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Abstract. A complex stimulated Raman scattering event against a background of
non-thermal ion acoustic waves in an inhomogeneous plasma is described.We obtain
analytic forms for the Raman gain due to a five-wave interaction consisting of
conventional three-wave Raman scattering followed by the decay of the Raman
Langmuir wave into a second Langmuir wave (or a second scattered light wave)
and an ion acoustic wave. Very modest levels of ion waves produce a significant
effect on Raman convective gain. A combination of plasma inhomogeneity and
suprathermal ion fluctuations may offer a means for the control of Raman gain.

Stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) have
long been a focus of attention in laser–plasma interaction physics (Liu et al. 1974).
Both result in light being scattered – an outcome to be minimized in laser fu-
sion – while the other waves involved in the decay (Langmuir waves in the case of
SRS and ion acoustic waves in the case of SBS) themselves give rise to unwelcome
side-effects. Hardly surprisingly in view of these consequences, both instabilities
have been examined time and again and their principal characteristics established,
although various questions on both SRS and SBS remain open even today. Of par-
ticular concern to indirect-drive laser fusion is the control of SRS from the gas-fill in
hohlraum targets (Fernández et al. 1996; Kirkwood et al. 1996). Most of the studies
carried out have dealt with the two instabilities as independent parametric decays,
largely on account of their wide spectral separation. However, early experiments
demonstrated an anticorrelation between the occurrence of SRS and SBS (Walsh et
al. 1984) which has been confirmed subsequently (Labaune et al. 1997; Fuchs et al.
2000) from observations providing direct evidence of a spatial and temporal interac-
tion between the ion acoustic waves (IAW) from SBS and the Langmuir waves from
SRS. Langmuir waves began to grow only when the spectrum of IAWs dropped to
thermal levels. Artificially enhancing the level of IAWs significantly reduced the
density fluctuations associated with Langmuir waves. These results naturally focus
attention on those plasma–wave interactions that couple Langmuir waves and ion
acoustic waves. These are the Langmuir decay instability (LDI), in which a primary
Langmuir wave decays into a daughter Langmuir wave and an ion acoustic wave
(DuBois and Goldman 1965), and the electromagnetic decay instability (EDI), where
the daughter Langmuir wave is replaced by a second scattered electromagnetic
wave (Shukla et al. 1983; Baker 1996). The link between SRS and the presence or
otherwise of ion waves has been firmly established. Secondary counter-propagating
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Langmuir waves needed for LDI have been identified directly using Thomson scat-
tering (Labaune et al. 1997). Experiments with hohlraum targets have shown that
SRS reflectivity rises with increased ion-wave damping (Fernández et al. 1996;
Kirkwood et al. 1996).
These results prompted us to re-examine the question of Raman growth in the

presence of IAWs. We have not attempted to describe the undoubtedly complex
events that occur in the experiments. Instead, we explore a model of Raman gain in
which both primary and secondary decays take place in an inhomogeneous plasma,
so that the parametric resonances are local in nature. In our model, we assume that
the two distinct decay mechanisms SRS–LDI and SRS–EDI occur with interaction
regions that coincide. We refer mainly to SRS–LDI to illustrate our argument.
The coincident SRS–LDI event can be described by a local five-wave process. Our
model is further characterized by prescribing an enhanced level of IAWs. These may
be present as a consequence of SBS, possibly enhanced by seeding, or pumped,
for example by the optical mixing of crossed laser beams, or produced by other
unidentified sources, as observed in recent experiments (Labaune et al. 1995). The
secondary decay process is not then a parametric instability but is, in isolation,
stable, giving rise only to a nonlinear frequency shift due to the suprathermal level
of the IAWs. Hence we refer to these processes as SRS–LD and SRS–ED.
The model is as follows. Frequency matching requires, for SRS, that ω0 = ω1+ωL1

and, for LD, that ωL1 = ωL2+ωs, where ω0 is the laser frequency, ω1 is the scattered-
light frequency, ωL1 and ωL2 are the primary and secondary Langmuir frequencies,
and ωs is the IAW frequency. In the case of ED, ωL2 is replaced by ω2, the secondary
scattered-light wave frequency. We consider SRS backscattering, since this has the
largest growth rate γ = γR, where

γR =
kL1ωpv0

4(ω1ωL1)1/2
,

ωp is the electron plasma frequency, v0 is the electron quiver velocity in the laser
electric field, and kL1 is the Raman Langmuir wavenumber. The spatially dependent
wavenumbers satisfy their respective dispersion relations,

k20,1,2 =
ω20,1,2 − ω2p

c2
, k2L1,L2 =

ω2L1,L2 − ω2p
3v2e

, k2s =
ω2s

(cs + u)2
.

Here ve is the electron thermal velocity, cs is the ion acoustic speed and u is the
expansion velocity of the plasma. The wavenumber mismatch factors for SRS and
LD respectively are

KR(x) = k0(x) + k1(x)− kL1(x), KL(x) = ks(x)− kL1(x)− kL2(x).

The resonances are assumed to be coincident at the origin, where wavenumber
matching is exact for both primary and secondary processes: KR(0) = KL(0) = 0.
Resonance widths are determined mainly by the spatial dependence of the Lang-
muir wavenumbers. Figure 1 shows the geometry of the five-wave SRS–LD inter-
action: the laser pump, IAW and primary Langmuir wave enter the resonance from
the left, while the scattered light and secondary Langmuir wave enter from the
right. The geometry is such that kL1 ≈ kL2 ≈ 1

2
ks.

We assume that the IAW, while consistent with a low level of density fluctuations,
is sufficiently above ‘noise’ that its amplitude remains undepleted across the gain
region. We also neglect depletion of the laser pump. The problem then amounts to
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Figure 1. The five-wave geometry of the SRS–LD interaction.

a study of the evolution of the Raman-scattered light wave, and primary and sec-
ondary Langmuir waves each growing from noise in the presence of the laser pump
and IAW. This interaction is distinct from a coupling of two instabilitymechanisms
in which the Langmuir wave generated by SRS acts as the pump for a secondary
instability. In our configuration, the IAW is present from the outset, and acts solely
as a moving ‘grating’, reflecting each Langmuir wave into the other. The coupled
equations for an inhomogeneous plasma in the WKB approximation are

ψ̇1 − V1ψ
′

1 + ν1ψ1 = γRψL1 exp

(

i

∫

KR dx

)

, (1a)

ψ̇L1+ VL1ψ
′

L1+ νL1ψL1 = γRψ1 exp

(

−i
∫

KR dx

)

+ ∆NψL2 exp

(

−i
∫

KL dx

)

, (1b)

ψ̇L2 − VL2ψ
′

L2 + νL2ψL2 = −∆NψL1 exp

(

i

∫

KL dx

)

, (1c)

where Vi and νi (i = 1, L1, L2) denote group velocities and damping rates, ∆N =
1
4
ωpN , and N = δni/n0 is the normalized IAW density fluctuation, with n0 the
plasma density. Dots and primes denote time and space derivatives respectively. The
scattered wave is subject to collisional damping, ν1 = ω

2
pνei/2ω

2
1 , and the Langmuir

waves are subject to collisional and Landau damping, νL1,L2 = γLD +
1
2
νei, where

νei is the electron–ion collision frequency and γLD the Landau-damping rate.

We look first at the effect of damping combined with a finite level of IAWs in
the homogeneous limit. Taking KR = KL = 0 and assuming quantities to vary
as exp(γt), the cubic equation resulting from (1) gives the threshold and growth
rate. In the absence of the secondary decay (∆N = 0), we recover the peak SRS
homogeneous plasma growth rate γ = γR, which applies well above the convective
instability threshold set by γ2R = ν1νL1. Including the LD, a finite level of IAWs
increases the convective threshold to

γ2R = ν1

(

νL1 +
∆2N
νL2

)

, (2)

which shows the contrasting effect of the damping of the two Langmuir waves. Two
distinct regimes are apparent, determined by the ratio ρ0 = ∆N/νL1 (νL1 ≈ νL2
for LD). For weakly damped Langmuir waves, the threshold increase could be
substantial, since ρ0 can be large for even low levels of IAWs. Indeed, if damping
is weak so that γLD � νei � ∆N , the threshold is set only by the level of IAWs,
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γR = ωp∆N/ω1. Clearly, whenever ρ0 > 1, the influence of the IAWs on SRS is
significant.
It is the effect of the finite level of IAWs through the nonlinear frequency shift

∆N in inhomogeneous plasma that is the focus of this work, so we confine attention
to the undamped equations. Considering the temporal behaviour (∂/∂x → 0), we
obtain from (1) the homogeneous growth rate γ = (γ2R − ∆2N )

1/2. Whenever the
LD frequency shift ∆N > γR, Raman growth is substantially suppressed. In the
absence of SRS, the LD is stable, giving rise only to a frequency shift ∆N .
Henceforth, we consider an inhomogeneous plasma and analyse the station-

ary convective process (∂/∂t → 0). The mismatch factors, taken to be linear, are
KR,L(x) = K

′

R,L(0)x. The scale lengths implicit in this model are the SRS coupling

length (V1VL1)
1/2/γR, the LD coupling length (VL1VL2)

1/2/∆N and the resonance
widths set by the mismatch factors: (K ′

R)
−1/2 for SRS and (K ′

L)
−1/2 for LD. The

SRS resonance is approximately
√
2 larger than the LD resonance, since these are

determined mainly by the Langmuir waves. In the absence of LD, we retrieve the
well-known Rosenbluth gain factor (Liu et al. 1974): GR = 2πγ

2
R/V1VL1|K ′

R|. For-
mally, we can define a negative ‘gain’ factor for the LD: GN = 2π∆2N/VL1VL2|K ′

L|.
Our goal is to determine the gain from the behaviour of the (steady-state un-

damped) solutions to (1) over the complex plane subject to the boundary conditions
|ψL1|x=−∞ = δL1, |ψ1|x=+∞ = δ1, |ψL2|x=+∞ = δL2 under the additional assumption
that the phases of sources entering the resonance from opposite sides are statis-
tically independent. The Stokes analysis used to find asymptotic solutions is pre-
sented elsewhere (Barr et al. 2000), and leads to expressions for the amplitudes of
each wave emerging from the resonant region:

|ψ+L1|2 = δ2L1 exp(GR −GN )

+δ2L2
VL2
VL1

exp(GR) [1− exp(−GN )]

+δ21
V1
VL1

[exp(GR)− 1], (3a)

|ψ−

1 |2 = δ2L1
VL1
V1

exp(−GN ) [exp(GR)− 1]

+δ2L2
VL2
V1
[1− exp(−GN )][exp(GR)− 1]

+δ21 exp(GR) (3b)

|ψ−

L2|2 = δ2L1
VL1
VL2

[1− exp(−GN )] + δ
2
L2 exp(−GN ), (3c)

where the superscripts ± refer to that side of the resonance from which the wave
emerges. This is the main result of this paper. The contributions from each source to
net gain in the three daughter waves as a function of the SRS gain GR and the LD
negative gainGN are clearly seen from (3). First, the gains in the primary Langmuir
wave and the scattered wave that derive from the primary Langmuir wave source
δL1 are suppressed by GN . Secondly, the LD coupling to SRS due to the IAWs
allows gain in the Raman products to derive from the secondary Langmuir wave
source δL2. This is enhanced by the finite level of IAWs, and emerges to replace the
primary Langmuir wave as the main source whenever GN � 1. Finally, gain from
the scattered-wave source δ1 is unchanged.
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Figure 2. Net gain of the Langmuir wave G versus GN for a range of source ratios δL2/δL1.
A Raman gain GR = 10 is assumed.

When the energy flux of each Langmuir wave source entering the resonance from
opposite sides is equal, i.e. T ≡ δ2L2VL2/δ

2
L1VL1 = 1, the terms involving GN cancel.

Net gain reverts to the levels expected in the absence of secondary decay. Thus
the condition T = 1 must be violated to suppress or enhance the usual Raman
gain. Since, for LD, VL1 ≈ VL2 and if the two Langmuir waves emerge from equal
thermal sources δL1 ≈ δL2, as at first sight seems most likely, then indeed T ≈ 1.
However, should one or other of the Langmuir wave sources be enhanced, there is
potential for either decreased or increased net gain, depending on whether or not
δL1 > δL2. Since the counter-propagating waves enter the resonance from opposite
sides, there may well be good reasons for these sources to be both non-thermal and
distinct, given the environment created by the intense laser driver. For instance,
there may be regions where Raman gain is low or even sub-threshold, contiguous
with localized high-intensity speckles, which provide enhanced source levels of the
Raman Langmuir wave; then δL2 � δL1, and Raman gain is strongly suppressed.
Consider the gain due to δL1,L2 only, and assume that the scattered-wave source
is small compared with electrostatic sources (set δ1 = 0). Figure 2 shows the net
gain of the Raman Langmuir wave, G = ln |ψ+L1/δL1|2, versus GN , assuming a
Raman gain GR = 10 for various ratios δL2/δL1. When GN � 1, this approaches
G = GR + lnT , so that total suppression occurs if δL2/δL1 < exp(− 1

2
GR). Also

in this limit, the ratio of the Langmuir wave amplitudes becomes |ψ−

L2/ψ
+
L1|2 =

δ2L1/δ
2
L2 exp(−GR) = exp(−G), providing a direct measure of the net gainGwithout

requiring individual knowledge of the source amplitudes or of GR and GN . For
SRS–ED decay, expressions similar to (3) can be obtained, with L2 → 2. Again
assuming that the electrostatic source is dominant, we find that the net gain in



628 H. C. Barr, T. J. M. Boyd and A. V. Lukyanov

both the Raman Langmuir and scattered waves is unconditionally quenched by
the presence of the IAW; the gain for the Raman Langmuir wave is G = GR −GN .
To illustrate the above effects, we use two parameter regimes – one typical of

indirect-drive ignition experiments with hohlraum targets (Fernández et al. 1996;
Kirkwood et al. 1996), the other corresponding to the plasma source in the ex-
periments of Labaune et al. (Labaune et al. 1997, 1998; Depierreux et al. 2000)
In the first, strong Landau damping would be expected to be dominant, while in
the second cooler source, Landau damping is weak. Collisional damping is assumed
weak for both cases. Typical parameters for ignition experiments are laser intensity
I = 2 × 1015 Wcm−2, wavelength λ = 0.35 µm, density n0/nc = 0.1 and tempera-
ture T = 3keV (Fernández et al. 1997). Then kL1λD = 0.38 and a Landau damping
rate γL ≈ 0.075ωp implies a strongly damped regime. A measure of the secondary
decay is ρ0 = ∆N/νL1 ≈ 3.3N . Thus ρ0 � 1 for all but unreasonably large values of
N , and hence IAWs would have little effect on SRS. However, SRS has been shown
to depend on the IAW damping rate and hence on the IAW amplitude (Fernández
et al. 1997). In our model, this requires Landau damping sufficiently weak that
ρ0 > 1. In fact, Langmuir-wave damping is believed to be much weaker than linear
Landau damping would imply (Afeyan et al. 1998).
In contrast, the source used by Labaune et al. (1995, 1997, 1998) consisted of

exploded plastic foils, for which we take I = 9×1013Wcm−2, λ = 1 µm, n0/nc = 0.1,
T = 0.5 keV and scale length 1mm. Then kL1λD = 0.15, γL ≈ 2 × 10−8ωp and
ρ0 ≈ 107N . Since ρ0 � 1 for very low levels of IAWs, the coupling to the secondary
Langmuir wave will be important in this case. The convective threshold is then
set by the IAW level, γR = ωp∆N/ω1, which implies v0/c = (ω3p/k

2
L1c

2ω1)
1/2N ,

so that v0/c ≈ 0.14N . Since v0/c ≈ 0.008, this requires N = 6% at the convective
threshold. Were the intensity to be enhanced within ‘speckles’ of localized hot spots
(Tikhonchuk et al. 1996), even higher IAW levels would be required to bring SRS
to the convective threshold. Such levels are substantially above what is observed
(Labaune et al. 1998; Depierreux et al. 2000). We can therefore conclude that these
experiments are well above the damping threshold.
Suppose that damping can be neglected and growth is convectively saturated

owing to plasma inhomogeneity. For the above conditions, GR = 1.25, so that ob-
servable gain requires some form of local enhancement in intensity, as in ‘speckles’.
Also,GN ≈ 5.5×104N 2, so that an IAW density fluctuation of onlyN ≈ 0.4% gives
GN = 1. For SRS suppression, we require, in addition, that δL1 > δL2. Labaune et
al. measured the ratio of secondary to primary Langmuir wave amplitudes of the
density fluctuations at about 6%, from which, assuming GN � 1, we predict a net
gain G = 2 ln |ψ+L1/ψ−

L2| ≈ 5.6. This compares with the measured gain (amplitude
squared) of G ≈ 7 (Labaune et al. 1998). Assume a local enhancement of intensity
within a speckle of a factor 5, so thatGR = 6.25. TakingN = 1% and δL2/δL1 = 0.1
gives a reduced gain of G = 2, while for N = 2% and δL2/δL1 = 0.04, there is com-
plete quenching. It appears that modest levels of ion fluctuations, typically around
1%, combined with a differential in the Langmuir-wave source levels, is all that is
needed for the SRS signal to be reduced significantly.
The strong evidence for SRS suppression while SBS is active is a compelling

argument for identifying the SBS IAW with the IAW of the SRS–LD process.
Phase matching dictates that this is so only for densities approaching the quarter-
critical density, although observations show SRS inhibition over a wide range of
densities. However, exploding-foil experiments with evolving inhomogeneous den-
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sity and flow-velocity profiles constitute an environment in which SBS ion waves
can adjust their wavenumbers by propagation to match those of the SRS–LD pro-
cess. Our model does not in fact depend on the ion fluctuation satisfying the usual
IAW dispersion relation – any finite level of non-resonant ion waves (ωs, ks) would
suffice, and indeed this has been observed with spectra that allow both SRS–LD
and SRS–ED decays to arise at virtually any density (Labaune et al. 1995). We
emphasize too that the Rosenbluth gain GR, the IAW level N and possibly the
source levels themselves are each dependent on laser intensity which itself is likely
to have a complex spatial pattern due, for example, to a speckle distribution. If the
IAW level is generated by SBS, the negative gain GN will rise exponentially, while
GR increases only linearly, with laser intensity. The theory developed here may of-
fer an explanation in part for features observed in the interplay between SRS and
SBS in laser-produced plasmas. For instance, in Labaune et al. (1997) and Fuchs
et al. (2000), the SRS Langmuir wave was diminished by the presence of SBS and
further suppressed by seeding the IAWs. Other seeding experiments are suggested
by our results. Another observation connecting IAWs with the SRS signal was its
observed dependence on the damping of the IAW (Fernandez et al. 1996; Kirkwood
et al. 1996). Clearly, the IAW level is sensitive to its damping rate, so that, as our
model shows, this affects the net Raman gain.
We have determined the net gain of Raman-generated waves due to five-wave

SRS–LD and SRS–ED interactions when a finite level of ion waves is present in
an inhomogeneous plasma. Modest ion fluctuation levels have a significant effect
on gain, which is sensitively dependent on the source levels from which the waves
amplify. Inhomogeneous plasma combined with a suprathermal level of IAWs may
afford a means for the control of SRS.
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