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Visualization of Parameter Space for Image Analysis

A. Johannes Pretorius, Mark-Anthony P. Bray, Anne E. Carpenter, and Roy A. Ruddle

Abstract— Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter set-
tings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process
for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters
based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in
the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the
parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular
biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users
to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called
Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are
presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings,
users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach.

Index Terms—Information visualization, visual analytics, parameter space, image analysis, sampling.

1 INTRODUCTION

There is a long tradition of visual analysis in the life sciences. For
nearly four centuries scientists have peered down microscopes to do
their work. During the past two decades biomedical researchers in-
creasingly started scrutinizing digital images on computer monitors
due to a shift toward virtual microscopy [6]. Today, high-throughput
technologies and imaging techniques allow scientists to automate ex-
periments and capture large result sets as digital images [27]. Automa-
tion is essential to analyze the vast quantities of biomedical images that
scientists generate. Such algorithms automatically identify objects -
such as cell nuclei - and compute associated metrics - such as the area
occupied by each cell. In aggregate, metrics of a large collection of
experiments can be used for rigorous statistical analysis.

Image analysis algorithms are often highly parameterized and con-
siderable human input is needed to optimize parameter settings. Fig-
ure 1 illustrates the conventional approach of “parameter tweaking”
by trial and error. Users start with a set of test images as input. They
supply input parameter settings, initialize and wait for algorithms to
execute, and inspect the output. Output is judged qualitatively, input
settings are changed, and the process repeated until satisfactory results
are achieved. At this point, users apply the algorithms and the settings
arrived at to large collections of images that are similar to their test set.

Parameter optimization presents a major usability challenge, which
we attribute to:

• Time cost. Due to multiple input parameters, algorithm process-
ing time, interruptions caused by waiting for algorithms to exe-
cute, and the number of iterations typically required, it can take
days to identify appropriate settings.

• Memory load. The interruptions described above require users to
rely on memory recall to compare current output with previous
results. This is compounded for work spread over multiple days.

• A. Johannes Pretorius is with the School of Computing, University of

Leeds, E-mail: a.j.pretorius@leeds.ac.uk.

• Mark-Anthony P. Bray is with the Broad Institute of MIT and Harvard,

Email: mbray@broadinstitute.org.

• Anne E. Carpenter is with the Broad Institute of MIT and Harvard, Email:

anne@broadinstitute.org.

• Roy A. Ruddle is with the School of Computing, University of Leeds,

E-mail: r.a.ruddle@leeds.ac.uk.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online

23 October 2011; mailed on 14 October 2011.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

Run

algorithm

Inspect

output

Change

settings

Run

algorithm

Inspect

output

Change

settings

Run

algorithm

Inspect

output

Change

settings

...

Fig. 1. The conventional approach for parameter optimization. Based
on a qualitative assessment of current output, users iteratively change
parameter settings and run algorithms to generate new output. This
process is repeated until the output quality is satisfactory.

The above results in inadequate exploration of parameter space and
the quality of results produced by image analysis algorithms suffers.

Machine-learning algorithms are one approach to potentially min-
imize user overhead in achieving good object identification results.
Users mark up regions of interest in several images, which the algo-
rithms use to create complex classifiers that can recognize similar re-
gions in other images. In the experience of domain experts, however,
superior results can only be achieved using specific algorithms, when
prior knowledge is available about the image, the objects, and their
features (size and appearance). Also, machine learning approaches
require a substantial amount of hand-labeling of images.

We present an alternative approach based on sampling and interac-
tive visualization. In Section 2, we summarize related research before
outlining CellProfiler - a popular image analysis framework - in Sec-
tion 3. We discuss our work in Section 4. This includes a requirements
analysis (Section 4.1), a high-level strategy (Section 4.2), a custom
plug-in for CellProfiler to sample parameter space (Section 4.3), and
an interactive visualization technique for sampled parameter space and
related output (Section 4.4). We validate our approach with two case
studies in Section 5. We conclude and outline future work in Section 6.

2 RELATED WORK

The challenge of understanding the relationships between input pa-
rameters and output underlies much of engineering design and applied
science. Users are interested in exploring the mapping p1, ..., pn →
o1, ...,om, where p1, ..., pn are the parameters and o1, ...,om are the
outcomes. An instance of this mapping will associate specific values
for each pi to specific instances of o j . Several visualization techniques
have been developed to improve on the conventional approach for in-
vestigating the relationships between parameters and outcomes.



Linked charts. Tweedie et al were among the first to apply interac-
tive visualization to parameter optimization [24]. Parameters and out-
comes are represented as n+m interactive histograms. The domains
of the parameters and outcomes are binned and a specific mapping is
represented by n+m marks, one on each histogram. When a mark
is selected, it and all others associated with that mapping are high-
lighted. Users can interactively specify a range for every parameter
and outcome. This results in marks of mappings for which one or
more dimensions fall outside this range being dimmed out.

In later work, Tweedie and Spence extended this approach to pro-
section matrices [25]. These are linked 2D scatterplots, each with an
associated third dimension on which users can specify an active range.
Mappings for which one or more dimension fall outside these ranges
are not shown on the scatterplots. Although more complex than his-
tograms the underlying approach is identical: mappings are shown on
multiple linked charts and are highlighted or dimmed out in real-time
based on user interaction with the ranges of parameters and outcomes.

Linked charts improve on conventional parameter optimization
by showing an entire collection of results at one time. The dynamic
querying capabilities enable users to investigate different scenarios.
Moreover, users can quickly specify requirements on outcomes to
identify those mappings for which the requirements are satisfied.
In this way both time cost and memory load are addressed. Unfor-
tunately, when considered in the context of image analysis, linked
charts have a major drawback. By design there is the assumption that
outcomes are ordinal and that users’ analyses are based on quantitative
judgments of ranges on the charts’ axes. This makes them unsuitable
for considering image-based output where judgments are qualitative.

Exploration graphs. Instead of focusing on the mapping between pa-
rameters and outcomes, the changes in parameter values and their
influence on outcomes can be emphasized. Ma took this approach
by visualizing the parameter search process as a directed graph [15].
The aim is to assist users in finding rendering parameter settings for
computer graphics scenes. Users start with the rendering that results
from the default parameter settings shown as a thumbnail. When they
change a parameter’s value, a new scene is rendered and displayed as
another thumbnail. The change in a parameter’s value is represented
by a directed edge connecting the initial scene to the new one.

The VisTrails visualization management system uses exploration
graphs for history management [2, 4]. As different visualizations of a
scientific data set are generated a history tree is maintained and shown
to users. Users can select any node in the tree to view the correspond-
ing visualization and proceed to change its parameter values. Like
Ma’s work, such a change is shown by a new edge that leads to a child
node that represents the new visual outcome.

An exploration graph enhances the parameter optimization process
by serving as an external memory aid, augmenting each iteration in
Figure 1 with a node representing the outcome. All outcomes that
users have considered, as well as the exploration paths that led them
there, are available in visual form. Using the graph, users are able to
refine promising outcomes by introducing further parameter changes.
If headed down a dead end, they can revisit a previous result and
try other parameter changes to explore more of the parameter space.
However, exploration graphs depend on laborious user interaction
to explore parameter space. The exploration process is still linear
and time cost remains an issue. This can be addressed by enabling
users to script iterations over parameter values as in VisTrails [4], but
assumes users are competent to write programming code. Because
exploration graphs are not structured based on parameter values, it is
difficult for users to interpret the analysis outcomes in the context of
the parameter space.

Structured galleries. A number of techniques have been developed to
present image-based outcomes in a structured fashion. Jankun-Kelly
and Ma developed a technique based on a spreadsheet metaphor [10],
again to investigate the influence of rendering parameters on computer
graphics scenes. Pairs of parameters define a two-dimensional table
with their domains, respectively, defining the coordinates of the x-

and y-axes. Renderings that result from a specific pair of settings are
shown at the intersection of these two coordinates. All other parame-
ters are fixed to constants. When users want to consider an additional
parameter they assign a fixed value to one of the currently active pa-
rameters. Next, the visualization is rotated in 3D before snapping to a
new system of 2D axes that includes the newly selected parameter.

Further examples of structured galleries can be found in the work
of Marks et al [16]. Instead of structuring outcomes based on input pa-
rameter values, they focus on perceptually recognizable differences of
outcomes. Underlying visual representations is a complex mechanism
that considers distance metrics of perceptual properties. Parameter
settings are chosen so that outcomes are perceptually well-distributed.

One representation Marks et al developed is based on a hierarchical
partitioning of the graph where edge weights represent the perceptual
distances between rendered scenes. Users interactively explore the
hierarchy as follows. First, they are shown a row of thumbnails cor-
responding to the highest level of the hierarchy; perceptually the most
coarse division of results. When they select one of these thumbnails
its children, which are more similar, are shown on a second row of the
hierarchy. The same approach can be applied repeatedly to converge
on a result that satisfies users. Marks et al also developed a second
representation based on a low-dimensional projection of outcomes in
2D. By employing multidimensional scaling on the distance metrics
between outcomes, scenes that are similar map to positions close to
each other on a 2D projection.

The above approaches offer a step up from conventional parameter
optimization by either structuring outcomes based on the input
parameter space or on a notion of their perceptual similarities. Both
approaches offload some of the users’ memory load. However,
due to the high degree of interaction required to consider multiple
parameters, Jankun-Kelly and Ma’s approach retains much of the
search by trial and error associated with the process illustrated in
Figure 1. In the case of Marks et al, perceptually similar outcomes
are conveniently mapped close to each other, but the relationships
with input parameter settings are not always clear. Because similarity
metrics have to be devised for each instance of a design problem,
Marks et al concede that using their approach for more general
problems, or even a class of problems, is difficult.

Preset landscapes. Van Wijk and Van Overveld introduced an innova-
tive approach for parameter space exploration based on presets [26]. A
preset serves as a reference point in parameter space and is defined as
a vector of size n that contains a value for each pi. Presets are visually
represented as landmarks on a 2D plane that represents the parame-
ter space. An outcome is also represented by an icon on this plane.
Like the preset landmarks this icon can be moved. To compute the
outcome, a linear combination of the inverse distances from the preset
landmarks to the outcome is calculated.

Unless multiple outcomes are shown on the plane, exploration by
presets does not alter the linear nature of conventional parameter op-
timization (see Figure 1). Also, memory load is not significantly re-
duced because users cannot readily compare different outcomes. An-
other fundamental limitation of preset landscapes is that they require
meaningful presets to have been defined. This is a valid assumption in
the case of audio mixing, as Van Wijk and Van Overveld show, where
it is logical to consider different musical instruments as presets. For
image analysis, however, finding suitable presets amounts to another
parameter optimization problem.

3 CELLPROFILER

CellProfiler is an open-source software platform for automated image
analysis [5, 13]. Since its release in 2006 it has received more than 300
citations in the scientific literature [9]. Part of CellProfiler’s popularity
stems from its general applicability to many biomedical image analysis
problems. Its modular design was developed to be configurable for
identifying many types of biological objects (cell nuclei, cytoplasm,
and so forth) without requiring end-users to write programming code.

CellProfiler’s flexibility is achieved by using a pipeline, a common
abstraction mechanism in scientific visualization packages like IRIS



Fig. 2. (a) The CellProfiler user interface [5, 13]. A pipeline, with its constituent modules, is shown at the left of this interface. The input parameters
of the selected module are shown at the right of the interface. (b) Parameter sampling in CellProfiler. A new plug-in automatically detects and lists
all continuous parameters for a user-selected module. Users indicate which of these parameters to sample and for these they specify a range and
the number of samples to compute. Next, the plug-in automatically performs sampling, computes all combinations of sampled values, executes the
pipeline for each unique combination, and saves the outcome to disk.

Explorer [7] and ParaView [20]. A pipeline consists of a linear ar-
rangement of processing modules. A module can accept input data
- in the form of images or previously identified objects - from any
module that precedes it. Moreover, a module performs a specific and
well-defined operation on its data. A typical CellProfiler pipeline will
contain modules for loading images, for correcting illumination, for
identifying objects, and for computing measurements for these objects.

As shown in Figure 2(a), a pipeline and its constituent modules are
displayed at the left of the CellProfiler user interface. Users can add,
remove, or rearrange modules. Users are required to provide settings
for the input parameters of each module in a pipeline. When a module
is selected, its parameters are shown at the right of the user interface
where users specify parameter values. A typical pipeline consists of
10–20 modules, each with 5–20 parameters, yielding approximately
150–200 parameters in total. As we show in Section 4.1, a subset of
these parameters receive the most attention.

4 APPROACH

To address the issues associated with parameter optimization raised in
Section 1 (time cost and memory load, leading to inadequate explo-
ration of parameter space and suboptimal quality), we analyzed the
requirements of CellProfiler users. Based on this, we devised a high-
level strategy that required work on two fronts. First, we developed a
CellProfiler plug-in that samples the input parameter space and gener-
ates corresponding output. Second, we developed a visualization tool
to let users interactively explore the data generated by our sampler.

4.1 Analysis of user requirements

We interviewed experienced assay developers at the Broad Institute
of MIT and Harvard. These experts regularly use CellProfiler and
frequently assist and train less experienced users. We also observed
novice users at a hands-on introductory workshop on CellProfiler.

Requirement 1. Complex biomedical research questions involving im-
age analysis can usually be reduced to finding biological objects - such
as cell nuclei - and to deriving simple statistics for these - such as the
area occupied by each cell. To do so, users need support to effec-
tively and efficiently identify a suitable set of parameter settings to get
high-quality results from a representative test image. Once users have
confidence in these settings, they will proceed to run a pipeline with
these values to automatically analyze a large collection (hundreds to

millions) of similar images (high-throughput analysis). The results,
when analyzed, allow them to answer their real research questions.
Typically, this involves identifying cases where cells deviate from the
norm in a particular way.

The above analysis enabled us to characterize the conventional ap-
proach to parameter optimization shown in Figure 1. Our assay de-
veloper collaborators immediately recognized the linear nature of the
description and readily agreed that it was an accurate depiction of how
users proceed to identify suitable parameter settings for CellProfiler.
They confirmed that this approach presents a usability challenge (see
Section 1) and explained that parameter optimization can typically re-
quire anything from tens of minutes to two days’ work.

It is generally not possible to generate image analysis output in real-
time. Algorithms are often complex and rarely have linear complexity.
In practice, algorithms incur a delay of a few seconds, in the best case,
to several hours, in the worst case. Image size also has an influence
on the delay users can expect and as image resolution increases - for
example, histology images can measure 80,000 × 100,000 pixels [23]
- time delays will be part of image analysis for the foreseeable future.
This presents two problems. First, while users wait for algorithms to
execute, they are not adding value. Second, waiting for algorithms to
finish interrupts their train of thought when optimizing parameters.

Our analysis of the parameter optimization process and the
algorithms involved led us to formulate a first user requirement:

R1. Turn the linear and restricted process of parameter optimization
into a more unconfined real-time analysis experience. Support
users by separating the time-consuming image analysis processing
- where their attention is not required - from the specification of
input parameters and the inspection of output.

Requirement 2. We next turned our attention to the input parameters.
Our analysis revealed three parameter classes:

• Aliases. Users are required to supply text labels for images or
identified objects. Such aliases are used to refer to images or ob-
jects to operate on in downstream modules. Aliases are typically
input once, are rarely changed, and do not require much time or
thought to configure.

• Nominal parameters. In most modules, users are presented with
lists of options from which to pick one. Examples include pick-



ing an alias from the list of those introduced in upstream modules
or picking a particular variant of an operation such as threshold-
ing. There are usually only a few options and once set, they are
rarely changed. Nominal parameters do not add significant time
costs or memory load.

• Continuous parameters. The parameters that users do struggle
with require them to input metric values from continuous ranges.
For example, users may have to supply a thresholding correction
factor. Users experience tuning continuous parameters as diffi-
cult and extremely time consuming, but essential to ensure high
quality output. When we suggested this to our assay developer
collaborators they agreed wholeheartedly: parameters with con-
tinuous ranges are the ones that users repeatedly change.

The input parameter settings of some modules are harder to optimize
than others. Users spend a lot of time tuning the parameters of those
modules responsible for detecting objects in images. The assay devel-
opers we interviewed hence expressed a strong conviction that users
would prefer to optimize individual modules, as opposed to an entire
pipeline. Furthermore, current CellProfiler users - novice and expe-
rienced alike - particularly appreciate the fact that a modular arrange-
ment offers a conceptually convenient way to chunk the larger parame-
ter optimization problem into meaningful and tractable sub-problems.

Based on this preference for a modular approach and our character-
ization of input parameters, we formulated a second user requirement:

R2. Enable users to optimize the input parameters of individual
modules of their choosing. Focus on continuous parameters and
support users in arriving at suitable settings for these.

Requirement 3. To identify suitable settings, users currently proceed
stepwise, starting with the first module and working toward the last.
For each module they tweak the parameters in the iterative fashion de-
scribed previously until they are satisfied with its output. They then
move on to the next under the assumption that output of all modules
that precede it are of sufficient quality. Users’ goal is to discover and
understand the relationships between input parameter settings and out-
put. They want to find parameter values that lead to high-quality out-
comes and want to avoid values that lead to low-quality outcomes.

Users generally know what they expect from a module. For
example, if their aim is to identify cell nuclei, they are able to do so
manually by referring to the input image. Such expert knowledge is
often used as ground truth with which to quality check the results of
image analysis modules. By studying users’ workflow we defined a
third and final user requirement:

R3. Support users in analyzing image-based outcomes in the con-
text of input parameter settings and a reference image. Enable users
to identify parameter settings that lead to high- and low-quality
outcomes in order to optimize parameters.

4.2 Strategy

By considering Requirement 1, we aimed to facilitate a change in
paradigm for the optimization of input parameters. Our approach is
shown in Figure 3. Parameters are sampled and associated output is
generated offline by batch processing. Once all output have been saved
to disk, users can interact with them in real-time using interactive vi-
sualization techniques. Users are only involved in specifying sampling
options and in analyzing the output.

Our strategy directly addresses the issues of time cost and memory
load (see Section 1). Although sampling does require time, as we show
in Section 4.3, it can be semi-automated and users can turn their atten-
tion elsewhere while algorithms are run and output are saved. As we
explain in Section 4.4, this also enables users to explore, make sense
of, and compare output associated with different input parameters di-
rectly and in real-time, without being interrupted by time-consuming
image analysis processing. This leads to a more thorough exploration
of parameter space and increases the quality of results.
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Fig. 3. An alternative approach for input parameter optimization. Pa-
rameter settings are sampled and output is generated offline by batch
processing. Users are only involved in setting up sampling and in ana-
lyzing the output, which can now be done in real-time.

4.3 Parameter sampling

To address Requirement 2, we developed a new parameter sampling
plug-in for CellProfiler (see Figure 2(b)). Users first select one of the
modules in the pipeline. Next, by utilizing a new menu command, they
initialize sampling. Our plug-in automatically identifies all continuous
parameters for the user-selected module. Because Requirement 2 calls
for supporting users in optimizing continuous parameters of individual
modules, the parameter optimization problem is reduced significantly.
Out of the 5–20 parameters for a typical module in CellProfiler, only
3–7 are usually continuous.

As shown in Figure 2(b), continuous parameters are listed in a new
window. Users can select any subset of these parameters, to which we
will refer as pk, with k = 1, ...,q. For each pk, users specify a range
[ak,bk] and the number of samples to generate. Where available, we
use CellProfiler’s error-checking mechanism to validate that ak and bk

fall within a valid range and notify users if this is not the case. When
users click the sample button, for each pk, the associated samples Sk

are computed by sampling [ak,bk] uniformly. Next, all combinations
of the sets Sk are computed. Finally, for each combination, the sampled
values are assigned to pk, for k = 1, ...,q, and the pipeline is executed
up to the user-selected module. The resulting outcomes, along with
the input parameter settings, are saved to disk.

Our decision to execute the pipeline up to and including the user-
selected module is based on Requirement 2 and discussions with ex-
perts. There are no technical obstacles that prevent the execution of the
entire pipeline, should a need arise to investigate the influence of a par-
ticular module’s parameter settings on the final output of the pipeline.

4.4 Visual analysis

To address Requirement 3, we developed Paramorama, a prototype
for the visual analysis of relationships between input parameter space
and image-based outcomes. We use hierarchical clustering of the
sampled parameters as starting point. As Figure 4 shows, and detailed
below, the user interface consists of three views. First, a compact
node-link representation provides an overview of the clustering
hierarchy and serves as the primary navigation device (Figure 4(a)).
Second, there is a refinement view for the analysis of user-selected
areas of interest in the clustering hierarchy (Figure 4(b)). For this,
we have developed a novel layout algorithm that provides perceptual
support for investigating and comparing the image-based outcomes
in the context of parameter space. Finally, we provide a reference
image view to directly compare image-based outcomes with an input
image (Figure 4(c)). Views are coordinated and are augmented with
interactive features such as dynamic querying, user-defined parameter
ordering, and user-specified tagging (Figure 4(d)–(j)).

Hierarchical clustering. Although we are considering parameters with
continuous ranges, due to sampling, their domains have been dis-
cretized. An obvious approach is to represent the different combi-
nations of parameter values as a table. As shown in Table 1, columns
represent the parameters pk while rows, or tuples, contain all the pa-
rameter values generated by sampling.



Fig. 4. Visualization of parameter space for image analysis. (a) The overview shows sampled parameter values as a clustering hierarchy. (b) The
refinement view shows scaled previews of the image-based outcomes for selected subtrees in the clustering hierarchy. (c) The reference image
view superimposes the output that currently has the focus in the refinement view on a reference image. (d) Selected subtrees are highlighted
in blue in the overview and (e) shown in distinct regions in the refinement view. (f) Users can specify a level in the clustering tree at which to
position subtrees side-by-side in the refinement view. Further interactive features include: (g) brushing; tagging of (h) high-quality and (i) low-
quality outcomes; and (j) filtering. The data set shown here was generated by sampling the parameter space of the IdentifyPrimaryObjects module
in CellProfiler for human HT29 cells (5 parameters, 4 samples each, yielding 1,024 outcomes). At this point the user has identified and tagged a
number of high-quality outcomes where all cells have been detected (coded in green in the overview and detail view). The user has also tagged
low-quality outcomes where all cells have not been detected (magenta). The distribution of green and magenta in the overview indicates which
parts of parameter space to consider and which parts to disregard.

The numerical values that have been sampled have a natural order-
ing. To respect this in a tabular representation, the tuples ti can be
ordered first for p1, then for p2, and so forth (like column sorting in
a spreadsheet). The first column will contain |p1| blocks of identical

values (with |p1| the cardinality of p1). The ith block will contain all

tuples where p1 assumes the ith value in its domain. For every block
in the first column there will be |p2| blocks in column 2, and so on.
Sorting tuples in this fashion produces a hierarchical arrangement of
parameter values, which we took as the basis for defining a hierarchi-
cal clustering on tuples. As shown in Figure 5, level k in the hierarchy
corresponds to parameter pk−1 (the root, at level 1, contains all tuples).

We argue that hierarchical clustering offers a number of advantages
over a tabular representation. A tree constructed as above respects the
ordering of parameter domains. It also provides an accurate overview
of all combinations of sampled values that is convenient to navigate.
Instead of sorting columns in a table, the ordering of leaves can be
changed intuitively by reordering parameters. As shown in Section 5,
this enables users to identify robust combinations of parameters
by looking for contiguous regions in the clustering hierarchy that
correlate with high-quality outcomes. Finally, it has been shown
that representing combinatorial data in a hierarchical fashion enables
users to answer queries rapidly and intuitively across multiple data
dimensions if provided with sufficient interactive capabilities [18].

Overview. This presents a structured overview of the sampled param-
eter space by showing the clustering tree as a directed node-link dia-
gram (see Figure 4(a)). The overview serves as the primary navigation
aid with which users can select areas of interest in parameter space to

view in more detail. As users move the mouse cursor over nodes the
subtree below the node in focus is highlighted in red. When a subtree
is selected, the highlighting changes to blue and it is shown in more
detail in the refinement view (see next section). Following standard
practice, users can add multiple areas of interest by selecting further
subtrees and remove selections by clicking on them a second time.

We based our choice of tree visualization on evidence suggesting
that node-link representations are often better suited for showing and
navigating hierarchical relationships than other representations such
as icicle plots and treemaps [1, 12]. We considered different node-link
layouts, including radial, but settled on a directed node-link diagram
because it preserves the ordering of data values more explicitly by en-
coding them in only one direction (top-to-bottom in our case). Another
consideration was the aspect ratio and compactness of the representa-
tion to maximize real-estate for the refinement view (see next section).
To be space efficient, a radial layout requires an aspect ratio of 1:1. In
practice, as here, visualization designers often wish to place compact
overviews in an elongated area, which a directed layout utilizes better.

We orient the node-link diagram from left to right to label nodes
horizontally with their associated data values. Nodes are ordered from
top to bottom as their associated values increase. Parameter values are
encoded by a perceptually ordinal and colorblind safe color scale [3].
Luminance is high and saturation low to not clash with other color
cues (see later sections). The directed layout also enables us to label
each level of the tree with the parameter to which it corresponds.

Refinement view. The path from the root to each leaf in the cluster-
ing hierarchy represents a unique combination of sampled parameter
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Table 1. Table-based representation of sampled parameters. Columns
correspond to user-selected parameters. Each row represents a unique
combination of sampled parameter values.

values. Each leaf node has a unique image-based outcome associated
with it. To enable users to view and compare these results, we provide
a refinement view (see Figure 4(b)). This view uses a novel layout
algorithm to provide users with perceptual support for the analysis of
the image-based outcomes produced by sets of parameter values. The
algorithm has the following properties:

• It preserves the top-to-bottom ordering found in the overview,
so there is a direct mapping between contiguous regions of pa-
rameter space in the overview and their associated outputs in the
detail view.

• It allows users to specify at which parameter level to position out-
comes side-by-side. By being able to change this cutoff thresh-
old, users can dynamically change the layout to suit their review
and comparison requirements.

• It shows the outputs of the selected subtrees in adjacent, but visu-
ally distinct areas, in the order they appear in the overview. This
helps users to map each selected subtree in the overview with its
representation in the detail view.

These properties of our algorithm assist users to understand how out-
comes vary with respect to different parameter values.

Our layout algorithm is outlined below. For each subtree T that has
to be displayed, LAYOUTALLTREES() assigns an adjacent rectangular
area with width proportional to the number of subtrees that T contains
at the user-specified cutoff level t. LAYOUTTREE() then lays out each
subtree T on the area it has been assigned by recursively traversing the
nodes in T and nesting them in a manner inspired by treemaps [11].
Nodes at depth t are positioned side-by-side by dividing the width of
the area assigned to a parent node between siblings. Other nodes are
positioned top-to-bottom by division of the parent’s assigned height.

procedure LAYOUTALLTREES(LT,A, t)
⊲ LT the list of subtrees to layout
⊲ A the rectangular area available for layout
⊲ t the cutoff threshold at which to wrap subtrees
for i← 1,LT .size() do

T ← LT .get(i)
c← c+T.getNumberSubtreesAtLevel(t)

end for
anchor← 0
for i← 1,LT .size() do

T ← LT .get(i)

c
′
← T.getNumberSubtreesAtLevel(t)

A
′
.x← anchor

A
′
.y← A.getY ()

A
′
.width← (c

′
/c)×A.getWidth()

A
′
.height ← A.getHeight()

anchor← anchor+A
′
.getWidth()

return LAYOUTTREE(T,A′, t)
end for

end procedure
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Fig. 5. Hierarchical clustering of sampled parameters. Each level cor-
responds to a user-selected parameter. The path from the root to each
leaf represents a unique combination of sampled parameter values.

procedure LAYOUTTREE(T,A, t)
⊲ T the subtree to layout
⊲ A the rectangular area available for layout
⊲ t the cutoff threshold at which to wrap subtrees
T.x← A.getX()
T.y← A.getY ()
T.width← A.getWidth()
T.height← A.getHeight()
c← T.getChildCount()
for i← 1,c do

C← T.getChild(i)
if C.level() = t then

w← A.getWidth()/c

A
′
.x← A.getX()+(i−1)×w

A
′
.y← A.getY ()

A
′
.width← w

A
′
.height← A.getHeight()

else
h← A.getHeight()/c

A
′
.x← A.getX()

A
′
.y← A.getY ()+(i−1)×h

A
′
.width← A.getWidth()

A
′
.height← h

end if
return LAYOUTTREE(C,A′, t)

end for
end procedure

As an example of the results that our algorithm produces, consider the
following. In Figure 4(a), 11 subtrees of parameter space have been
selected and these are mapped to 11 distinct regions in the refinement
view in Figure 4(b). One of the subtrees contains 64 combinations
of parameter values (Figure 4(d)). Of the corresponding outcomes 48
are visible and 16 have been suppressed (Figure 4(e)). Image-based
outcomes are embedded directly in the layout. As noted, the cutoff
threshold t is user-specified and enables direct comparison of selected
subtrees with respect to values assumed for the parameter with index
equal to t. The value of t is shown in the overview by a vertical blue
line that intersects the hierarchy at the specified level (Figure 4(f)).

The above pseudocode provides the gist of our layout algorithm. It
is easily extended to add framed borders at each level of the hierarchy.
It is also straightforward to extend the algorithm to assign leaf nodes
equal height and to align all subtrees to the top of the display as
we have done in our implementation. As with the overview, users
can interact with the refinement view directly using their mouse cursor.

Reference image. Requirement 3 calls for a reference image. This
is typically the image that was originally fed into and processed by
CellProfiler to detect objects. For example, if users start with an im-
age containing individual cells, a collection of images containing cell
outlines will be generated. Users are interested in comparing such out-
lines with the original image to judge the quality of results and to relate
this to parameter values.



Our prototype enables users to load a reference image and shows
this in the reference image view (see Figure 4(c)). When users move
the mouse cursor over scaled images in the refinement view, the
thumbnail that has the focus is overlaid on the reference image in
this view. Users can also tear out the reference view to display it in a
popup window that can be moved closer to a specific set of results in
the refinement view.

Interaction. Our prototype consists of multiple coordinated views and
it provides a number of ways to interact with the visualizations us-
ing the widget panel or direct manipulation. This includes brushing,
tagging, parameter reordering, and filtering (see Figure 4(d)–(j)).

Brushing is used to highlight the current focus of a particular view
in all other views. When the focus is on a single leaf, the image asso-
ciated with that result is shown at a higher resolution in the reference
image view. Color schemes are consistently applied across views: data
values are encoded with a sequential color map, selections are high-
lighted in blue (see Figure 4(d)) and the current focus in red (Fig-
ure 4(g)). We show users the values of all parameters that correspond
to their current focus in a text area below the refinement view. We
found that traditional tooltips obscured too much of the display when
a number of parameters and the values they assume have to be listed.

Our overview and refinement mechanism enables users to select
subsets of the data and to view these in more detail while retaining
context. To address Requirement 3, our prototype supports two high-
level modes of selection, which are seamlessly integrated and do not
require an explicit mode switch. The first facilitates drill-down and
has already been discussed: users can select areas of interest in the
overview, consider these in greater detail in the refinement view, and
view individual results in even greater detail using the reference im-
age view. To make selection less arduous, we also provide a facility
to step through selections at a user-defined level in the clustering hier-
archy. Using buttons or keyboard shortcuts, this tool selects the next
unselected subtree and updates the refinement view accordingly. To
aid selection, the overview distinguishes between nodes that have been
considered (solid outlines) and those that have not (dashed outlines).

The second mode of selection was designed so that users can keep
track of and relate high- and low-quality outcomes to parameter val-
ues. This is achieved by tagging results as positive or negative using
mouse clicks in the refinement view (see Figure 4(h) and (i)). Re-
sults tagged as positive are color-coded in a green and those tagged as
negative in magenta in both the overview and refinement view. These
colors were chosen to be colorblind safe [3]. Users can toggle between
tagging positive or negative using shortcut keys or the widget panel.

To change the levels of the clustering hierarchy, users can interac-
tively reorder the parameters. The visualizations are automatically up-
dated and all previous selections and tags remain intact. As mentioned
before, users can specify the cutoff level at which selected subtrees are
displayed side-by-side in the refinement view.

Finally, we offer users interactive filtering, also called dynamic
querying [19], in two distinct modes. For parameter-based filtering
users define an active range using the range sliders in the widget panel.
Those parts of the clustering hierarchy that fall outside this range are
filtered out in both the overview and refinement view. Users can spec-
ify whether to gray out filtered data - as shown in Figure 4(j) - or to
hide them completely. For filtering based on user-assigned tags, users
can filter out any combination of positive, negative or untagged data
using checkboxes in the widget panel. Again, these can be grayed out
or hidden from view.

5 CASE STUDIES

A typical CellProfiler pipeline will contain modules do identify objects
of interest. The nuclei are usually the first (primary) objects identified
in a cellular image, as they form the basis for detection of other cellu-
lar compartments. Therefore, optimizing the identification of nuclei is
an essential part of a typical CellProfiler workflow. As noted in Sec-
tion 4.1, a crucial module is IdentifyPrimaryObjects, normally used
for nucleus detection. This module contains several settings which
must be simultaneously optimized for effective nucleus identification.

We have chosen this module as the focus of our case studies to test the
advantages of our new parameter optimization approach.

5.1 Novice user

Our first case study involves the detection of human HT29 colon
cancer cells in images [22], which have an appearance similar to most
human cell types used in biological experiments. The cells were
stained with Hoechst 33342, a DNA stain which labels the nuclei. The
time required to optimize parameters for a IdentifyPrimaryObjects
module depends on users’ experience and the complexity of objects in
the image. Expert CellProfiler users, who have trained many novices,
have found that for images comparable to HT29, a novice user can
take upwards of an hour to converge on suitable parameter settings.
An experienced user can achieve the task in approximately 10 minutes.

Parameter sampling. Our sampling plug-in automatically detected
five parameters with continuous domains for the object detection
module: threshold correction factor (p1), lower bound on threshold
(p2), upper bound on threshold (p3), minimum diameter of objects
(p4), and maximum diameter of objects (p5). Using the default values
assigned to these parameters by CellProfiler as starting point, a range
that deviates 25% above and below these values was specified, with
four samples computed for each parameter. Our plug-in automatically
generated 1,024 unique combinations of values, fed these into Cell-
Profiler, and saved the detected nucleus outlines to disk. Setting up
the sampling specifications took about a minute. Running the image
analysis algorithms and saving the results to disk took approximately
29 minutes on a standard workstation with an Intel Core Due 2.8 GHz
CPU with 8 GB RAM running Windows 7.

Visual analysis. We now describe how our technique enabled a novice
CellProfiler user (first author) to systematically analyze those regions
of parameter space that yielded low- and high-quality results. The
user started with a clustering hierarchy based on the parameter order
described above (p1–p5). The cutoff threshold for the refinement view
was set to four to easily compare the nucleus outlines for adjacent
outcomes in parameter space.

The user began by using the step-through selection feature for the
hierarchy shown in the overview: the next previously unseen subtree
at level three (see Figure 6(a)) was accessed with a single mouse click
to show a 4×4 matrix of outcomes (Figure 6(b)). By comparing these
images and by moving the mouse over individual images to super-
impose them on the reference image, the user easily identified poor
results and tagged these (Figure 6(c)). For the negatively tagged out-
comes, note the missing outlines for the two nuclei just above the nu-
cleus in the lower right (Figure 6(d)). The nested hierarchical rep-
resentation in the refinement view enabled the user to save time by
tagging entire subtrees, as opposed to tagging individual outcomes.

After identifying a few poor result sets the user suspected that these
poor outcomes occurred when parameter p4 = 13, its highest sampled
value. The user was able to quickly confirm this by moving p4 to
the first level in the clustering hierarchy and by scanning all outcomes
clustered under the last value for p4 in the refinement view, none of
which identified the two nuclei mentioned in the previous paragraph.
All outcomes for this value of p4 were then tagged as negative, as
shown in the bottom subtree of Figure 6(e). To reduce the complexity
of subsequent analysis, the user next used the filtering facility of our
prototype to hide all these negatively tagged outcomes.

Using an approach similar to the one described above, the user again
starting scanning the parameter space by stepping through subtrees at
level three of the clustering hierarchy. The user quickly saw that when
p2 = {0.009,0.09} the nucleus at the bottom left of the image was
correctly detected (see Figure 7(a)). The user tagged as positive those
outcomes where this nucleus had been identified (compare Figure 7(b)
with Figure 7(c)). Next, the user reordered the parameters by mov-
ing p2 to the first position. This enabled the user to quickly select
all outcomes where p2 = {0.009,0.09} in the overview and to visu-
ally inspect them in the refinement view. The user was able to quickly
see that high-quality outcomes were independent of the three unfil-



Fig. 6. Visualization of parameter space for human HT29 cells. (a) Nodes and leaves of the currently selected subtree are highlighted in blue,
with the tagged nodes marked in magenta. (b) The overview panel showing a 4× 4 grid of the selected outcomes (outlines of detected nuclei).
(c) Outcomes in which two nuclei are missed are tagged as negative. (d) Reference image with outcome currently in focus overlaid. (e) Overview
after parameters were reordered, a contiguous region has been tagged as low-quality.

tered values that were sampled for p4. At this point, the user could
have accepted the parameter values and proceeded with automatically
analyzing a large collection of similar images. Alternatively, it would
have been possible to reapply the sampler to sample more finely within
this region and to visually inspect the outcomes again.

Using the above approach, the novice user was able to identify in
approximately 10 minutes a contiguous part of the parameter space
that yields high-quality results. This is comparable to the time re-
quired by an expert CellProfiler user to identify optimal parameter
values using the conventional parameter optimization approach and,
in our experience, far quicker than a novice taking this approach.

5.2 Expert user

We now describe a case study involving an expert user (second author).
The user’s aim was to detect cell nuclei in human U2OS (osteoarcoma,
or cancerous bone tumor) cells [21]. Two images that had respectively
been treated with two drugs - Wortmannin and LY294002 - were con-
sidered. They had been stained with DRAQ, a DNA stain, to label
nuclei. Although very experienced with CellProfiler, the user had no
prior hands-on experience with the sampling plug-in or the visualiza-
tion prototype. The user took notes of the experience.

To compare the quality of the parameter values arrived at using
our new parameter optimization approach with those identified with
the conventional approach, the results were quantitatively assessed us-
ing the Z′ factor, which quantifies assay suitability for screening pur-
poses [14]. For this measure, Z′ = 1.0 indicates optimal results, while
Z′ > 0.5 are of acceptable quality. As a control, the expert user also
constructed and tuned two CellProfiler pipelines from scratch for com-
parable Wortmannin and LY294002 treated images. The optimal set-
tings identified using our approach scored Z′ = 0.956 for Wortman-
nin and Z′ = 0.902 for LY294002. Using the conventional approach,
Wortmannin scored Z′= 0.900 and LY294002 scored Z′= 0.882. This
indicates a slight, but meaningful, increase in the quality of results us-
ing our approach. What is more, the quality of the results achieved
with our approach scored higher than the prior best score obtained us-
ing the conventional approach (Z′= 0.940 for Wortmannin, Z′= 0.900

for LY294002), which required many days of meticulous parameter
tuning by an expert [5, 14].

We attribute the increase in quality to a more thorough analysis
of parameter space. Using our approach, the expert was able to
investigate and analyze 3,215 unique parameter combinations of each
image. Identification of optimal parameter settings to accurately
detect cell nuclei for the Wortmannin image took approximately
four hours (performed first). The same task took approximately
two hours for the LY294002 image, the time decreasing as the user
became familiar with our tool. Far fewer parameter combinations
were analyzed with the conventional approach (less than 20 for both
images), so even though it took less time (approximately 30 minutes
for each image) the time per combination was greater and the quality
of results worse (see above). Thorough coverage of the parameter
space would take days with the conventional approach, and would
therefore be wholly impractical. The user’s notes also revealed that
our approach made it possible to directly compare and analyze the
relationships between multiple parameters in a way that is not possible
using the conventional approach.

The above case studies suggest that our approach could lead to a
paradigm shift in parameter optimization, resulting in higher quality
outcomes. We find this very encouraging. To guide future designs, we
plan to conduct further controlled experiments, involving novices and
experts, where we will measure the time required to create satisfac-
tory pipelines, the coverage of the parameter space explored, and the
accuracy of results.

6 CONCLUSION

We introduced a novel approach for optimizing input parameters of
image analysis algorithms. To do so, we analyzed the conventional
parameter optimization process and identified three key user require-
ments to reduce the time cost and memory load traditionally associ-
ated with parameter optimization. We addressed these requirements
by implementing the strategy illustrated in Figure 3. First, we de-
veloped a plug-in for CellProfiler to sample input parameter space



Fig. 7. (a) Reference image with the nucleus that is either detected or omitted. (b) Outcomes in which the nucleus is correctly detected and tagged
as high-quality (shown in green). (c) Outcomes in which the nucleus is missed.

and to generate associated image-based outcomes. Second, we de-
veloped a prototype visualization tool to allow users to analyze the
relationships between parameter values and outcomes. To show how
our approach supports more thorough parameter exploration and leads
to higher quality results - by reducing time cost and memory load -
two case studies were presented.

Our sampling plug-in is publicly available in the developer’s ver-
sion of CellProfiler to encourage a wider adoption of our approach [8].
Our visualization tool, called Paramorama, is available for free down-
load at [17].

The work presented here addresses the primary issues highlighted
by our requirements analysis. Our approach does have limitations,
though. First, we offer users per-module-sampling and not an exhaus-
tive search of parameter space. However, our interviews with experts
and observations during case studies have indicated that users are typ-
ically not interested in covering the entire parameter space (which is
infinitely large). Based on their domain knowledge, they often have an
idea of suitable parameter ranges and, in practice, are only interested
in generating a handful of samples per parameter. Our approach en-
ables them to consider the many possible interactions between param-
eters in such regions of parameter space. This was prohibitively time-
consuming with the conventional approach to parameter optimization.

The interactions of parameters across modules is a related aspect
that we do not currently address. Although this has not been flagged
as a concern by users, we hypothesize that this is a result of their habit
of approaching CellProfiler on a per-module basis. We argue that our
overall strategy should apply to sampling multiple modules, but more
work will be required for both sampling and visual analysis.

One way to address per-module-sampling is to incorporate metrics
generated by image analysis algorithms. A simple example is the num-
ber of objects detected. Users are likely to have a sense of values to
expect and this could be used to rapidly filter parameter space. Metrics
can also be used for the (semi-) automated arrangement of levels in the
clustering hierarchy. Using such an approach, it might be possible to
strike a balance between presenting outcomes based on quantitative
features while capitalizing on the semantics that users associate with
input parameters. Automation can be explored further, as noted in
Section 1. If users could provide ground truth - by outlining cells, for

example - the outcomes could be filtered by classifiers built by ma-
chine learning algorithms, but without requiring inordinate amounts
of training time.

A second limitation relates to thumbnail-based exploration. Our
work to date focuses on input images analyzed in biomedical labora-
tories, which are typically a few hundred pixels squared. For this, the
combination of a thumbnail-based refinement view plus native reso-
lution detail-on-demand, as presented here, works well. Catering for
very high resolution images, such as those in histopathology [23], and
larger parameter spaces will require more work. One potential solu-
tion is the deployment of our strategy on wall-sized gigapixel displays,
which we are eager to test.

Our approach can be refined in a few more ways. We plan to extend
our prototype so users can analyze the effect of the same parameters
on multiple input images. The tagging mechanism can be made more
general by enabling users to define custom categories. Allowing users
to save final parameter choices in a format that can be read by CellPro-
filer will streamline the implementation of our strategy. Finally, we are
excited about the possibility of applying our approach to parameter-
ized systems in other application domains. We have been approached
by physicists working on a functional MRI (magnetic resonance imag-
ing) simulation engine. The underlying challenge is almost identical
to the problem addressed in this article: the analysis of the influence
of input parameter settings on image-based output is very inefficient.
Although we expect our approach to be applicable, we are keen to
investigate which parts can be transferred effortlessly and what new
design challenges will be raised.
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thank Lee Kamentsky, Carolina Wählby, and Adam Fraser for their
valuable input. Hannes Pretorius and Roy Ruddle were funded
through WELMEC, a Center of Excellence in Medical Engineering
funded by the Wellcome Trust and EPSRC, under grant number WT
088908/Z/09/Z. Mark Bray and Anne Carpenter were funded by the
National Institutes of Health under grant number R01 GM089652.



REFERENCES

[1] T. Barlow and P. Neville. A comparison of 2-D visualizations of hierar-

chies. In Proceedings of the IEEE Symposium on Information Visualiza-

tion, pages 131–138, 2001.

[2] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, and H. T. Vo. VisTrails:

enabling interactive multiple-view visualizations. In Proceedings of the

IEEE Conference on Visualization, pages 135–142, 2005.

[3] C. Brewer and M. Harrower, The Pennsylvania State University. Col-

orBrewer website. http://www.colorbrewer2.org/. Last visited 20 June

2011.

[4] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and

H. T. Vo. Managing the evolution of dataflows with VisTrails. In Proceed-

ings of the International Conference on Data Engineering Workshops,

pages 71–75, 2006.

[5] A. E. Carpenter, T. R. Jones, M. R. Lampbrecht, C. Clarke, I. H. Kang,

O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Gol-

land, and D. M. Sabatini. CellProfiler: image analysis software for identi-

fying and quantifying cell phenotypes. Genome Biology, 7(R100), 2006.

[6] R. Ferreira, B. Moon, J. Humphries, and A. Sussman. The virtual micro-

scope. In Proceedings of the American Medical Informatics Association

Annual Fall Symposium, pages 449–453, 1997.

[7] D. Foulser. IRIS Explorer: a framework for investigation. SIGGRAPH

Computer Graphics, 29:13–16, 1995.

[8] Imaging Platform, The Broad Institute of MIT and Harvard. CellProfiler,

developer’s version. http://www.cellprofiler.org/developers.shtml. Last

visited 20 June 2011.

[9] Imaging Platform, The Broad Institute of MIT and Harvard. CellPro-

filer website, citations. http://www.cellprofiler.org/citations.shtml. Last

visited 20 June 2011.

[10] T. J. Jankun-Kelly and K.-L. Ma. A spreadsheet interface for visualization

exploration. In Proceedings of the IEEE Conference on Visualization,

pages 69–76, 2000.

[11] B. Johnson and B. Shneiderman. Treemaps: a space-filling approach to

the visualization of hierarchical information. In Proceedings of the IEEE

Conference on Visualization, pages 284–291, 1991.

[12] A. Kobsa. User experiments with tree visualization systems. In Proceed-

ings of the IEEE Symposium on Information Visualization, pages 9–16,

2004.

[13] M. R. Lamprecht, D. M. Sabatini, and A. E. Carpenter. CellProfiler:

free, versatile software for automated biological image analysis. BioTech-

niques, 42(1):71–75, 2007.

[14] D. J. Logan and A. E. Carpenter. Screening cellular feature measurements

for image-based assay development. Journal of Biomolecular Screening,

15(7):840–846, 2010.

[15] K.-L. Ma. Image graphs – a novel approach to visual data exploration.

In Proceedings of the IEEE Conference on Visualization, pages 81–88,

1999.

[16] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-

gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and

S. Shieber. Design galleries: a general approach to setting parameters for

computer graphics and animation. In Proceedings of the Conference on

Computer Graphics and Interactive Techniques, pages 389–400, 1997.

[17] A. J. Pretorius. Paramorama website. http://www.comp.leeds.ac.uk/

scsajp/applications/paramorama/. Last visited 20 June 2011.

[18] A. J. Pretorius and J. J. van Wijk. Visual inspection of multivariate graphs.

Computer Graphics Forum, 27(3):967–974, 2008.

[19] B. Shneiderman. Dynamic queries for visual information seeking. IEEE

Software, 11(6):70–77, 1994.

[20] A. Squillacote. The ParaView Guide. Kitware, Inc, Clifton Park, NY,

USA, third edition, 2008.

[21] The Broad Institute of MIT and Harvard. Broad Bioimage Benchmark

Collection. http://www.broadinstitute.org/bbbc/sbs bioimage cnt.html.

Last visited 20 June 2011.

[22] The Broad Institute of MIT and Harvard. Broad Bioim-

age Benchmark Collection, Human HT29 colon cancer 1.

http://www.broadinstitute.org/bbbc/human ht29 colon cancer 1.html.

Last visited 20 June 2011.

[23] D. Treanor, N. Jordan-Owers, J. Hodrien, P. Quirke, and R. A. Rud-

dle. Virtual reality powerwall versus conventional microscope for view-

ing pathology slides: an experimental comparison. Histopathology,

55(3):294–300, 2009.

[24] L. Tweedie, B. Spence, H. Dawkes, and H. Su. The influence explorer. In

Proceedings of the Conference on Human Factors in Computing Systems,

pages 129–130, 1995.

[25] L. Tweedie and R. Spence. The prosection matrix: a tool to support

the interactive exploration of statistical models and data. Computational

Statistics, 13(1):65–76, 1998.

[26] J. J. van Wijk and C. W. A. M. van Overveld. Preset based interaction

with high dimensional parameter spaces. Data Visualization: The State

of the Art, pages 391–406, 2003.

[27] T. Walter, D. W. Shattuck, R. Baldock, M. E. Bastin, A. E. Carpenter,

S. Duce, J. Ellenberg, A. Fraser, N. Hamilton, S. Pieper, M. A. Ragan,

J. E. Schneider, P. Tomancak, and J.-K. Hériché. Visualization of image
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