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Determination of multi-component flow process parameters
based on electrical capaci tance tomography data using
artificial neural networks

J Mohamad-Saleh and B S Hoyle

Institute of Integrated Information Systems,
School of Electronic anBlectrical Engineering,
University of Leeds, Leeds LS2 9JT, UK.
E-mail: b.s.hoyle@leeds.ac.uk

Abstract. Artificial neural networks have beenagsto investigate their capabilities at
estimating key parameters for the chamasédion of flow processes, based on
electrical capacitance-satstomographic (ECT) data. The estimations of the
parameters are done directly, withoetourse to tomographic images. The
parameters of interest include comportegight and interface orientation of two-
component flows, and component fracti@igwo-component and three-component
flows. Separate multi-layer perceptron networks were trained with patterns consisting
of pairs of simulated ECT data and tw@responding component heights, interface
orientations and componenaftions. The networks wetleen tested with patterns
consisting of unlearned simulated ECT dat&arious flows and, with real ECT data
of gas-water flows. The neural systegpnevided estimations having mean absolute
errors of less than 1% for oil and t®aheights and fractions; and less thahfb®
interface orientations. When tested with nglaiht ECT data, the mean absolute errors
were less than 4% for water height, less theinfdbgas-water interface orientation
and less than 3% for water fraction, resfively. The results demonstrate the
feasibility of the application of artificialeural networks for flow process parameter
estimations based upon tomography data.

Keywords: electrical capacitece tomography, neural networks, process
interpretation, multi-component flows.

1. Introduction

The application of electrical capacitance tomography (ECT) systems for
guantitative measurement purposes in a rafigeocesses is wedistablished due to
its non-invasive and non-hadaus properties [1-4]. Systems have mainly centred
upon the approximate solution of the inverse problem of tomographic image
reconstruction. In many laboratory-targetlmonstrations, thesulting images of
the process in operation are the end-padhdr real plant and process use, however,
interpretations are required to relate the internal process information to typical process
reference frames.

The Linear Back-Projection (LBP) algthhm [5], the most commonly used
image reconstruction algorithm for ECT cemputationally simple, but suffers from
the soft-field effect, smearing sharp transitionstlween materials of differing
dielectric constant. The effect becomes sevéhen large differences in the material
permittivity constants are involved. As a&uét, the reconstructed images produced
are distorted, thus flow process partenestimations based on the images are
typically inaccurate [6].



More sophisticated reconstruction methbdse been proposed to reduce or
eliminate the smearing effects in reconsieddmages. Examples are the iterative
LBP algorithm [7], the algebraic recdansction algorithm [8] and the model-based
reconstruction algorithm [20]. Nevertheless, theadgorithms are not normally
preferred, usually because the reconstructi@edps too slow relative to the real-time
needs of the process, or because thesgaiimage quality & marginal. Although
the problem of reconstruction speed is diishing as processing speeds increase, the
use of these algorithms will not beeferable until a satisfactory real-time
reconstruction speed is achieved.

Research in capacitance-sensed toagolgic image reconstruction has also
focussed upon the neural computation apgroa number of pilot investigations
have developed artificiaeural networks (ANNs) [11-12] for image reconstruction
[13-19]. The approach has been shaaproduce improved reconstructed images,
and thus more accurate parameter estimations than the conventional methods.

In many cases, estimation of key processumeters is of more interest than
the estimation of images. For example, awflprocesses, charadsation is likely to
be based upon component fraction and interface state. Hence some research effort has
been channelled toward direct methodprmaicess interpretation that do not include
image reconstruction. In thisle such solutions are expected to be more efficient and
cost effective than conventional techniques.

A number of direct techniques, bdsen electrical capacitance tomography,
have incorporated the us€ ANNSs for flow process parameter estimation. Duggan
and York investigated a RAM-based neuratwork model to directly estimate the
component fraction of oil in gas-oil floW$3-14]. Williams and York also used the
RAM-based neural network, implementedspecialised hardware, to also determine
the component fraction of oil in gas-oil flows [18]. Initial investigations by Mohamad
Saleh et al. have revealed the capability of multi-layer feed-forward neural networks
in direct component fraction estimationsodfin gas-oil flows, water in gas-water
flows and, and oil and water in gas-oil-wafilews [20]. This paper summarises key
results to offer a comprehensive view @axtend these in detail to provide fuller
dynamic model estimation such as interfaeght and orientation. The composite
data is intended to offer comprehensive support for multi-component flow studies.

The robustness demonstrated by ANNSs, in direct flow component fraction
estimation, has motivated the use of ailsinapproach for the estimation of other
flow parameters. In this paper we disctissuse of ANNSs for dect estimations of
oil height in gas-oil flowswater height in gas-watéows, gas-oil interface
orientation, and gas-water interface origotat This offers new possibilities for
component fraction estimation in dynamicatiyolving flows. Novel techniques are
presented for component fraction estirmatof two-component as well as three-
component flows using the neural netwoppeach based on ECT data. The results
obtained reveal the robustss of the ANN system falirect component fraction
estimation of two-component (typically daphase) and three-component flows (for
example comprising oil, water and gasysbdimes called three-phase flows). Figure
1 illustrates the flow parameters of interest. As showmdgit is the depth of the
liquid component normal to its nominal intece. For high flowates the interface
can be expected to be very mobile.

Figure 1. Flow process parameters involving component helghirfterface
orientation @), and component fractiof) (



2. Development of th e estimation system

Three stages are involved in the depenent of the proposed system; (i) ECT
dataset collection and pre-processing ANN training and (i) ANN testing, or
verification.

Simulated ECT data was used for a number of reasons. Actual plant data for
complex flow regimes is extremely difficult geenerate in the relble and repeatable
manner required. Also a specific plant and ECT system will inevitably include some
asymmetry and specific noise. This nmagult in the over-training of the ANN to
characteristics of the specific plant. dontrast the aim in this work was a generic
training process, independentaparticular plant. The use of simulation data also
provides much more variety than coblave been obtained with the practical
constraints of laboratory-based exerciSanulated ECT data were obtained using a
simulator, developed at the Universitylafeds, based on a two-dimensional finite-
element method [21].

As shown in figure 2, the simulator takes the relative permittivity of each
component, together with the flow geomatryolved in the flow pocess, to calculate
the corresponding raw ECT measurementsth@tsame time, the actual flow process
parameters (component heights, interfagentation and component fractions) of
materials for the particular flow process are calculated.

Raw ECT measurements are passed to a pre-processor, which transforms the
data into orthogonal components, using the Principal Component Analysis (PCA)
method [22]. For the purpose of timvestigation, raw ECT measurements
corresponding to various flow regimesgluding stratified, annak and bubble flow
were collected. In addition to simulatedalaeal plant ECT dataere also obtained
through colleagues in the Miral Centre for Industrial Process Tomography (VCIPT).

Figure 2. Schematic diagram of simulati and pre-processing of ECT data.

As illustrated in figure 3, training patterns, consisting of pairs of uncorrelated
ECT data obtained from the orthogonalad®t and the corresponding flow parameter
value, are used to train an MLP. Thaining procedure was based on a variant of the
Back Propagation algorithm, known as Begyesian Regularisan algorithm [23-
24]. During each training cycle, the uncdated ECT measurements, as the inputs to
the MLP, are used together with the MERVeight values to obtain an estimated
output parameter value. The differencénNmen the MLP-estimated and the actual
flow parameter values is back-propaghiteto the MLP to update the network’s
weights for use in the nettaining cycle. The processrepeated until the MLP has
reached a satisfamty performance.

Figure 3. Schematic diagram of MLP training procedure.

Eight separate MLPs were trained foe different flow process parameter
estimation tasks tabulated below. Fouthef MLPs noted below relate to component
fraction estimation, and four to interface height and orientation.

MLP 1 Oil height estimation of gas-oil flows

MLP_ 2 Gas-oil interface orientation estimation
MLP_3 Water height estimation of gas-water flows
MLP 4 Gas-water interface orientation estimation

MLP_5 QOil fraction estimation of gas-oil flows




MLP_6 Water fraction estimation of gas-water flows
MLP_ 7 Qil fractionestimaton of gas-oil-water flows
MLP_8 Water fraction estimatioof gas-oil-water flows

Table 1. MLP flow parameter estimation tasks

Once the training processes were completed, the MLPs were tested with a set
of (unlearnt) simulated ECT measuremenitbe ECT measurements were first pre-
processed, using the PCA technique, beb@ieg passed to the developed MLPs,
designed to estimate the flow process pat@r values. The performances of the
MLPs were measured in terms of their mahsolute test errors, based on the set of
test patterns used.

Those MLPs that were trained wilssociation to gas-water flows (MLP_3,
MLP_4 and MLP_6) were also tested wsttts of real plant ECT measurements of
gas-water flows. These include measurembased on static and dynamic flows.

The static tests were carried out asnaall capped pipe section equipped with
Perspex end plates with calibration scal€kis could be filled to given level to
provide a physical simulation of a stratifisow. Physical simulaons of annular and
bubbles flows were provided by using tubest tould be inserted at a given position
in the cross-section.

The sensor electrodes in this staitysical simulation did not correspond
exactly to the simulation parameters usedifaining. Since these differences can be
expected to appear only as subtlendes in the electric field, it is complex to
quantify them, except through the trial. Adkground aim of this investigation was to
test the extent to which the ‘genersifnulation-trained network is useful in
interpreting data from the same clas€@fT sensor, even where the detailed
parameters of electrode arrangements differ. Here the term “same class” implies the
same number of electrodes, and the stopelogy. For example, 12-electrode and
circular topology ECT sensors meeused in all tests reviewed in this paper. Thus the
static trial sensor provides opportunity to explore igcapability, albeit in a
qualitative manner in this work.

The dynamic tests were carried out dioa loop and restricted to gas/water
flow. Once again the avab&e sensor did not have exactly the same physical
arrangement as either, the simulation paters, or, the static physical simulation
sensor, providing a further opportunity to tdst generic interpretation capability.

In this case, however, independergtinmentation was not available to
measure the actual flow parameterdthdugh a video camera was installed on the
experimental rig, it was positioned on the side of the pipe. Hence, images
reconstructed by the MLPs could only be camgal to the actual video images at the
corresponding time reference for a generaification of the MLPs’ performance.
These tests are intended to illustrate the system in actual dynamic use rather than
building upon the quantitative @ects of the investigation.

3. Results and discussion
3.1 Simulated ECT data

Figure 4 shows the oil heights of gakflows as estimated by MLP_1 with
reference to the actual oil heights.cdin be seen from the graph that the point
estimations of oil heighte on, or close to, the= y line. The linear regression
coefficient of the plot in figure 4 is lemonstrating the capability of MLP_1 to



directly and accurately determine oil hegftom gas-oil flows without recourse to
reconstructed images.

Figure 4. MLP_1 estimations of oil height with reference to actual height
values of gas-oil flows.

Figure 5 shows the results of gas-otkrface orientations, as estimated by
MLP_2, with reference to the @l interface orientation values. It can be seen that
the MLP’s estimations are quite close te "ttual interface orientation values. The
linear regression coefficient of the plot is agai This demonstras the feasibility of
the MLP estimator for direchterface orientation estimations from gas-oil flows.

Figure 5. MLP_2 estimations of gas-oil inface orientation with reference to
actual orientations.

MLP_3’s estimations of water heightsdamparison to the actual water height
values are shown in figure 6. The reggion coefficient of the plots is 1,
demonstrating the capabilibf the MLP for estimating water heights from gas-water
flows.

Figure 6. MLP_3 estimations of water heighith reference to actual height
values of gas-water flows.

Figure 7 shows the results of gas-water interface orientations, as estimated by
MLP_4, versus the actual interface orientatioibe regression coefficient of the plot
Is 0.98. The smallest and largest estimation errors aré @nall98, respectively.

Most of the largest errors occur when estiimg the interface orientation of annular
flows, which have the value of 1 (i.e. corresponding toB&0 annular flows,

bubble flows and for the pipe when fullwhter. This is because MLP_4 has

difficulty in mapping different trends of capitance measurements to the same output
value. Despite this limitationhe mean absolute test erpyoduced is rather small.

For component fraction estimation, MLPpfduced a mean absolute error of
0.32%t+0.01% for oil fraction estimation, from gad-lows, when tested with a set of
simulated test patterns.

MLP_6 produced a mean absolute &sor of about 0.7%+0.6% for water
fraction estimations from gas-water flows.

Figure 7. MLP_4 estimations of gas-wateténface orientatio with reference
to actual orientations.

Figure 8 and figure 9 present the resaftthe oil and water fractions from
gas-oil-water flows as estimated by MLPand MLP_8, respectively, with reference
to the actual fraction values. The mean aliscerrors with their standard deviations
for oil and water fraction estimations are 0.884% and 0.72%0.6%, respectively.
The results revealed that it was easier foMa® to estimate water fractions than oil
fractions, from gas-oil-water flowsThis is because the raw capacitance
measurements were calibrated (or normajiseded on the material with the highest
and lowest permittivity values, in this case water and gas, respectively. Consequently,
the normalised capacitance measurements are the most dominant when the sensing
area is filled with water. Thus it is®ar for the MLP to learn and map the data



associated to water thanttee data associated to oil. Even though the errors produced
for oil fraction estimations are larger tham weater, they are rather small, suggesting
that MLPs are good at estimating indivitloaaterial fraction values from three-
component flows. The results demongridiat an ECT system, incorporating the

ANN, can be a useful means of extrag three-component flow parameters.

Figure 8. MLP_7 estimations of oil fractions from various regimes of gas-oil-
water flows in comparison to actual fraction values.

Figure 9. MLP_8 estimations of water fragns from various regimes of gas-
oil-water flows in comparison to actual fraction values.

Further analysis of the salts reveals that the MLRstimate parameters of
stratified flows more accurately than bubbielannular flows. This is due to the
larger number of stratified flow patternsedsfor network training compared to bubble
and annular flow patterns. The fact tf@ver bubble and annular flow patterns than
stratified are used in the training dataisdiecause of the limited number of patterns
that can be generated from these regimes.

3.2 Real plant ECT data for static gas-water flows

These trials were carried out on dabdained using the capped pipe section
and ECT sensor described in Section 2.

Figure 10 shows the MLP_3 estimatiomish reference to the actual water
heights for different flow regnes. It can be seen iretfigure that the estimation of
water height for a full pipe (one) offeg®od accuracy. The estimation of water
height for an empty (zero) pipe also effgood accuracy (not shown in the figure).
This is because MLP_3 has been traimitti capacitance values corresponding to
these flow patterns. The mean absotagt errors produced by MLP_3 for water
height estimations are 2%+0.2%, 4%z0.14f6 5%+0.14% for stratified, bubble and
annular flow patterns, respectively.

Figure 10. MLP_3 estimations of water heighin comparison to actual height
values for patterns of stratifiebdubble and annular flow regimes.

The results of gas-water interface atetion estimations produced by MLP_4
are shown graphically in figure 11. Theam values of absolute error for the
estimations are 7°34.3 and 28.8 with variance values of ?°20.03 and 0.4 for
stratified, bubble and annular flows, respes. Most of the interface orientation
estimation errors for stratified and bubBtav patterns are smaller than those of
annular flows. The lagsgt error is about 36>5produced when estimating the
interface orientation of an annular flowhe large mean error, in the interface
orientation estimations of annular flowsJikely to be due to the network confusion
that arises because the same interface orientaalue (of one) is used for a pipe that
is full of water, and for all annular flopatterns during network training. Another
factor that contributes to the larger estiroaterrors in annular flows is the fact that
only limited number of annular flow patteroan be generated and used to train the
MLP estimators, in comparison toaified and bubble flow patterns.

Figure 11. MLP_4 estimations ajas-oil interface orientations with reference
to actual orientation values for patternssttified, bubble andnaular flow regimes.



Figure 12 shows the results of MLP_@imstion of water fractions from gas-
water flows with reference to the act@i@ction values for stratified, bubble and
annular flow regimes. It can be sebat most of MLP_6 estimations, of water
fraction from stratifed flows, correspond well togractual values. The mean
absolute error for the estimationsaisout 1.3%, with a variance of 0.02% for
stratified flows; 3.6% with a varianad 0.05% for bubble flows; and 2.5% with a
variance of 0.1% for annular flows. These results are similar to those for the cases of
water height and gas-water interface orientagstimation; in that they show that the
MLP is better at estimating water fractiaofsstratified flows, than bubble and annular
flows. The explanation of these findingghge same as that of water height and
interface orientation estimations.

Figure 12. MLP_6 estimations of water fractions with reference to actual water
fraction values for patterns of stifegd, bubble and annular flow regimes.

For all the three flow parameter essitions, the MLP estimation errors are
larger when tested with the real pl&@T data reviewed here, than with the
simulation reviewed in section 3.1 above.

This is likely to be due partly tgpecific electronic noise presentin ECT
measurements from a particular sensorsoAls noted in Section 2, the ECT sensor
does not have the same parameters as the simulation used for training, although
assessing the difference will be complex asrhist be studied in terms of the effect
on the electric field generated for a partasubbject configuratin. Hence the relative
performance does provide an indicatiorttad value of the simulation training in
‘generic’ interpretation, for a given ds of ECT sensor. Of course the MLP
performance could be expected to hagerbimproved had it been trained with the
specific noisy data-setsoim the actual ECT sensor.

3.3 Real plant ECT data for dynamic gas—water flows

These trials were carried out on datdained using the flow loop and ECT
sensor described in section 2.

The images in figure 13 show some of the results for flow parameter
estimations based on these dynamic gas-watessfl The images on the left are video
clips of the gas-water flowat a known time synchronisedtlvdata collection. This
figure is intended to be qualitative only, iit&@jor aspect being in the interpreted data
of the right hand column.

Figure 13. A comparison between the actual flawd the MLPs’ estimations of water
height, gas-water orientation and wdtaction of dynamigas-water flows.

Figure 14 provides an enlarged viewoofe flow condition, frame (f), to
illustrate how the estimated level can be verified from the synchronised video frame.
Lines have been added to this figareto highlight the stratified level.

Figure 14.Enlarged view of one frame (f) slhow how estimates of stratified level
may be verified from synchronised video frame.



The right column shows cse-sectional images ofétpipe, generated simply
from MLPs’ estimations of water heighhd gas-water interéa orientation. The
vertical calibration line on the left of eachage is a reference for the water fraction.
The bar column shown indicates thetevrdraction as estimated by MLP_6.

The generated images of figure 13(a),gbd (c) show increasing water level,
and these agree with thermsponding video frames.

A plug of water rushing through the pijgedepicted in the video frame of
figure 13(d). The corresponding generatedgm (d) shows andnease in the water
level and fraction, and a sudden change @nititerface orientatiomalue. The video
frames of Figure 13(e) to (h) show dewieg water level, and these agree with the
generated images.

The generated images demonstrate that an ANN estimation system is able to
give sensible flow parameter esétion values for dynamic flows.

As in the case of the static trialsvi®wved in Section 3.2, the system performs
well in this ‘generic’ interpretation modeshere training has not employed the actual
data from the ECT sensor, and which diffecsn the parameters used in the training
simulation. Typically errorare increased by about 1%. &lsove, itis likely that
performance would be improved if suckystem specific training were employed.

The direct estimation of flow parameters for 1000 gas-water flow patterns
takes an average of about 44s on a 64Mtdnd-alone PC when computed in
sequence. This means that the softwed®\ algorithm takes an average of about
44ms to estimate the component heigheriace orientation and component fraction
of each flow pattern (correspondingabout 1ms on a current 2GHz computer
assuming a linear speedup). The use dfcd¢ed neural compimng hardware could
provide parallel exedion in the ANN and reduce thprocessing time further.

4. Conclusions

The research concentrated on the development and application of ANN
methods and investigated its suitabibyestimating process flow parameters:
component height, interface orientationdaomponent fraction. The experimental
results demonstrated the feasibilityagiplying ANN methods for flow parameter
estimation without recourse to imagonstruction. The developed ANN estimation
system has been robust at determiningmament heights and inface orientations of
two-component flows and componerdadtions of two-component and three-
component flows. Among the advantages offered by the system are fast response,
direct process flow parameter estimaticiagerance to instrumentation noise and
capability in dealing with multi-componentfks. The system also demonstrates its
‘generic’ interpretation capability, whereetlactual ECT sensor is of the same class
but its measurement data has not been used in ANN training.
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to actual orientations.
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Figure 8. MLP_7 estimations of oil fractions from various regimes of gas-oil-
water flows in comparison to actual fraction values.
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Figure 9. MLP_8 estimations of water fragns from various regimes of gas-
oil-water flows in comparison to the actual fraction values.
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Figure 10. MLP_3 estimations of water heighin comparison to actual height
values for patterns of stratifiedubble and annular flow regimes.
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Figure 11.MLP_4 estimations ofas-oil interface orientations with reference
to actual orientation values for patternsthtified, bubble andnaular flow regimes.
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Figure 12. MLP_6 estimations of water fractions with reference to actual water
fraction values for patterns of stifegd, bubble and annular flow regimes.
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Figure 13. A comparison between the actual flawd the MLPs’ estimations of water
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Figure 14. Enlarged view of one frame (f) show how estimates of stratified level
may be verified from synchronised video frame.
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