of length 0 mod 4). At that time a technique called cleaning was developed by Conforti
and Rao [19] that enabled them to recognize, in polynomial time, linear balanced matrices.
This technique was further developed and used in obtaining decomposition based polynomial
time recognition algorithms for balanced matrices [18], balanced 0,±1 matrices [13], and a
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x

Figure 3: A graph and its block of decomposition w.r.t. star cutset S = N [x].

new level of cleaning needed to be invented for recognition of even-hole-free graphs [16], which
was also used in the cleaning for recognition of perfect graphs [7].

We describe the cleaning procedure in the context of its use for recognizing even-hole-free
graphs. Given an input graph G, the cleaning procedure produces, in polynomial time, a
clean graph G′, such that G is even-hole-free if and only if G′ is even-hole-free, and if G

contains an even hole then G′ contains a clean even hole (i.e. an even hole for which there are
no nodes outside the hole that have problematic neighbors on the hole, which can be used as
clique centers of star cutsets to break the hole). Once we have a clean graph, decomposition
can be applied safely, since it will now be class-preserving.

As expected, cleaning was also the key to obtaining a polynomial time recognition algo-
rithm for Berge graphs [7]. What was surprising, as Chudnovsky and Seymour observed, was
that once the cleaning is performed, one does not need the decomposition based recognition
algorithm, one can simply look for the “bad structure” (in this case an odd hole) directly. So
in [7] two recognition algorithms for Berge graphs are given: an O(n9) Chudnovsky/Seymour
style algorithm that uses the direct method, and an O(n18) decomposition based recognition
algorithm. Then Zambelli [49] showed that by using the cleaning with the direct method,
the complexity of the recognition algorithm for balanced 0,±1 matrices dramatically drops,
in comparison with their original recognition [13] based on the decomposition method.

The original recognition algorithm for even-hole-free graphs from [16] uses Theorem 3.1
and is of complexity of about O(n40). In [9] Chudnovsky, Kawarabayashi and Seymour
obtain an O(n31) recognition algorithm for even-hole-free graphs, using cleaning with the
direct method. In the same paper they sketch another more complicated algorithm that,
they claim, runs in time O(n15). This algorithm first needs to test for 3PC(·, ·)’s (thetas)
and 3PC(∆,∆)’s (prisms) in that time. It turns out that testing for thetas can be done
in time O(n11) [11]. Detecting a prism is NP-complete in general [31]. In [9] it is claimed
(without a proof) that under the assumption that the graph does not contain a theta one can
use cleaning to test for prisms in time O(n15). This turns out to be false so far. Detecting a
theta or a prism using the method outlined in [9] ends up being of complexity O(n35) [8].

It was then shown in [42] that using Theorem 3.2 one can construct a decomposition
based recognition algorithms for even-hole-free graphs that runs in time O(n19). Interestingly,
this is the first example in which a decomposition based method performs faster than the
direct method (when both methods yield algorithms). We note that there are examples of
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recognition problems for which algorithms exist using only one of the methods, for example
recognizing 3PC(∆, ·)-free graphs is only known by the direct method [7] and recognizing
graphs with no cycle with a unique chord is only known by the decomposition method [45].

The algorithm in [42] actually uses Corollary 3.3, so testing whether a basic block is even-
hole-free reduces to testing whether an extended clique tree is even-hole-free, which can be
done efficiently as follows. Clearly, clique trees contain no holes. Moreover, in a clique tree
there is at most one induced path between any pair of vertices. So, if G\{x} is a clique tree,
to determine if G is even-hole-free we need only test, for every pair y and z of neighbors of x,
whether there is an induced path from y to z in G \ {x} which contains no other neighbor of
x and is of even length. Since there is at most one path to test, this can be done efficiently.
A similar algorithm allows us to test if an extended clique tree contains an even hole.

5 Combinatorial optimization

Finding a maximum clique, a maximum independent set and an optimal coloring are problems
that are NP-complete in general, but are all known to be polynomial for perfect graphs [27,
28]. This result of Grötschel, Lovász and Schrijver uses the ellipsoid method and consequently
is impractical. The question remains whether these optimization problems can be solved for
perfect graphs by polynomial time purely combinatorial algorithms, avoiding the numerical
instability of the ellipsoid method. Once again studying these problems on the class of even-
hole-free graphs might shed some light on how one would go about solving them for perfect
graphs.

The complexities of finding a maximum independent set and an optimal coloring are
not known for even-hole-free graphs nor for the odd-hole-free graphs. Finding a maximum
clique for odd-hole-free graphs is NP-complete (follows from 2-subdivision [37]), but can be
efficiently solved for even-hole-free graphs, as we shall see in Section 5.1. In Section 5.2 we
discuss the boundedness of the chromatic number for even-hole-free graphs. β-perfect graphs
are a subclass of even-hole-free graphs for which there exists an efficient coloring algorithm. In
Section 5.3 we show how this approach can be used to efficiently color the class of (even-hole,
diamond)-free graphs. In Section 5.4 we show how one can obtain combinatorial optimization
algorithms for even-hole-free graphs that do not contain star cutsets.

5.1 The clique number

One can find a maximum clique of an even-hole-free graph in polynomial time, since as
observed by Farber [23] 4-hole-free graphs have O(n2) maximal cliques and hence one can
list them all in polynomial time. For a graph G let k denote the number of maximal cliques
in G, n the number of nodes in G and m the number of edges of G. In [48] an O(nmk)
algorithm for generating all maximal cliques of a graph is given, and in [5] this complexity is
improved to O(m1.5k). The complexity is further improved for dense graphs by the O(M(n)k)
algorithm in [33], where M(n) denotes the time needed to multiply two n×n matrices. Matrix
multiplication can be done in O(n2.376) time [20]. So one can generate all the maximal cliques
of a 4-hole-free graph in time O(m1.5n2) or O(n4.376).

The following structural characterization of odd-signable graphs that do not contain a 4-
hole leads to a faster algorithm for computing a maximum clique in an even-hole-free graph.

9



For x ∈ V (G), the graph G[N(x)] is called the neighborhood of x. A graph is triangulated if
it does not contain a hole.

Theorem 5.1 (da Silva and Vušković [41]) Every 4-hole-free odd-signable graph has a
node whose neighborhood is triangulated.

Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs that do not
contain a 4-hole nor an odd hole) is obtained by Parfenoff, Roussel and Rusu in [36]. Note
that 4-hole-free graphs in general need not have this property, see Figure 7.

Figure 4: A 4-hole-free graph that has no vertex whose neighborhood is triangulated.

We now show that Theorem 5.1 implies that there are at most n+2m maximal cliques in
a 4-hole-free odd-signable graph, and it yields an algorithm that generates all the maximal
cliques of a 4-hole-free odd-signable graph in time O(n2m). In particular, in a weighted
graph, a maximum weight clique can be found in time O(n2m).

Let C be any class of graphs closed under taking induced subgraphs, such that for every
G in C, G has a node whose neighborhood is triangulated. Consider the following algorithm
for generating all maximal cliques of graphs in C.

Find a node x1 of G whose neighborhood is triangulated (if no such node exists, G is
not in C, or in particular, G is not 4-hole-free odd-signable graph by Theorem 5.1). Let
G1 = G[N [x1]] and G1 = G \ {x1}. Every maximal clique of G belongs to G1 or G1.
Recursively construct triangulated graphs G1, . . . , Gn as follows. For i ≥ 2, find a node xi of
Gi−1 whose neighborhood is triangulated and let Gi = G[NGi−1 [xi]] and Gi = Gi−1 \ {xi} =
G \ {x1, . . . , xi}.

Clearly every maximal clique of G belongs to exactly one of the graphs G1, . . . , Gn. A
triangulated graph on n vertices has at most n maximal cliques [24]. So for i = 1, . . . , n,
graph Gi has at most 1 + d(xi) maximal cliques (where d(x) denotes the degree of vertex x).
It follows that the number of maximal cliques of G is at most

∑n
i=1(1 + d(xi)) = n + 2m.

Checking whether a graph is triangulated can be done in time O(n + m) (using lexico-
graphic breadth-first search [39]). So finding a vertex with triangulated neighborhood can be
done in time O(

∑
x∈V (G)(d(x) + m)) = O(nm). Hence constructing the graphs G1, . . . , Gn

takes time O(n2m).
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Generating all maximal cliques in a triangulated graph can be done in time O(n + m)
(see, for example, [26]). Hence the overall complexity of generating all maximal cliques in a
4-hole-free odd-signable graph is dominated by the construction of the sequence G1, . . . , Gn,
i.e. it is O(n2m).

Note that this algorithm is robust in Spinrad’s sense [43]: given any graph G, the algorithm
either verifies that G is not in C (or in particular that G is not a 4-hole-free odd-signable
graph) or it generates all the maximal cliques of G. Note that, when G is not in C, the
algorithm might still generate all the maximal cliques of G.

The proof of Theorem 5.1 is obtained by using the following general technique developed
in [32] (and used there to obtain a combinatorial optimization algorithm for a subclass of
Berge graphs that generalizes both 4-hole-free Berge graphs and claw-free Berge graphs). A
class F of graphs satisfies property (*) w.r.t. a graph G if the following holds: for every node
x of G such that G \ N [x] 6= ∅, and for every connected component C of G \ N [x], if F ∈ F
is contained in G[N(x)], then there exists a node of F that has no neighbor in C.

Theorem 5.2 (Maffray, Trotignon and Vušković [32]) Let F be a class of graphs such
that for every F ∈ F , no node of F is adjacent to all the other nodes of F . If F satisfies
property (*) w.r.t. a graph G, then G has a node whose neighborhood is F-free.

In [41] it is shown that property (*) holds for 4-hole-free odd-signable graphs when F is
the set of all holes, and then the proof of Theorem 5.1 follows from Theorem 5.2. We observe
that the fact that property (*) holds also implies the following decomposition result, which
is used as one of the steps in the proof of Theorem 3.2. A wheel (H,x) is a universal wheel
if x is adjacent to all nodes of H.

Theorem 5.3 (da Silva and Vušković [41]) Let G be a 4-hole-free odd-signable graph. If
G contains a universal wheel, then G has a star cutset.

In a graph G, for any node x, let C1, . . . , Ck be the connected components of G \ N [x],
with |C1| ≥ . . . ≥ |Ck|, and let the numerical vector (|C1|, . . . , |Ck|) be associated with x.
The nodes of G can thus be ordered according to the lexicographic ordering of the numerical
vectors associated with them. Say that a node x is lex-maximal if the associated numerical
vector is lexicographically maximal over all nodes of G. Theorem 5.2 actually shows that for
a lex-maximal node x, N(x) is F-free. This implies the following.

Theorem 5.4 (da Silva and Vušković [41]) Let G be a 4-hole-free odd-signable graph,
and let x be a lex-maximal node of G. Then the neighborhood of x is triangulated.

Possibly a more efficient algorithm for listing all maximal cliques can be constructed by
searching for a lex-maximal node.

5.2 The boundedness of the chromatic number

The clique number of a graph ω(G) is a lower bound for the chromatic number χ(G). This
bound can be tight, as in the case of perfect graphs, but it can also be arbitrarily bad. Gyárfás
introduced a family of χ-bounded graphs [29] as a natural extension of the family of perfect
graphs: a family of graphs G is χ-bounded with χ-binding function f if, for every induced
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subgraph G′ of G ∈ G, χ(G′) ≤ f(ω(G′)). Note that perfect graphs are a χ-bounded family
of graphs with the χ-binding function f(x) = x.

A natural question to ask is: what choices of forbidden induced subgraphs guarantee that
a family of graphs is χ-bounded? Much research has been done in this area, for a survey
see [38]. We note that most of that research has been done on classes of graphs obtained by
forbidding a finite number of graphs. Since there are graphs with arbitrarily large chromatic
number and girth [22], in order for a family of graphs defined by forbidding a finite number of
graphs (as induced subgraphs) to be χ-bounded, at least one of these forbidden graphs needs
to be acyclic. In [1] it is shown that even-hole-free graphs (a class defined by forbidding a
family of graphs none of which is acyclic) are χ-bounded. This result follows easily from the
following characterization of even-hole-free graphs. A bisimplicial vertex is a vertex whose
set of neighbors induces a graph that is a union of two cliques.

Theorem 5.5 (Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1]) Every
even-hole-free graph has a bisimplicial vertex.

Corollary 5.6 [1] If G is even-hole-free then χ(G) ≤ 2ω(G) − 1.

Proof: By theorem 5.5 let v be a bisimplicial vertex of G. Inductively color G \ {v} with
2ω(G) − 1 colors. Since v is bisimplicial, its degree is at most 2ω(G) − 2, and hence G can
be colored with 2ω(G) − 1 colors. 2

It is interesting to observe that Theorem 5.5 is also obtained using decomposition, al-
though in [1] not all even-hole-free graphs are decomposed, but enough structures are decom-
posed using special double star cutsets to obtain the desired result.

The following star cutset decomposition is proved in [1]. A twin wheel is a wheel with
exactly two short sectors and one long sector. A proper wheel is a wheel that is neither a bug
nor a twin wheel.

Theorem 5.7 (Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1]) Let G

be a 4-hole-free odd-signable graph. If G contains a proper wheel that is not a universal wheel,
then G has a star cutset.

We note that in [1] the statement of the above theorem is for even-hole-free graphs, but
since in the proof of that theorem only the exclusion of 4-holes, even wheels, 3PC(·, ·)’s and
3PC(∆,∆)’s is used, the above statement is actually proved.

Theorem 5.7 and Theorem 5.3 imply the following, which is used as one of the steps in
the proof of Theorem 3.2.

Theorem 5.8 Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel, then
G has a star cutset.

5.3 Coloring (even-hole, diamond)-free graphs

Recall that the complexity of finding an optimal coloring of an even-hole-free graph is not
known. β-perfect graphs, introduced in [34], are a subclass of even-hole-free graphs that
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can be efficiently colored, by coloring greedily on a particular easily constructable ordering
of vertices, see Section 1. Unfortunately it is not known whether β-perfect graphs can be
recognized in polynomial time. We now present some results on subclasses of β-perfect graphs
that can be recognized in polynomial time.

Recall that a diamond is a cycle of length 4 that has exactly one chord. A cap is a cycle of
length greater than four that has exactly one chord, and this chord forms a triangle with two
edges of the cycle. In [34] Markossian, Gasparian and Reed shown that (even-hole, diamond,
cap)-free graphs are β-perfect, and in [25] de Figueiredo and Vušković show that (even-hole,
diamond, cap-on-6-vertices)-free graphs are β-perfect. These results were extended by Kloks,
Müller and Vušković who show in [30] that (even-hole, diamond)-free graphs are β-perfect.
This result follows from the following characterization of (even-hole, diamond)-free graphs.
A vertex is simplicial if its neighborhood set induces a clique, and it is a simplicial extreme
if it is either simplicial or of degree 2.

Theorem 5.9 (Kloks, Müller and Vušković [30]) Every (even-hole, diamond)-free
graph has a simplicial extreme.

Theorem 5.9 and the following property of minimal β-imperfect graphs, imply that (even-
hole, diamond)-free graphs are β-perfect.

Lemma 5.10 (Markossian, Gasparian and Reed [34]) A minimal β-imperfect graph
that is not an even hole, contains no simplicial extreme.

Corollary 5.11 [30] Every (even-hole, diamond)-free graph is β-perfect.

Note that the fact that (even-hole, diamond)-free graphs have simplicial extremes implies
that for such a graph G, χ(G) ≤ ω(G) + 1 (observe that if v is a simplicial extreme of G,
then its degree is at most ω(G), and hence G can be colored with at most ω(G) + 1 colors).

The proof of Theorem 5.9 is obtained as a consequence of Theorem 3.4. Theorem 5.9 was
actually conjectured to be true by de Figueiredo and Vušković [25]. In [25] they prove that
every (even-hole, diamond, cap-on-6-vertices)-free graph is β-perfect by showing the following
property of this class of graphs.

Theorem 5.12 (de Figueiredo and Vušković [25]) If G is an (even-hole, diamond, cap-
on-6-vertices)-free graph, then one of the following holds.

(1) G is triangulated.

(2) For every edge xy, G has a simplicial extreme in G \ N [{x, y}].

A similar property was used in [1] to prove that every even-hole-free graph has a bisim-
plicial vertex.

Theorem 5.13 (Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1]) If G

is even-hole-free then the following hold.

(1) If K is a clique of G of size at most 2 such that N [K] 6= V (G), then G has a bisimplicial
vertex in G \ N [K].
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(2) If H is a hole of G such that N [H] 6= V (G), then G has a bisimplicial vertex in G\N [H].

Such characterizations allowed for certain types of double star cutsets to be used in the
inductive proofs of Theorem 5.12 and Theorem 5.13. For assume that Theorem 5.12 (resp.
Theorem 5.13) holds for all graphs with fewer vertices than G, and suppose that for an edge
xy, N [{x, y}] is a double star cutset of G. Then we can conclude that for every connected
component C of G \N [{x, y}], there exists a simplicial extreme (resp. bisimplicial vertex) of
G in C.

For the class of (even-hole, diamond)-free graphs it is not even the case that for every
vertex there is a simplicial extreme outside the neighborhood of that vertex. The graph in
Figure 5 is (even-hole, diamond)-free, and its only simplicial extremes are in the neighborhood
of vertex x. Note that this graph contains a cap on 6 vertices. Also, all the vertices of this
graph, except x, are bisimplicial vertices, so for any edge there is a bisimplicial vertex outside
of the neighborhood of that edge.

x

Figure 5: An (even-hole, diamond)-free graph whose only
simplicial extremes are in the neighborhood of x.

Figure 6: An (even-hole, diamond)-free graph G, bold edges denote a
hole H such that no vertex of G − N [H] is a simplicial extreme of G.

(2) of Theorem 5.13 is used to help prove (1). Figure 6 shows that analogous property
does not hold for (even-hole, diamond)-free graphs and simplicial extremes: bold edges denote
a hole H such that no vertex of G \ N [H] is a simplicial extreme of G.

Theorem 5.9 is proved by showing the following property of (even-hole, diamond)-free
graphs.

Theorem 5.14 (Kloks, Müller and Vušković [30]) If G is an (even-hole, diamond)-free
graph, then one of the following holds.

(1) G is a clique.

(2) G contains two nonadjacent simplicial extremes.
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This property does not allow for the use of double star cutset decompositions in the proof,
not even star cutset decompositions. But bisimplicial cutsets from Theorem 3.4 do suffice.

We close this section by observing that there are (even-hole, cap)-free graphs that are not
β-perfect, see Figure 7. Total characterization of β-perfect graphs remains open.

Figure 7: An (even-hole, cap)-free graph that is not β-perfect.

5.4 Combinatorial optimization with 2-joins

Decomposition can also be used to construct optimization algorithms. The general paradigm
would be as follows: given a decomposition tree T for a graph G ∈ C obtained by using
decompositions from some decomposition theorem for class C, with the property that for
every leaf L of T one can solve an optimization problem (such as coloring or finding the size
of the largest clique or a stable set), can we construct an algorithm to solve the corresponding
problem on G? This general paradigm sometimes works nicely (as in the case of triangulated
graphs and clique cutsets), but most of the time it is difficult to apply to classes whose
decomposition theorems require “strong cutsets”, such as star cutsets.

All of the decomposition theorems mentioned in this survey use star cutsets (or their
generalizations) and 2-joins. The problem with the star cutset is that it can be very big
(as big as all of the vertex set except two vertices), and in the cutset itself the edges are
unconstrained, so there is not much structure one can work with. 2-Joins on the other hand
have quite a bit of structure within the cutset. There is an interesting relationship between
star cutset decomposition and 2-join decomposition, in classes of even-hole-free and Berge
graphs, that was observed when constructing decomposition based recognition algorithms in
[16] and [7]. One can build a decomposition tree by first doing star cutset decompositions and
then 2-join decompositions, with leaves being undecomposable blocks. Analogous separation
of skew cutsets and 2-joins exists in Berge graphs [44].

In [46] Trotignon and Vušković (taking the bottom-up approach) consider the class of even-
hole-free graphs that do not contain star cutsets. By Theorem 3.2, this class is decomposable
into basic graphs just by 2-joins. In the same paper another class decomposable by 2-joins is
considered, namely Berge graphs with no skew cutset nor homogeneous pair (which follows
from [10], [6] and [44]). This allowed them to focus on developing techniques for combinatorial
optimization with 2-joins. In [46] combinatorial polynomial time algorithms are given for
finding the size of a largest independent set in even-hole-free graphs with no star cutset; as
well as finding the size of a largest independent set, the size of a largest clique and an optimal
coloring for Berge graphs with no skew cutset nor homogeneous pair. In [4] it is shown that
the required 2-joins can be found in time O(n2m) time, and hence the above mentioned
coloring algorithm can be implemented to run in O(n7) time and all the other ones in O(n6)
time. Coloring of Berge graphs actually follows from being able to compute the size of a
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largest independent set and largest clique ([27, 28]), so these two problems are the focus of
the work in [46].

Using 2-joins in combinatorial optimization algorithms requires building blocks of de-
composition and asking at least two questions for at least one block, while for recognition
algorithms one question suffices. Applying this process recursively can lead to an exponential
blow-up even when the decomposition tree is linear in size of the input graph. In [46] this
problem is bypassed by using extreme 2-joins, i.e. 2-joins whose one block of decomposition
is basic. Graphs in general do not have extreme 2-joins, this is a special property of 2-joins
in graphs with no star cutset. The graph G in Figure 8 has exactly two 2-joins, one is repre-
sented with bold lines, and the other is equivalent to it. Both of the blocks of decomposition
are isomorphic to graph H (where dotted lines represent paths of arbitrary length, possibly
of length 0), and H has a 2-join whose edges are represented with bold lines. So G does not
have an extreme 2-join.

G H

Figure 8: A graph G with no extreme 2-join

We first give a method from [46] that can be used to solve the maximum weighted clique
problem for any class of graphs that can be decomposed with extreme 2-joins into basic graphs
for which the problem can be solved efficiently. (To be able to apply arguments inductively
one actually needs to switch to the weighted version of the problem). Let G be a weighted
graph with a weight function w : N+ −→ V (G). When H is an induced subgraph of G or a
subset of V (G), w(H) denotes the sum of the weights of vertices in H. Here, ω(G) denotes
the weight of a maximum weighted clique of G.

Let X1|X2 be a 2-join with special sets (A1, A2, B1, B2), and let G1 and G2 be the blocks
of decomposition w.r.t. this 2-join constructed as in Section 3. Let us also assume that
the lengths of marker paths are at least 3 (this is important in [46] because there it is not
just important that the parity of holes is preserved in the blocks, but also the property of
not having a star cutset). Let P1 = a1, x1, . . . , xk, b1 be the marker path of G2, where a1

is adjacent to all of A2 and b1 is adjacent to all of B2. The weights of vertices of G2 are
modified as follows:

• for every u ∈ X2, wG2
(u) = wG(u);
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• wG2
(a1) = ω(G[A1]);

• wG2
(b1) = ω(G[B1]);

• wG2
(x1) = ω(G[X1]) − ω(G[A1]);

• wG2
(xi) = 0, for i = 2, . . . , k.

With such modification of weights it can be shown that ω(G) = ω(G2) [46]. Now if X1|X2

is an extreme 2-join, we may assume that block G1 is undecomposable and hence basic in
the sense that the maximum weighted clique problem can be solved on that block efficiently.
In particular, all of the weights needed to be computed for modifying the weights of G2 as
above can be computed efficiently. We note that this method of computing a maximum stable
set in the case of even-hole-free graphs (with no star cutset) is not so interesting since the
algorithm described in Section 5.1 is more efficient.

Using 2-joins to compute a maximum stable set is more difficult since stable sets can
completely overlap both sides of the 2-join. In [46] a simple class of graphs C decomposable
along extreme 2-joins into bipartite graphs and line graphs of cycles with one chord is given
for which computing a maximum stable set is NP-hard. Here is how C is constructed. A
gem-wheel is a graph made of an induced cycle of length at least 5 together with a vertex
adjacent to exactly four consecutive vertices of the cycle. Note that a gem-wheel is a line-
graph of a cycle with one chord. A flat path of a graph G is a path of length at least 2,
whose interior vertices all have degree 2 in G, and whose ends have no common neighbors
outside the path. Extending a flat path P = p1, . . . , pk of a graph means deleting the interior
vertices of P and adding three vertices x, y, z and the following edges: p1x, xy, ypk, zp1, zx,
zy, zpk. Extending a graph G means extending all paths of M, where M is a set of flat paths
of length at least 3 of G. Class C is the class of all graphs obtained by extending 2-connected
bipartite graphs. From the definition, it is clear that all graphs of C are decomposable along
extreme 2-joins. One leaf of the decomposition tree is the underlying bipartite graph, and all
the others leaves are gem-wheels. The following is shown by Naves [35], and the proof of it
can be found in [46].

Theorem 5.15 (Naves [35, 46]) The problem whose instance is a graph G from C and an
integer k, and whose question is “Does G contain a stable set of size at least k” is NP-
complete.

Let CPARITY be the class of graphs in which all holes have the same parity. In [46] it is
shown how to use 2-joins to compute a maximum stable set in CPARITY .

Let G be a graph with a weight function w on the vertices and X1|X2 a 2-join of G

with special sets (A1, A2, B1, B2). For i = 1, 2, Ci = Xi \ (Ai ∪ Bi). For any graph H,
α(H) denotes the weight of a maximum weighted stable set of H. Let a = α(G[A1 ∪ C1]),
b = α(G[B1 ∪ C1]), c = α(G[C1]) and d = α(G[X1]).

Blocks of decomposition w.r.t. a 2-join that would be useful for computing a largest stable
set can be done as follows.

A flat claw of a weighted graph G is any set {q1, q2, q3, q4} of vertices such that:

• the only edges between the qi’s are q1q2, q2q3 and q4q2;
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• q1 and q3 have no common neighbor in V (G) \ {q2};

• q4 has degree 1 in G and q2 has degree 3 in G.

Define the even block G2 with respect to a 2-join X1|X2 in the following way. Keep X2 and
replace X1 by a flat claw on q1, . . . , q4 where q1 is complete to A2 and q3 is complete to B2.
Give the following weights: w(q1) = d − b, w(q2) = c, w(q3) = d − a, w(q4) = a + b − d. It
can be shown that all weights are in fact non-negative.

A flat vault of graph G is any set {r1, r2, r3, r4, r5, r6} of vertices such that:

• the only edges between the ri’s are such that r3, r4, r5, r6, r3 is a 4-hole;

• N(r1) = N(r5) \ {r4, r6};

• N(r2) = N(r6) \ {r3, r5};

• r1 and r2 have no common neighbors;

• r3 and r4 have degree 2 in G.

Define the odd block G2 with respect to a 2-join X1|X2 in the following way. Replace X1

by a flat vault on r1, . . . , r6. Moreover r1, r5 are complete to A2 and r2, r6 are complete
to B2. Give the following weights: w(r1) = d − b, w(r2) = d − a, w(r3) = w(r4) = c,
w(r5) = w(r6) = a + b − c − d. It can be shown that all weights are non-negative, if
c + d ≤ a + b holds.

By adequately choosing when to use even and when odd blocks, it can be shown that for
a 2-join in an even-hole-free graph G (or more generaly a graph in CPARITY ), α(G2) = α(G).

We observe that such construction of blocks is not class-preserving, so it would not allow
for inductive use of the decomposition theorems. This problem is avoided in [46] by building
the decomposition tree in two stages. First using blocks of decomposition constructed as in
Section 4 (that are class-preserving). In the second stage the decomposition tree is reprocessed
to replace marker paths by gadgets designed for even and odd blocks. This results in the
leaves of the decomposition tree that are not basic as in the decomposition theorems used,
but some extensions of these basic classes, for which it is shown that the weighted stable set
problem can be computed efficiently.
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[12] V. Chvátal, Star-cutsets and perfect graphs, Journal of Combinatorial Theory B 39 (1985)
189-199.
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[42] M.V.G. da Silva and K. Vušković, Decomposition of even-hole-free graphs with star cut-
sets and 2-joins, preprint (2008), submitted to Journal of Combinatorial Theory B.
http://www.comp.leeds.ac.uk/vuskovi/pub.shtml

[43] J. Spinrad, Efficient Graph Representations, Field Institute Monographs 19, American
Mathematical Society, Providence (2003).

[44] N. Trotignon, Decomposing Berge graphs and detecting balanced skew partitions, Journal
of Combinatorial Theory B 98 (2008) 173-225.
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