
This is a repository copy of A search-based approach to the automated design of security
protocols.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/72496/

Version: Published Version

Monograph:
Hao, C, Clark, JA orcid.org/0000-0002-9230-9739 and Jacob, Jeremy Lawrence
orcid.org/0000-0003-4806-7426 (2004) A search-based approach to the automated design
of security protocols. Report. York Computer Science Technical Report Series ("Yellow
Reports"), York Computer Scienc . Department of Computer Science, University of York

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The University of York Department of Computer Science

Technical report YCS 376

A Search-based Approach to the
Automated Design of Security

Protocols

Chen Hao John A. Clark Jeremy L. Jacob

2004 May 5

Department of Computer Science

The University of York

YORK, YO10 5DD

Security protocols play an important role in modern communications. How-
ever, security protocol development is a delicate task; experience shows that com-
puter security protocols are notoriously difficult to get right. Recently, Clark and
Jacob provided a framework for automatic protocol generation based on combi-
natorial optimisation techniques and the symmetric key part of BAN logic. This
paper shows how such an approach can be further developed to encompass the
full BAN logic without loss of efficiency and thereby synthesise public key proto-
cols and hybrid protocols.

Contents

1 Introduction 8

2 Protocols and Belief Logic 9

2.1 Notions and Notations . 9

2.1.1 Idealised Protocols . 9

2.1.2 Encryption and Keys . 10

2.1.3 Nonce . 10

2.1.4 Basic Notation . 10

2.2 Inference Rules . 11

2.3 Illustrative Example . 13

3 Search Strategy – Meta-heuristic Techniques 15

3.1 Interpreting a Message and a Move Function 15

3.2 Interpreting a Protocol . 16

3.3 The Fitness Function . 18

3.4 Optimisation Techniques . 19

4 Experimental Method and Results 20

4.1 Public Key Protocols . 20

4.1.1 Initial Assumptions . 20

4.1.2 Goals . 20

4.1.3 Results and Statistics . 21

4.2 Public Key Protocols using Timestamps 23

4.2.1 Initial Assumptions . 23

4.2.2 Goals . 23

4.2.3 Results and Statistics . 23

4.3 Hybrid Protocols . 25

4.3.1 Initial Assumptions . 25

4.3.2 Goals . 25

4.3.3 Results and Statistics . 25

4.4 Extensive Experimentation . 25

5 Conclusions and Further Work 28

4

Contents

A Results on Protocols Library 33
A.1 Andrew Secure RPC . 33
A.2 BAN Modified Andrew Secure RPC 36
A.3 BAN Concrete Andrew Secure RPC 37
A.4 Lowe Modified Andrew Secure RPC 38
A.5 CCITT X.509 (1) . 39
A.6 CCITT X.509 (1c) . 40
A.7 CCITT X.509 (3) . 41
A.8 BAN modified version of CCITT X.509 (3) 43
A.9 Denning-Sacco Shared Key . 44
A.10 Lowe Modified Denning-Sacco Shared Key 45
A.11 Kao Chow Authentication v.1 . 47
A.12 Kao Chow Authentication v.2 . 49
A.13 Kao Chow Authentication v.3 . 51
A.14 Kerberos V5 . 53
A.15 KSL . 55
A.16 Lowe Modified KSL . 57
A.17 Neumann Stubblebine . 59
A.18 Hwang Modified Neumann Stubblebine 61
A.19 Needham-Schroeder Public Key . 63
A.20 Lowe’s fixed version of Needham-Schroeder Public Key 65
A.21 Needham-Schroeder Symmetric Key 68
A.22 Amended Needham-Schroeder Symmetric Key 70
A.23 Otway Rees . 72
A.24 SPLICE/AS . 74
A.25 Hwang and Chen Modified SPLICE/AS 77
A.26 Clark and Jacob modified modified SPLICE/AS 80
A.27 Wide Mouthed Frog . 83
A.28 Lowe Modified Wide Mouthed Frog 84
A.29 Woo and Lam Mutual Authentication 86
A.30 Woo and Lam π . 88
A.31 Woo and Lam π 1 . 89
A.32 Woo and Lam π 2 . 90
A.33 Woo and Lam π 3 . 91
A.34 Woo and Lam π f . 92
A.35 Yahalom . 93
A.36 BAN Simplified Version of Yahalom 95
A.37 Lowe Modified Version of Yahalom 97
A.38 Paulson’s Strengthened Version of Yahalom 99

B Description of Simulated Annealing 101

5

List of Figures

2.1 Initial assumptions, a goal and a feasible protocol 13

3.1 Interpreting an integer sequence . 17

4.1 Public key protocol generated during experimentation 21
4.2 Public key protocol with additional assumptions 22
4.3 Public key protocol using timestamps, four beliefs per message . . 24
4.4 A hybrid encryption protocol . 26

B.1 Basic Simulated Annealing for Maximisation Problems 101

6

List of Tables

3.1 Weighting Strategies . 18

4.1 Effect on success fraction of varying numbers of fields per message 22
4.2 Success fractions for protocols using timestamps 24
4.3 Success fractions for hybrid protocols 26

7

1 Introduction

When we look into published security protocols, we find that many of these
protocols do not succeed in their stated or implied goals. Although inappro-
priate use of cryptography may pose problems, it is clear that many protocols
suffer problems which have nothing to do with the strength of the cryptography
used. Many of the errors arise from the inappropriate structure of the message
exchange. As a result, many existing protocols are susceptible to various kinds
of attacks, which are independent of the weaknesses of the crypto-system em-
ployed.

Various formalisms and tools have been brought to bear on the problem. How-
ever, it would seem that automated support in this area is largely limited to the
analysis and formal verification of existing protocols; there is little work in auto-
matic protocols synthesis. The first work on automatic protocols synthesis using
meta-heuristic search was presented by Clark and Jacob [CJ00, CJ01]. However,
its application was limited in various ways. Most obviously principals were al-
lowed to use only symmetric key encryption. In this paper, we show how we
have extended this technique to allow public key encryption and hybrid schemes
too. We also report the results of extensive experimentation with the technique.

8

2 Protocols and Belief Logic

Security protocols are designed to let principals communicate securely over an
insecure network. Security requirements include:

Secrecy An intruder should not be able to read the contents of messages in-
tended for others.

Authenticity If a message appears to be from Alice for an identified purpose,
then Alice sent that message for that purpose.

Non-repudiation If Alice sent a message, she cannot later deny it.

Anderson and Needham show that security protocol development is a deli-
cate task, and computer security protocols are notoriously difficult to get right
[AN96]. Recent approaches to the use of formal methods in the design of secu-
rity protocols include finite-state model checking and belief logics. In this paper,
we concentrate on belief logics, which formalise what a principal may infer from
messages received. We take as our example the first such logic, BAN [BAN89].

In 1989, Burrows, Abadi and Needham developed a belief logic (BAN logic)
that could be used to reason about protocol security. Although their work has
aroused much debate, the BAN logic is a milestone in the area of security pro-
tocol design and analysis. BAN logic focuses on the beliefs of honest parties
involved in the protocols and on the evolution of these beliefs as a consequence
of communication. The original BAN logic allows short, abstract proofs. It has
identified some protocol flaws but missed others [BM93]. As a result, a number
of variations and enhancements of the BAN logic have been developed. These
new belief logics, such as GNY logic [GNY90] and SVO logic [SvO96], address
some weaknesses of BAN logic but sacrifice its simplicity. The work described
here is based on BAN, but we believe it could easily be ported to other logics.
Below is a brief introduction to the notation and inference rules used in BAN
logic.

2.1 Notions and Notations

2.1.1 Idealised Protocols

In much of the literature, security protocols have not been expressed in a formal
manner. Such descriptions must be converted to formal descriptions if formal

9

2 Protocols and Belief Logic

analysis is to take place. In BAN logic literature the abstractions that are analysed
are termed idealised protocols. In concrete protocols, principals maintain data
items (e.g. keys) and communicate some of these items using messages with
an agreed format. On receiving a message the receiver will update its state in
some agreed way and carry out other agreed actions. With idealised protocols,
principals maintain and communicate beliefs. Thus, rather than holding a key Kab

for session communication between A and B and distributing that key to A and
B, a server S would hold the belief that the key Kab was good for communicating

between A and B (denoted A
Kab←→ B) and include that belief in messages to A

and B. The logic indicates how a receiver should update its belief state on receipt
of a message.

2.1.2 Encryption and Keys

All messages in BAN logic are encrypted. Unencrypted messages sent over an
insecure network provide no guarantees of any kind, because an intruder may
easily alter clear-text. In practice, unencrypted concrete messages may be used
as signals to cause encrypted messages to be sent, but they do not contribute to
principals’ beliefs. Since we work at the abstract BAN level some of our protocols
have principals sending messages apparently without stimulus. Supplying such
stimulus is a concrete implementation issue.

2.1.3 Nonce

All beliefs held in the current run of a protocol are stable for the entirety of the
protocol; however, beliefs held in the past are not necessary carried forward into
the present. Therefore, it is important for principals involved in a protocol to de-
termine that messages they receive really have been created as part of the current
run of the protocol. This is typically achieved by the inclusion in messages of
data to bind messages to the current run. This data takes the form of numbers
generated to be used only once (for bindings to the current run). These numbers
used only once are commonly called nonces. If a principal generates a nonce for
the current protocol run and receives messages that contain it, this principal may
deduce that these messages have been created after the nonce was generated. An
alternative to nonces are timestamps, which can also make the receiver believe
the messages have been generated recently.

2.1.4 Basic Notation

The language of BAN consists of the following expressions:

Believes The assertion P |≡ X means P believes the formula X. P may act as if X
is true.

10

2.2 Inference Rules

Sees The assertion P ⊳ X means P sees X. Someone has sent a message containing
X to P, and P can read and repeat X; this may require decryption.

Once Said The assertion P |∼ X means P once said X. The principal P at some
time sent a message including the statement X. It is known that P believed
X when it sent the message.

Jurisdiction The assertion P |⇒ X means P has jurisdiction over X. The principal
P is an authority on X and should be trusted on this matter. An example of
jurisdiction is that principals may believe that a key distribution server has
jurisdiction over statements about the quality of keys.

Fresh The assertion #(X) means the formula X is fresh, that is to say, X has not
been sent in a message at any time before the current run of the protocol.
This is usually true for nonces.

Key Goodness The assertion P
K
←→ Q means K is a good key for communication

between P and Q. That is, the key K has not been revealed to any principal
other than P or Q.

Public key The assertion
K
7−→ P stands for the principal P having a public key

K. The matching secret key (denoted by K−1) will never be revealed to any
principal other than P.

Secret The assertion P
X
⇀↽ Q means the formula X is a secret known only to P

and Q, and possibly to principals trusted by them. Only P and Q may use
X to prove their identities to one another. An example of a shared secret is
a password.

Encryption The assertion {X}K means the formula X encrypted under the key
K. Principals can recognise their own messages. Encrypted messages are
uniquely readable and verifiable as such by holders of the right keys. Sim-
ilarly, encrypted messages can be created only by a principal with the ap-
propriate keys.

Combined The assertion 〈X〉Y represents X combined with the formula Y ; it
is intended that Y be a secret, and that its presence prove the identity of
whoever utters 〈X〉Y.

2.2 Inference Rules

When a principal receives a message, the logic provides inference rules that indi-
cate what new beliefs this principal may infer from the message contents. The
major inference rules are given below.

11

2 Protocols and Belief Logic

Message Meaning Rules The message meaning rules explain how to derive
beliefs about the origin of messages. Two of the three concern the interpretation
of encrypted messages, and the third concerns the interpretation of messages
with secrets.

P|≡P
K
←→Q, P⊳{X}K
P|≡Q|∼X

That is, if principal P believes the key K is shared only with principal Q, and
sees a message X encrypted under that key K, then P may conclude that this
message X was created by Q, who ‘once said’ its contents X. 1

Similarly, for public keys:

P|≡
K
7−→Q, P⊳{X}

K−1

P|≡Q|∼X

That is, if principal P believes that the key K is Q’s public key and it receives a
message {X}K−1 encrypted under Q’s corresponding (private) inverse key K−1,
then P may conclude that principal Q once said the contents of the message.

For shared secrets:

P|≡P
Y
⇀↽Q, P⊳〈X〉Y

P|≡Q|∼X

That is, if principal P believes that the secret Y is shared only with Q and sees
〈X〉Y, then P believes that Q once said X.

Nonce Verification Rule The nonce verification rule expresses how a princi-
pal’s view of a message changes when it determines that the message is part of
the current protocol run.

P|≡#(X), P|≡Q|∼X
P|≡Q|≡X

That is, if P believes that X is fresh and that Q once said X, then P believes that
Q has said X during the current run of protocol, and hence that Q believes X
at present. In order to apply this rule, X should not contain any encrypted text.
The nonce verification rule is the only way of ‘promoting’ once said assertion to
actual belief.

Jurisdiction Rule The jurisdiction rule captures the notion that some princi-
pals are trusted to carry out certain tasks and make particular judgements.

P|≡Q|≡X, P|≡Q|⇒X
P|≡X

1In BAN logic, it is assumed that principals can recognise messages they themselves have
created and take appropriate action when they receive such messages. We shall interpret
P ⊳ {X}K as “P sees message {X}K and, moreover, P knows that it did not create {X}K itself”.

12

2.3 Illustrative Example

Initial Assumptions

S |≡
Ka7−→ A S believes that Ka really is A’s public key

S |≡
Kb7−→ B S believes that Kb really is B’s public key

S |≡
K−1

s7−→ S S believes that K−1
s is its own private key

A |≡
Ks7−→ S A believes that Ks is the public key of S

A |≡ S |⇒
Kb7−→ B A trusts S to provide B’s public key, that is,

A believes that S has jurisdiction over B’s
public key

A |≡ Na A believes that a particular number Na

is a well-formed nonce.
A |≡ #(Na) A believes that nonce Na is actually fresh.

A |≡
K−1

a7−→ A A believes that K−1
a is its own private key.

Protocol Goal

A |≡
Kb7−→ B A believes that

Kb7−→ B is B’s public key

Protocol

1. A→ S : {Na}K−1
a

2. S→ A :

{

A |∼ Na,
Kb7−→ B

}

K−1
s

Figure 2.1: Initial assumptions, a goal and a feasible protocol

That is, if principal P believes that Q believes X, and also believes that Q has
jurisdiction over X, then P should believe X too.

In this paper, we also need some smaller rules, such as that A |≡ #(X, Y) is
deducible from A |≡ #(X); we shall omit these here. Further details of these infer-
ence rules can be found in Burrows, Abadi and Needham’s paper [BAN89].

2.3 Illustrative Example

Figure 2.1 gives a set of initial assumptions held by principal A and a key distri-
bution server S, and a feasible protocol.

A believes Na is a well formed nonce and may include it in the first message.
This message is encrypted with its private key K−1

a . When the server S sees (re-
ceives) this encrypted message, it can use A’s public key to decrypt it and deduce
A |∼ Na, that is A once said Na, via the Message Meaning Rule. Now, S may reply
to A with the second message that contains two of its current beliefs: the newly

derived belief A once said Na and an initial assumption
Kb7−→ B. S encrypts this

13

2 Protocols and Belief Logic

message using its private key K−1
s . Once A sees this message, he may decrypt it

to reveal its contents. Using the Message Meaning Rule, A concludes S |∼
Kb7−→ B,

that is S once said Kb is B’s public key. In the meantime, A may also conclude
S |∼ A |∼ Na, that is, S once said that A once said Na. This message contains an
assertion involving Na, a nonce A believes to be fresh, so A may conclude the
whole message is a fresh one. Then A may deduce that S believes the whole mes-
sage using the Nonce Verification Rule. In detail, A concludes S |≡ A |∼ Na and

also S |≡
Kb7−→ B. Since A believes that S has jurisdiction over B’s public key, A

may now believe
Kb7−→ B using the Jurisdiction Rule.

14

3 Search Strategy – Meta-heuristic
Techniques

What we wish to do, given some assumptions and goals, is to find protocols that
achieve the goals from the assumptions. That is, we wish to search the space
of feasible protocols for ones satisfying a specification. Any series of honest ex-
changes between two or more principals defines a feasible (with respect to the
logic) protocol. This is the set of feasible protocols that we consider as the design
space. It is clear that this space grows exponentially as the number of messages
or the number of principals rise. The choices of the belief contents of messages in-
troduce further combinatorial complexity. For a technique to be scalable it cannot
be based on simple enumeration.

Meta-heuristics are widely used to solve important practical combinatorial op-
timisation problems [Ree95]. The role of meta-heuristic search is to exchange
guarantees of optimality for computational tractability. Examples of meta-heuristics
include simulated annealing (SA)[KGV83], tabu search (TS) [AH95], genetic al-
gorithms (GA) [Gol89], and ant colony optimisation (ACO) [BDT99]. The results
reported here were obtained using simulated annealing; genetic algorithms are
currently under investigation.

To use a search approach for protocol synthesis, we need to provide:

A characterisation of the design space how to represent protocols and how to
distinguish valid from invalid protocols.

A fitness function if we wish to obtain the ‘best’ or just ‘good’ protocols, we
must characterise precisely how ‘good’ a candidate protocol is.

A search strategy when exhaustive search is impractical, we need to provide
a strategy for searching the design space that can locate good protocols
within reasonable computational time.

We discussed the first issue in chapter 2. In this section, we show details of how
to implement valid protocols within an optimisation framework and the fitness
functions that we use to guide the search to a solution.

3.1 Interpreting a Message and a Move Function

A BAN protocol is represented in our search algorithm as a sequence of M mes-
sages, each of which is represented by an integer sequence. A message is sent

15

3 Search Strategy – Meta-heuristic Techniques

by one principal and received by another. N principals, indexed 0 . . . N − 1, par-
ticipate in the protocol. Associated with each of the principals is a vector of its
current beliefs. Each of the M protocol messages is represented by C + 3 integers,
vs, vr, vk, vb1, . . . , vbc. These represent the sender, the receiver, the key that the
sender used to encrypt this message, and a series of C indices that reference be-
liefs currently held by the sending principal. So, the sender is vs mod N; receiver
is vr mod N; key is vk mod (2N + C2

N) (N principals may have N private keys,
N public keys, and share C2

N symmetric keys); the first belief in the message is
belief vb1 mod T etc., where the sender has T current beliefs, indexed 0 . . . T − 1.
belie f [0] is the null belief (which allows us to model easily messages with fewer
than C ‘real’ beliefs). The vector of the receiver’s current beliefs is updated af-
ter each message is sent (see below). In this way, an arbitrary sequence of inte-
gers can be interpreted as a feasible protocol (senders only ever send beliefs they
actually hold). This allows a very simple move strategy for local search – sim-
ply randomly perturb any of the integers involved in any message. Although
the interpreted protocol may be feasible, it may not satisfy our required goals.
The fitness function, given in section 3.3 below, measures how close it comes to
achieving the required goals and our search seeks to find a protocol that satisfies
all these goals.

3.2 Interpreting a Protocol

This section shows how a random integer sequence can be decoded and executed
as a protocol. Assume a protocol consists of M messages, each of which consists
of C beliefs, and we start from the very beginning of this protocol. Firstly, we
should initialise the belief state of the relevant principals involved in this proto-
col. Then, for each message in this protocol, we follow the steps below.

1. Determine the sender, receiver, and the key under which the current mes-
sage is encrypted. If this key is an appropriate one for communication be-
tween the sender and the receiver, then proceed with the rest of the current
message, else ignore this message and proceed to the next message. The
method of decoding the sender, receiver, and key is indicated in section 3.1

2. Decode each of the C beliefs corresponding to current message. For in-
stance, the first belief in the message is vb1 mod T, where the sender cur-
rently holds T sendable beliefs.

3. Update the receiver’s beliefs vector by applying the message meaning rule,
the nonce verification rule, and the jurisdiction rule in that order. Here we
demonstrate what a principal P will do after it receives a message

{

X, P |∼ Np

}

from another principal Q. Firstly, Q |∼ X and Q |∼ P |∼ Np are added to P’s
belief vector (this represents P |≡ Q |∼ X and P |≡ Q |∼ P |∼ Np). This, to-
gether with (1) above implements the message meaning rule. After this, P

16

3.2 Interpreting a Protocol

Vector of A’s current
beliefs; T = 5.ba0 ba1 ba2 ba3 ba4

Interpretation
A→ S : KAS {ba2, ba0, ba4, ba3}

After modular reduction0 2 2 2 0 4 3

m
o
d
3

❄

m
o
d
3

❄

m
o
d
9

❄

m
o
d
5

❄

m
o
d
5

❄

m
o
d
5

❄

m
o
d
5

❄

Example integer
sequence for message21 8 20 7 5 34 13

❄ ❄ ❄ ❄ ❄ ❄ ❄

Symbolic integer
sequence for messagevs vr vk vb1 vb2 vb3 vb4

Figure 3.1: Interpreting an integer sequence. Interpretation for three principals
A (= 0), B (= 1) and S (= 2). Sender A currently has 5 beliefs; ‘ba0’ is
the null belief. Vector of keys held omitted (there are 9 possible keys).

examines the set of received beliefs to see whether any of the beliefs contain
a component that it believes to be fresh. In this case, P receives the belief
P |∼ Np, and if P believes the nonce Np is fresh, then the whole message is
regarded as fresh. If the message is fresh then the nonce verification rule
is applied to add Q |≡ X and Q |≡ P |∼ Np. Similarly, the jurisdiction rule
now may be applied to deduce further beliefs until no further beliefs can
be created.

4. Record the number of required goals achieved after this message has been
analysed.

Once a protocol has been executed in the above way, the fitness of this protocol
can be calculated as given in the following section.

17

3 Search Strategy – Meta-heuristic Techniques

Weight Strategy
EC UC DG ADG UDG DJ

w1 2000 500 50 0 0 0
w2 1000 500 100 0 0 0
w3 500 500 200 200 1000 0
w4 200 500 500 500 1000 0
w5 100 500 1000 1000 1000 0
w6 50 500 2000 2000 1000 0
w7 25 500 4000 4000 1000 1000

Table 3.1: Weighting Strategies

3.3 The Fitness Function

The fitness function is used to guide the search for a ‘good’ solution, that is, the
fitness function must tell how ‘good’ a candidate solution is. We use fitness func-
tions for a protocol of the form:

M

∑
i=1

wi ∗ gi

The wi are weightings and gi is the number of required goals achieved after
message i. In this paper, we use several weighting strategies for setting the
weights wi that are detailed in Table 3.1. These weighting strategies were first
used by Clark and Jacob. Here we only introduce these weighting strategies
briefly, further details of these strategies can be found in [CJ00, CJ01]. Note that
the fitness function used rewards cumulatively.1 If a goal becomes satisfied after
some message it is also satisfied after all subsequent messages. Thus, the gi form
a monotone increasing sequence. The user specifies the number M of messages
in a protocol.

Early Credit (EC) The weights are monotonically decreasing with i. The notion
is that satisfying goals early should be rewarded.

Uniform Credit (UC) All the weights are the same.

Delayed Gratification (DG) The weights increase monotonically. This captures
the idea that early satisfaction of goals may not necessarily be a good thing.

Advanced Delayed Gratification (ADG) The weights are monotonically increas-
ing and no credit is given immediately for satisfying goals in the initial ex-
changes.

1Others approaches are clearly possible.

18

3.4 Optimisation Techniques

Uniform Delayed Gratification (UDG) No credit is given immediately for satis-
fying goals in the initial exchanges and later weights are equal and positive.

Destination Judgement (DJ) Only the final weights are non-zero. It does not
matter how you satisfy goals, the important thing is how many you satisfy
in the end.

3.4 Optimisation Techniques

In this paper we have used the well-established technique of simulated annealing
[KGV83], though our implementation allows rapid interchange of optimisation
techniques. The annealing approach is the standard one with a geometric cooling
rate of 0.97. The number of attempted moves at each temperature is 400, with a
maximum of 1000 iterations (temperature reductions) and maximum number of
50 consecutive unproductive iterations (i.e. with no move being accepted). In
the interests of brevity we assume the audience is familiar with the standard
annealing algorithm. A full description is given in Appendix B.

19

4 Experimental Method and Results

The original Clark-Jacob technique and supporting tools dealt only with sym-
metric key protocols. The technique and tools have now been extended to allow
symmetric, public and hybrid protocols to be synthesised. This section reports
the results of applying the extended technique described above to the derivation
of three-party key distribution protocols. The results consist of two aspects:

1. the protocols and

2. the success fractions.

This section is organised by different sorts of protocols.

4.1 Public Key Protocols

4.1.1 Initial Assumptions

Three principals involved in this key distribution protocol are A, B and S. As a
key distribution server, S holds all the other principals’ public keys and its own
private key. A and B both have the server’s public key and their own private
keys. They also maintain their own nonces that they believe to be fresh. A and B
each believes that S is to be trusted on the other’s public key. All the assumptions
are listed below.

S |≡
Ka7−→ A, S |≡

Kb7−→ B, S |≡
K−1

s7−→ S;

A |≡
Ks7−→ S, A |≡

K−1
a7−→ A, A |≡ Na, A |≡ #(Na), A |≡ S |⇒

Kb7−→ B;

B |≡
Ks7−→ S, B |≡

K−1
b7−→ B, B |≡ Nb, B |≡ #(Nb), B |≡ S |⇒

Ka7−→ A.

4.1.2 Goals

At the end of the protocol run, both A and B must believe that they hold each
other’s public key. The other two goals require that each of them believes the
other believes its public key is good.

A |≡
Kb7−→ B, B |≡

Ka7−→ A;

A |≡ B |≡
Ka7−→ A, B |≡ A |≡

Kb7−→ B.

20

4.1 Public Key Protocols

1. A→ S : {Na}K−1
a

2. S→ A :

{

A |∼ Na,
Kb7−→ B

}

K−1
s

3. B→ S : {Nb}K−1
b

4. S→ B :
{

B |∼ Nb,
Ka7−→ A

}

K−1
s

5. B→ A : {Nb}K−1
b

6. A→ B :

{

B |∼ Nb, Na,
Kb7−→ B

}

K−1
a

7. B→ A :
{

A |∼ Na,
Ka7−→ A

}

K−1
b

Figure 4.1: Public key protocol generated during experimentation

4.1.3 Results and Statistics

Twenty runs of the program were carried out for each fitness function strategy. In
our program, the annealing parameters given in section 3.4 were used. Figure 4.1
shows one of the public key protocols generated by the program.

In the rest of this paper, only the core security relevant components of a pro-
tocol are presented. That is, our descriptions of protocols do not include those
belief components that do not contribute to the predefined goals. In addition,
redundant beliefs (where the same beliefs are included twice or more in one mes-
sage) have also been removed. Currently, these ‘junk’ beliefs are removed by
hand; automating their removal is under investigation.

The search rapidly established the first two beliefs A |≡
Kb7−→ B and B |≡

Ka7−→ A

after 4 messages. In order to achieve the third goal B |≡ A |≡
Kb7−→ B, A must have

knowledge of the nonce Nb and show it to B (A sends B a message including

B |∼ Nb). In our program, sendable beliefs are either simple (e.g. Na,
Ka7−→ A are

both sendable) or else involve only one operator (e.g. A |∼ Na, S |⇒
Ka7−→ A and

so on). The only way A can acquire knowledge of Nb is to receive it in a message
from B directly. (It would be possible to obtain knowledge of Nb via S, but this
would require additional assumptions, such as A |≡ S |⇒ B |∼ Nb.)

When we input A |≡ S |⇒ B |∼ Nb and B |≡ S |⇒ A |∼ Na as two initial assump-
tions, our program generates protocols that achieve our goals (same as before)
within 6 messages. Figure 4.2 shows one of these protocols.

From an abstract logic point of view, the more beliefs included in messages the

21

4 Experimental Method and Results

1. A→ S : {Na}K−1
a

2. B→ S : {Nb}K−1
b

3. S→ A :

{

A |∼ Na, B |∼ Nb,
Kb7−→ B

}

K−1
s

4. S→ B :
{

B |∼ Nb, A |∼ Na,
Ka7−→ A

}

K−1
s

5. B→ A :
{

A |∼ Na,
Ka7−→ A

}

K−1
b

6. A→ B :

{

B |∼ Nb,
Kb7−→ B

}

K−1
a

Figure 4.2: Public key protocol with additional assumptions

Strategy Success Fraction Success Fraction
Four Beliefs Three Beliefs
Per Message Per Message

EC 0.70 0.40
UC 0.80 0.60
DG 0.90 0.60
ADG 0.85 0.60
UDG 0.80 0.40
DJ 0.05 0.05

Table 4.1: Effect on success fraction of varying numbers of fields per message

22

4.2 Public Key Protocols using Timestamps

more information the receiving principal obtains. Thus, messages with more in-
formation create a greater probability of achieving goals. We have also repeated
the above experiments allowing three beliefs per message. Table 4.1 gives the
success fractions when four and three beliefs per message are used. As we have
seen, for the original problem, in all cases except for the destination judgement
(DJ), the success fractions are decreased dramatically. Another conclusion we
can draw from these figures is that appropriate redundancy is actually very use-
ful to the optimisation approach. Moreover, DJ is clearly awful in both cases.
Some degree of reward for early achievement is clearly useful.

4.2 Public Key Protocols using Timestamps

4.2.1 Initial Assumptions

Again, three principals involved in this sort of key distribution protocol are A, B
and S, where S is a trustworthy key distribution server. Here we allow the notion
of timestamps. T is, effectively, a form of nonce shared by all parties prior to
the run of the protocol. The difference is this sort of protocol relies heavily on
synchronised clocks, since each principal believes that a timestamp generated
elsewhere is fresh (if it has a value within a window of the receiver’s local time).

A |≡
Ks7−→ S, A |≡

K−1
a7−→ A, A |≡ T, A |≡ #(T),

A |≡ S |⇒
Kb7−→ B;

B |≡
Ks7−→ S, B |≡

K−1
b7−→ B, B |≡ T, B |≡ #(T),

B |≡ S |⇒
Ka7−→ A;

S |≡
Ka7−→ A, S |≡

Kb7−→ B, S |≡
K−1

s7−→ S, S |≡ T,
S |≡ #(T).

4.2.2 Goals

We hope this sort of protocol can achieve the following four goals (as before).

A |≡
Kb7−→ B, B |≡

Ka7−→ A;

A |≡ B |≡
Ka7−→ A, B |≡ A |≡

Kb7−→ B.

4.2.3 Results and Statistics

We use the same annealing parameters as those used in subsection 4.1.3. Fig-
ure 4.3 shows one of the protocols generated by our program, and Table 4.2
shows the success fraction for each search strategy when we allow four beliefs
in each message.

23

4 Experimental Method and Results

1. S→ A :

{

T,
Kb7−→ B

}

K−1
s

2. S→ B :
{

T,
Ka7−→ A

}

K−1
s

3. B→ A :
{

T,
Ka7−→ A

}

K−1
b

4. A→ B :

{

T,
Kb7−→ B

}

K−1
a

Figure 4.3: Public key protocol using timestamps, four beliefs per message

Strategy Success Fraction

EC 0.95
UC 1.00
DG 0.90
ADG 0.65
UDG 0.85
DJ 0.60

Table 4.2: Success fractions for protocols using timestamps

24

4.3 Hybrid Protocols

4.3 Hybrid Protocols

We now attempt to evolve a protocol allowing the use of both symmetric and
public key encryption.

4.3.1 Initial Assumptions

Essentially, we aim to distribute a secret key using public key means. In this sort
of protocol, we assume that both principals A and B can communicate with the
server S via a public key. The server S will distribute a symmetric session key
that will be used in further communications between A and B.

A |≡
Ks7−→ S, A |≡

K−1
a7−→ A, A |≡ Na, A |≡ #(Na),

A |≡ S |⇒ A
Kab←→ B;

B |≡
Ks7−→ S, B |≡

K−1
b7−→ B, B |≡ Nb, B |≡ #(Nb),

B |≡ S |⇒ A
Kab←→ B;

S |≡
Ka7−→ A, S |≡

Kb7−→ B, S |≡
K−1

s7−→ S,

S |≡ A
Kab←→ B.

4.3.2 Goals

The four desired goals are:

A |≡ A
Kab←→ B, B |≡ A

Kab←→ B;

A |≡ B |≡ A
Kab←→ B, B |≡ A |≡ A

Kab←→ B.

4.3.3 Results and Statistics

Figure 4.4 shows one of the hybrid protocols generated by the program. Table 4.3
shows the success fraction for each search strategy when we allow four beliefs in
one message. When considering protocols that distribute secret information, we
assume that any signed messages are then encrypted with the public key of the
receiver as shown in Figure 4.4. This is a sound assumption that is recommended
by Anderson and Needham [AN96]. However, we can see that the nonce need
not be kept secret and so the outer encryptions (using Ks) in message 1 and 3 may
be removed. We can see that (default) other encryptions in message 2 and 4 are
necessary (to maintain confidentiality of the shared key Kab).

4.4 Extensive Experimentation

We have applied our approach to the on-line repository of security protocols “Se-
curity Protocols Open Repository” at http://www.lsv.ens-cachan.fr/spore/, which

25

4 Experimental Method and Results

1. A→ S :
{

{Na}K−1
a

}

Ks

2. S→ A :

{

{

A |∼ Na, A
Kab←→ B

}

K−1
s

}

Ka

3. B→ S :
{

{Nb}K−1
b

}

Ks

4. S→ B :

{

{

B |∼ Nb, A
Kab←→ B

}

K−1
s

}

Kb

5. B→ A : {Nb}Kab

6. A→ B :

{

B |∼ Nb, Na, A
Kab←→ B

}

Kab

7. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

Figure 4.4: A hybrid encryption protocol

Strategy Success Fraction

EC 0.80
UC 0.85
DG 0.85
ADG 0.60
UDG 0.80
DJ 0.05

Table 4.3: Success fractions for hybrid protocols

26

4.4 Extensive Experimentation

contains 45 protocols. Our program successfully synthesised 38 BAN protocols
when given the same initial assumptions and goals as they are in the original
ones. Obviously, all these 38 protocols are correct according to the BAN logic,
and the successful synthesis process itself is a proof. The remaining 7 sets of as-
sumptions and goals contain features outside of the BAN logic, and so our tool
cannot be used. There are several “variations on a theme” in the library. Often,
the assumptions and goals of these variants are the same. Thus, there may be one
abstract specification and several concrete implementations. For presentational
consistency, we have presented the concrete variants and have simply repeated
the abstract specification and the corresponding protocol we have evolved. This
gives the reader some feel for how abstract requirements can be satisfied in many
different concrete ways (and allows the reader to read each protocol individu-
ally). The 38 concrete protocols presented in the appendix correspond to 23 dis-
tinct abstract specifications.

Experimentation highlighted difficulties with repeated authentication. In a
typical repeated authentication protocol, the first (preliminary) part typically dis-
tributes a ‘ticket’ to a principal. This ticket can be used by the principal to achieve
some authentication task. This may be described as the full initial run of the pro-
tocol. However, the ticket will typically be used several more times (within a
specified lifetime). A well-known repeated authentication protocol is the Neu-
mann Stubblebine protocol given in section A.17.

The logic (and so our tools) has difficulties with the use of repeated ‘tickets’.
We have simply evolved protocols to meet the goals of the first authentication
run. It is generally possible to address the repeated parts of the protocol, pro-
vided each presentation of a ticket is regarded as ‘fresh enough’ (or simply ‘fresh’)
if its lifetime has not expired. With such an approach, the evolution of mutual
authenticating nonce exchanges is generally trivial. Nevertheless, our tools cur-
rently do not allow keys of the form Kpp (a key known only to P and used to seal
tickets to be presented repeatedly to P).

27

5 Conclusions and Further Work

The above work shows that the original Clark-Jacob approach for the symmetric
case can be successfully extended to allow public key and hybrid cryptographic
schemes. The protocols generated, although simple, are typical abstractions of
protocols in the literature. The ease with which the approach generated proto-
cols satisfying realistic goals merits further investigation of the technique. Exper-
imentation and our general knowledge of protocol verification techniques have
allowed us to identify numerous possible improvements to the approach and
tool support. These are outlined below.

A more sophisticated logic (SVO seems a promising candidate) should be adopted
to increase design choice and give greater confidence in the practical security of
evolved protocols. As far as actual freedom from security flaws is concerned, we
are very much at the mercy of the logic we choose. We have expanded the pre-
viously used subset of BAN logic to allow public key and hybrid protocols to be
evolved. We need now to address weaknesses in the BAN logic itself. Similarly,
allowing more sophisticated beliefs to be communicated in messages should al-
low a wider range of protocols to be evolved.

Non-functional properties such as efficiency are an important consideration
for most security protocol designers and should be incorporated into our design
synthesis approach. Efficiency has not been ignored completely in the current ap-
proach — the cumulative reward nature of the fitness function generally favours
shorter protocols — but this is somewhat indirect and does not address crucial
issues such as amount of encryption etc. Automatic refinement to a more de-
tailed representation (code, for example) would be a significant enhancement
and would greatly facilitate inclusion of non-functional issues.

We may need to exploit the approach taken to the fullest extent possible. The
model checking approaches [PS00a, PS00b] are distinctly limited, e.g. three or
four messages, in the size of the protocols they can produce. In this paper we
have presented seven-message protocols and some nine-message protocols were
demonstrated by Clark and Jacob[CJ01]. We currently do not know the limits of
the optimisation approaches. Earlier work [CJ01] showed that the protocol gener-
ation problem suffers from combinatorial explosion. As the complexity of the un-
derlying logic increases, so does the magnitude of the search problem. Simulated
annealing and genetic algorithms may not be the best optimisation techniques to
use. Others should be considered.

The work here shows that meta-heuristic search approaches to secure protocol
synthesis are potentially powerful and have the benefit of being rapid. Our tools
could generate candidate protocols rapidly and concrete refinements of them

28

could be subjected to more detailed and sophisticated analysis (such as that pro-
vided by current model checking approaches). This would provide an interesting
synthesis of current techniques.

Our experiments have tested the approach’s ability to generate protocols for
existing and fairly standard requirements. It seems suited to such tasks. It will
be interesting to see whether meta-heuristic approaches will be able to produce
protocols for novel or highly complex requirements. Will there be any surprises?

29

Bibliography

[AH95] D. de Werra A. Hertz, E. Taillard. A tutorial on tabu search. In Proc. of
Giornate di Lavoro AIRO’95 (Enterprise Systems: Management of Technolog-
ical and Organizational Changes), pages 13–24, Italy, 1995.

[AK88] Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural Comput-
ing. John Wiley & Sons, 1988.

[AN95] Ross Anderson and Roger Needham. Robustness principles for pub-
lic key protocols. Advances in Cryptology - CRYPTO ’95: 15th Annual
International Cryptology Conference, Lecture Notes in Computer Science,
963:236–247, 1995.

[AN96] Martı́n Abadi and Roger Needham. Prudent engineering practice
for cryptographic protocols. IEEE Transactions on Software Engineering,
22(1):6–15, 1996.

[And01] Ross Anderson. Security Engineering. John Wiley & Sons, 2001.

[BAN89] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of au-
thentication. Technical Report 39, Digital Systems Research Center,
February 1989.

[BAN90] Michael Burrows, Martı́n Abadi, and Roger Needham. The scope of a
logic of authentication. Technical Report 39, Digital Systems Research
Center, February 1990.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems (Santa Fe Institute Studies on the Sciences
of Complexity). Oxford University Press Inc, USA; ISBN: 0195131592,
1999. ISBN: 0195131592.

[BM93] Colin Boyd and Wenbo Mao. On a limitation of BAN logic. In Advances
in Cryptology - EUROCRYPT ’93: Workshop on the Theory and Application
of Cryptographic Techniques, Lecture Notes in Computer Science, volume
765, pages 240–247, 1993.

30

Bibliography

[CJ97] John A. Clark and Jeremy L. Jacob. A survey of authentication pro-
tocol literature, 1997. Available as http://www-users.cs.york.ac.uk/∼jac/
papers/drareview.ps.gz.

[CJ00] John A. Clark and Jeremy L. Jacob. Search for a solution: Engineering
tradeoffs and the evolution of provably secure protocols. In Proceedings
of 2000 IEEE Symposium on Research in Security and Privacy, pages 82–95.
IEEE Computer Society, May 2000.

[CJ01] John A. Clark and Jeremy L. Jacob. Protocols are programs too: the
meta-heuristic search for security protocols. Information and Software
Technology, 43(14):891–904, December 2001.

[Cla02] John A. Clark. Metaheuristic Search as a Cryptological Tool. PhD thesis,
University of York, 2002.

[DS81] Dorothy Denning and G. Sacco. Timestamps in key distribution proto-
cols. Communications of the ACM, 24(8), August 1981.

[GNY90] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning about be-
lief in cryptographic protocols. In Proceedings of 1990 IEEE Symposium
on Research in Security and Privacy, pages 234–248. IEEE Computer Soci-
ety, May 1990.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[Gon91] Li Gong. Handling infeasible specifications of cryptographic protocols.
In Proceedings of The 4th IEEE Computer Security Foundations Workshop,
pages 99–102. IEEE Computer Society, June 1991.

[HLS00] James Heather, Gavin Lowe, and Steve Schneider. How to prevent
type flaw attacks on security protocols. In Proceedings of The 13th Com-
puter Security Foundations Workshop, pages 32–43. IEEE Computer Soci-
ety Press, July 2000.

[KGV83] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[Low99] Gavin Lowe. Towards a completeness result for model checking of
security protocols. In Proceedings of The 11th Computer Security Founda-
tions Workshop. IEEE Computer Society Press, June 1999.

[MCJ97] Will Marrero, Edmund Clarke, and Somesh Jha. Model checking for
security protocols. Technical Report CMU-CS-97-139, Carnegie Mellon
University, May 1997.

31

Bibliography

[MSN94] A. Mathuria, R. SafaviNaini, and P. Nickolas. Some remarks on the
logic of Gong, Needham and Yahalom. In Proceedings of International
Computer Symposium 1994, volume 1, pages 303–308, December 1994.

[MSN95] A. Mathuria, R. SafaviNaini, and P. Nickolas. On the automation of
GNY logic. In Proceedings of the 18th Australian Computer Science Confer-
ence, volume 17, pages 370–379, February 1995.

[NS78] Roger Needham and Michael Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of the ACM,
21(12), December 1978.

[PS00a] Adrian Perrig and Dawn Song. A first step towards the automatic gen-
eration of security protocols. In Proceedings of Network and Distributed
System Security 2000, pages 73–83, February 2000.

[PS00b] Adrian Perrig and Dawn Song. Looking for diamonds in the desert –
extending automatic protocol generation to three-party authentication
and key agreement protocols. In Proceedings of The 13th IEEE Computer
Security Foundations Workshop. IEEE Computer Society, July 2000.

[Ree95] Colin Reeves. Modern Heuristic Techniques for Combinatorial Problems.
McGraw-Hill Book Company Europe, 1995.

[SC01] Paul Syverson and Iliano Cervesato. The logic of authentication pro-
tocols. Foundations of Security Analysis and Design : Tutorial Lectures,
Lecture Notes in Computer Science, 2171:63–136, 2001.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, second edi-
tion, 1996.

[SvO96] Paul F. Syverson and Paul C. van Oorschot. A unified cryptographic
protocol logic, 1996. NRL Publication 5540–227, Naval Research Lab.

[Vas01] Boris W. Vassall. A look at automatic protocol generation & security
protocols, July 2001. Available as http://www.sans.org/rr/protocols/auto.
php.

32

A Results on Protocols Library

This appendix documents the results of our successful attempts to synthesise
protocols from the Clark-Jacob protocol library [CJ97]. For each of the 38 proto-
cols considered we first present the protocol in ‘standard notation’, reflecting the
data contents of messages in successful completing protocols. We then provide
the assumptions and goals (i.e. the requirements specification) of the protocol ex-
pressed in BAN logic. These have been reverse engineered by the authors. They
seem highly plausible given our knowledge of protocols in general and of exam-
ples in the literature where BAN logic has been applied. We then present the
belief logic representation of one of the protocols evolved to meet the specifica-
tion using our automated heuristic search procedures. Occasionally, additional
comments are provided for clarification of important issues.

A.1 Andrew Secure RPC

1. A→ B : A, {Na}Kab

2. B→ A : {Na + 1, Nb}Kab

3. A→ B : {Nb + 1}Kab

4. B→ A : {K′ab}Kab

Assumptions Standard A |≡ A
Kab←→ B

A |≡ Na

A |≡ #(Na)

A |≡ B |⇒ A
K′ab←→ B

B |≡ A
Kab←→ B

B |≡ Nb

B |≡ #(Nb)

B |≡ A
K′ab←→ B

Desired Goals Standard A |≡ A
K′ab←→ B

A |≡ B |≡ A
K′ab←→ B

Additional B |≡ A |≡ B |∼ Nb

33

A Results on Protocols Library

Comment The protocol fails to satisfy its desired goals. After a run of this
protocol, each principal is aware that the other exists, but no more. (We use
B |≡ A |≡ B |∼ Nb to ensure that B knows A exists. Actually, B ought to be en-
sured that A really exists before B generates and sends out a new session key.
However, BAN and Lowe ignored this condition when they modified this proto-
col.)

34

A.1 Andrew Secure RPC

BAN Protocol generated by our program

1. B→ A : {Nb}Kab

2. A→ B : {Na, B |∼ Nb}Kab

3. B→ A :

{

A |∼ Na, A
K′ab←→ B

}

Kab

35

A Results on Protocols Library

A.2 BAN Modified Andrew Secure RPC

1. A→ B : A, {Na}Kab

2. B→ A : {Na + 1, Nb}Kab

3. A→ B : {Nb + 1}Kab

4. B→ A : {K′ab, Na}Kab

Assumptions Standard A |≡ A
Kab←→ B

A |≡ Na

A |≡ #(Na)

A |≡ B |⇒ A
K′ab←→ B

B |≡ A
Kab←→ B

B |≡ Nb

B |≡ #(Nb)

B |≡ A
K′ab←→ B

Desired Goals Standard A |≡ A
K′ab←→ B

A |≡ B |≡ A
K′ab←→ B

Additional B |≡ A |≡ B |∼ Nb

Comment Compared to the original protocol, this modified version does not
modify the initial assumptions and desired goals. For this reason, our program
gives the same solution.

BAN Protocol generated by our program

1. B→ A : {Nb}Kab

2. A→ B : {Na, B |∼ Nb}Kab

3. B→ A :

{

A |∼ Na, A
K′ab←→ B

}

Kab

36

A.3 BAN Concrete Andrew Secure RPC

A.3 BAN Concrete Andrew Secure RPC

1. A→ B : A, Na

2. B→ A : {Na, K′ab}Kab

3. A→ B : {Na}K′ab

4. B→ A : Nb

Assumptions Standard A |≡ A
Kab←→ B

A |≡ Na

A |≡ #(Na)

A |≡ B |⇒ A
K′ab←→ B

B |≡ A
Kab←→ B

B |≡ Nb

B |≡ #(Nb)

B |≡ A
K′ab←→ B

Additional B |≡ #(A
K′ab←→ B)

Desired Goals Standard A |≡ A
K′ab←→ B

A |≡ B |≡ A
K′ab←→ B

B |≡ A |≡ A
K′ab←→ B

BAN Protocol generated by our program

1. A→ B : {Na}Kab

2. B→ A :

{

A |∼ Na, A
K′ab←→ B

}

Kab

3. A→ B :

{

A
K′ab←→ B

}

Kab

37

A Results on Protocols Library

A.4 Lowe Modified Andrew Secure RPC

1. A→ B : A, Na

2. B→ A : {Na, K′ab, B}Kab

3. A→ B : {Na}K′ab

4. B→ A : Nb

Assumptions Standard A |≡ A
Kab←→ B

A |≡ Na

A |≡ #(Na)

A |≡ B |⇒ A
K′ab←→ B

B |≡ A
Kab←→ B

B |≡ Nb

B |≡ #(Nb)

B |≡ A
K′ab←→ B

Additional B |≡ #(A
K′ab←→ B)

Desired Goals Standard A |≡ A
K′ab←→ B

A |≡ B |≡ A
K′ab←→ B

B |≡ A |≡ A
K′ab←→ B

BAN Protocol generated by our program (same as before)

1. A→ B : {Na}Kab

2. B→ A :

{

A |∼ Na, A
K′ab←→ B

}

Kab

3. A→ B :

{

A
K′ab←→ B

}

Kab

38

A.5 CCITT X.509 (1)

A.5 CCITT X.509 (1)

1. A→ B : A,
{

Ta, Na, B, Xa, {Ya}Kb

}

K−1
a

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Kb7−→ B

B |≡
K−1

b7−→ B

B |≡
Ka7−→ A

A |≡ Ta

A |≡ #(Ta)
B |≡ Ta

B |≡ #(Ta)

A |≡ A
Ya
⇀↽ B

A |≡ Xa

Additional A |≡ Na

A |≡ #(Na)

Desired Goals Standard B |≡ A |≡ A
Ya
⇀↽ B

B |≡ A |≡ Xa

Comment Ta used here means a timestamp generated by principal A. When
B receives it, B will check whether this timestamp is ‘fresh’ or not. We use
B |≡ #(Ta) to indicate this point.

We can see that the two additional assumptions, which are used in the original
protocol, seem no obvious security purpose.

BAN Protocol generated by our program

1. A→ B :

{

{

Ta, Xa, A
Ya
⇀↽ B

}

K−1
a

}

Kb

39

A Results on Protocols Library

A.6 CCITT X.509 (1c)

1. A→ B : A,

{

Ta, Na, B, Xa,
{

Ya, {h(Ya)}K−1
a

}

Kb

}

K−1
a

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Kb7−→ B

B |≡
K−1

b7−→ B

B |≡
Ka7−→ A

A |≡ Ta

A |≡ #(Ta)
B |≡ Ta

B |≡ #(Ta)

A |≡ A
Ya
⇀↽ B

A |≡ Xa

Additional A |≡ Na

A |≡ #(Na)

Desired Goals Standard B |≡ A |≡ A
Ya
⇀↽ B

B |≡ A |≡ Xa

BAN Protocol generated by our program (same as before)

1. A→ B :

{

{

Ta, Xa, A
Ya
⇀↽ B

}

K−1
a

}

Kb

40

A.7 CCITT X.509 (3)

A.7 CCITT X.509 (3)

1. A→ B : A,
{

Ta, Na, B, Xa, {Ya}Kb

}

K−1
a

2. B→ A : B,
{

Tb, Nb, A, Na, Xb, {Yb}Ka

}

K−1
b

3. A→ B : A, {Nb}K−1
a

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Kb7−→ B

B |≡
K−1

b7−→ B

B |≡
Ka7−→ A

A |≡ Ta

A |≡ #(Ta)
A |≡ Tb

A |≡ #(Tb)
B |≡ Ta

B |≡ #(Ta)
B |≡ Tb

B |≡ #(Tb)

A |≡ A
Ya
⇀↽ B

B |≡ A
Yb
⇀↽ B

A |≡ Xa

B |≡ Xb

Additional A |≡ Na

A |≡ #(Na)
B |≡ Nb

B |≡ #(Nb)

Desired Goals Standard A |≡ B |≡ A
Yb
⇀↽ B

B |≡ A |≡ A
Ya
⇀↽ B

A |≡ B |≡ Xb

B |≡ A |≡ Xa

41

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ B :

{

{

Ta, Xa, A
Ya
⇀↽ B

}

K−1
a

}

Kb

2. B→ A :

{

{

Tb, Xb, A
Yb
⇀↽ B

}

K−1
b

}

Ka

Comment The outer encryption for Message 1 is unnecessary, and maybe re-
moved (Na is not a secret).

42

A.8 BAN modified version of CCITT X.509 (3)

A.8 BAN modified version of CCITT X.509 (3)

1. A→ B : A,
{

Na, B, Xa, {Ya}Kb

}

K−1
a

2. B→ A : B,
{

Nb, A, Na, Xb, {Yb}Ka

}

K−1
b

3. A→ B : A, {B, Nb}K−1
a

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Kb7−→ B

B |≡
K−1

b7−→ B

B |≡
Ka7−→ A

A |≡ A
Ya
⇀↽ B

B |≡ A
Yb
⇀↽ B

A |≡ Xa

B |≡ Xb

Additional A |≡ Na

A |≡ #(Na)
B |≡ Nb

B |≡ #(Nb)

Desired Goals Standard A |≡ B |≡ A
Yb
⇀↽ B

B |≡ A |≡ A
Ya
⇀↽ B

A |≡ B |≡ Xb

B |≡ A |≡ Xa

BAN Protocol generated by our program

1. A→ B :
{

{Na}K−1
a

}

Kb

2. B→ A :

{

{

A |∼ Na, Nb, Xb, A
Yb
⇀↽ B

}

K−1
b

}

Ka

3. A→ B :

{

{

B |∼ Nb, Xa, A
Ya
⇀↽ B

}

K−1
a

}

Kb

43

A Results on Protocols Library

A.9 Denning-Sacco Shared Key

1. A→ S : A, B

2. S→ A :
{

B, Kab, T, {Kab, A, T}Kbs

}

Kas

3. A→ B : {Kab, A, T}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ T
A |≡ #(T)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ T
B |≡ #(T)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

S |≡ T
S |≡ #(T)

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

BAN Protocol generated by our program

1. S→ A :

{

T, A
Kab←→ B

}

Kas

2. S→ B :

{

T, A
Kab←→ B

}

Kbs

44

A.10 Lowe Modified Denning-Sacco Shared Key

A.10 Lowe Modified Denning-Sacco Shared Key

1. A→ S : A, B

2. S→ A :
{

B, Kab, T, {Kab, A, T}Kbs

}

Kas

3. A→ B : {Kab, A, T}Kbs

4. B→ A : {Nb}Kab

5. A→ B : {Nb − 1}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ T
A |≡ #(T)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ T
B |≡ #(T)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

S |≡ T
S |≡ #(T)

Additional B |≡ Nb

B |≡ #(Nb)

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ B |≡ A
Kab←→ B

Comment The additional goal is certainly not met by the protocol because A
cannot recognise the nonce Nb. It is interesting to note that our evolved protocol
uses only timestamps (ignores the nonce Nb).

45

A Results on Protocols Library

BAN Protocol generated by our program

1. S→ A :

{

T, A
Kab←→ B

}

Kas

2. S→ B :

{

T, A
Kab←→ B

}

Kbs

3. B→ A :

{

T, A
Kab←→ B

}

Kab

f rom B

4. A→ B :

{

T, A
Kab←→ B

}

Kab

f rom A

46

A.11 Kao Chow Authentication v.1

A.11 Kao Chow Authentication v.1

1. A→ S : A, B, Na

2. S→ B : {A, B, Na, Kab}Kas
, {A, B, Na, Kab}Kbs

3. B→ A : {A, B, Na, Kab}Kas
, {Na}Kab

, Nb

4. A→ B : {Nb}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Additional B |≡ #(A
Kab←→ B)

B |≡ S |⇒ A |∼ Na

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Comment Obviously, the additional assumption B |≡ #(A
Kab←→ B) might cause

a replay/freshness attack.

47

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. S→ B :

{

A |∼ Na, A
Kab←→ B

}

Kbs

4. B→ A :

{

Nb, A |∼ Na, A
Kab←→ B

}

Kab

5. A→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kab

48

A.12 Kao Chow Authentication v.2

A.12 Kao Chow Authentication v.2

1. A→ S : A, B, Na

2. S→ B : {A, B, Na, Kab, Kt}Kas
, {A, B, Na, Kab, Kt}Kbs

3. B→ A : B, {A, B, Na, Kab, Kt}Kas
, {Na, Kab}Kt

, Nb

4. A→ B : {Nb, Kab}Kt

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

S |≡ A
Kt←→ B

Additional B |≡ #(A
Kt←→ B)

B |≡ S |⇒ A |∼ Na

A |≡ S |⇒ A
Kt←→ B

B |≡ S |⇒ A
Kt←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ A
Kt←→ B

B |≡ A
Kt←→ B

Comment Kt is an additional fresh symmetric key whose purpose is to prevent
a freshness attack in Kao Chow Authentication v.1. However, we can see that the

additional assumption B |≡ #(A
Kt←→ B) might cause a replay/freshness attack

as well as the first version of this protocol.

49

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B, A

Kt←→ B

}

Kas

3. S→ B :

{

A |∼ Na, A
Kab←→ B, A

Kt←→ B

}

Kbs

4. B→ A :

{

Nb, A |∼ Na, A
Kab←→ B

}

Kt

5. A→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kt

50

A.13 Kao Chow Authentication v.3

A.13 Kao Chow Authentication v.3

1. A→ S : A, B, Na

2. S→ B : {A, B, Na, Kab, Kt}Kas
, {A, B, Na, Kab, Kt}Kbs

3. B→ A : {A, B, Na, Kab, Kt}Kas
, {Na, Kab}Kt

, Nb, {A, B, T, Kab}Kbs

4. A→ B : {Nb, Kab}Kt
, {A, B, T, Kab}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

B |≡ T
B |≡ #(T)

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

S |≡ A
Kt←→ B

Additional B |≡ #(A
Kt←→ B)

B |≡ S |⇒ A |∼ Na

A |≡ S |⇒ A
Kt←→ B

B |≡ S |⇒ A
Kt←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ A
Kt←→ B

B |≡ A
Kt←→ B

51

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B, A

Kt←→ B

}

Kas

3. S→ B :

{

A |∼ Na, A
Kab←→ B, A

Kt←→ B

}

Kbs

4. B→ A :

{

Nb, A |∼ Na, A
Kab←→ B

}

Kt

5. A→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kt

52

A.14 Kerberos V5

A.14 Kerberos V5

(A simplified version from [BAN89])

1. A→ S : A, B

2. S→ A :
{

Ts, L, Kab, B, {Ts, L, Kab, A, }Kbs

}

Kas

3. A→ B : {Ts, L, Kab, A, }Kbs
, {A, Ta}Kab

4. B→ A : {Ta + 1}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ #(Ts, L)

A |≡ S |⇒ A
Kab←→ B

A |≡ Ta

A |≡ #(Ta)

B |≡ B
Kbs←→ S

B |≡ #(Ts, L)
B |≡ #(Ta)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

S |≡ (Ts, L)
S |≡ #(Ts, L)

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

53

A Results on Protocols Library

BAN Protocol generated by our program

1. S→ A :

{

Ts, L, A
Kab←→ B

}

Kas

2. S→ B :

{

Ts, L, A
Kab←→ B

}

Kbs

3. A→ B :

{

Ta, A
Kab←→ B

}

Kab

4. B→ A :

{

A |∼ Ta, A
Kab←→ B

}

Kab

54

A.15 KSL

A.15 KSL

1. A→ B : Na, A

2. B→ S : Na, A, Nb, B

3. S→ B : {Nb, A, Kab}Kbs
, {Na, B, Kab}Kas

4. B→ A : {Na, B, Kab}Kas
, {Tb, A, Kab}Kbb

, Nc, {Na}Kab

5. A→ B : {Nc}Kab

6. A→ B : Ma, {Tb, A, Kab}Kbb

7. B→ A : Mb, {Ma}Kab

8. A→ B : {Mb}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Comment In message 4, B generates a new ticket {Tb, A, Kab}Kbb
. B will accept

this ticket in message 6 before the timestamp expires. This is called repeated au-
thentication. However, BAN logic does not provide appropriate logical notations
and postulates for reasoning about repeated authentication. The BAN protocol
below generated by our program only deals with the key distribution part of the
original protocol and one-off authentication.

55

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. B→ S : {Nb}Kbs

4. S→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kbs

5. B→ A : {Nb}Kab

6. A→ B :

{

B |∼ Nb, Na, A
Kab←→ B

}

Kab

7. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

56

A.16 Lowe Modified KSL

A.16 Lowe Modified KSL

1. A→ B : Na, A

2. B→ S : Na, A, Nb, B

3. S→ B : {Nb, A, Kab}Kbs
, {Na, B, Kab}Kas

4. B→ A : {Na, B, Kab}Kas
, {Tb, A, Kab}Kbb

, Nc, {B, Na}Kab

5. A→ B : {Nc}Kab

6. A→ B : Ma, {Tb, A, Kab}Kbb

7. B→ A : Mb, {Ma, B}Kab

8. A→ B : {A, Mb}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

57

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. B→ S : {Nb}Kbs

4. S→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kbs

5. B→ A : {Nb}Kab

6. A→ B :

{

B |∼ Nb, Na, A
Kab←→ B

}

Kab

7. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

Comment Again, we have evolved a protocol to meet only the goals of the key
distribution part.

58

A.17 Neumann Stubblebine

A.17 Neumann Stubblebine

1. A→ B : A, Na

2. B→ S : B, {A, Na, Tb}Kbs
, Nb

3. S→ A : {B, Na, Kab, Tb}Kas
, {A, Kab, Tb}Kbs

, Nb

4. A→ B : {A, Kab, Tb}Kbs
, {Nb}Kab

5. A→ B : Ma, {A, Kab, Tb}Kbs

6. B→ A : Mb, {Ma}Kab

7. A→ B : {Mb}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)
B |≡ Tb

B |≡ #(Tb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Comment This protocol provides repeated authentication as well as KSL pro-
tocol. We generate only the key distribution part of the original protocol and
one-off authentication.

59

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. B→ S : {Tb}Kbs

4. S→ B :

{

B |∼ Tb, A
Kab←→ B

}

Kbs

5. B→ A : {Nb}Kab

6. A→ B :

{

B |∼ Nb, Na, A
Kab←→ B

}

Kab

7. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

60

A.18 Hwang Modified Neumann Stubblebine

A.18 Hwang Modified Neumann Stubblebine

1. A→ B : A, Na

2. B→ S : B, {A, Na, Tb, Nb}Kbs

3. S→ A : {B, Na, Kab, Tb}Kas
, {A, Kab, Tb}Kbs

, Nb

4. A→ B : {A, Kab, Tb}Kbs
, {Nb}Kab

5. A→ B : Ma, {A, Kab, Tb}Kbs

6. B→ A : Mb, {Ma}Kab

7. A→ B : {Mb}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)
B |≡ Tb

B |≡ #(Tb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

61

A Results on Protocols Library

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. B→ S : {Tb}Kbs

4. S→ B :

{

B |∼ Tb, A
Kab←→ B

}

Kbs

5. B→ A : {Nb}Kab

6. A→ B :

{

B |∼ Nb, Na, A
Kab←→ B

}

Kab

7. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

Comment As before, we model only the distribution part of the protocol.

62

A.19 Needham-Schroeder Public Key

A.19 Needham-Schroeder Public Key

1. A→ S : A, B

2. S→ A : {Kb, B}K−1
s

3. A→ B : {Na, A}Kb

4. B→ S : B, A

5. S→ B : {Ka, A}K−1
s

6. B→ A : {Na, Nb}Ka

7. A→ B : {Nb}Kb

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Ks7−→ S

A |≡
Ka7−→ A

A |≡ Na

A |≡ #(Na)

B |≡
K−1

b7−→ S

B |≡
Ks7−→ S

B |≡
Kb7−→ B

B |≡ Nb

B |≡ #(Nb)

S |≡
K−1

s7−→ S

S |≡
Ka7−→ A

S |≡
Kb7−→ B

A |≡ S |⇒
Kb7−→ B

B |≡ S |⇒
Ka7−→ A

A |≡ A
Na
⇀↽ B

B |≡ A
Nb
⇀↽ B

Additional A |≡ #(
Kb7−→ B)

B |≡ #(
Ka7−→ A)

Desired Goals Standard A |≡
Kb7−→ B

B |≡
Ka7−→ A

A |≡ B |≡ A
Nb
⇀↽ B

B |≡ A |≡ A
Na
⇀↽ B

63

A Results on Protocols Library

Comment The two additional assumptions represent a weakness in the proto-
col.

BAN Protocol generated by our program

1. S→ A :

{

{

Kb7−→ B

}

K−1
s

}

Ka

2. S→ B :

{

{

Ka7−→ A
}

K−1
s

}

Kb

3. B→ A :

{

{

Kb7−→ B, A
Nb
⇀↽ B

}

K−1
b

}

Ka

4. A→ B :

{

{

Ka7−→ A, A
Na
⇀↽ B

}

K−1
a

}

Kb

The first two outer encryptions are unnecessary (but our technique is conserva-
tive).

64

A.20 Lowe’s fixed version of Needham-Schroeder Public Key

A.20 Lowe’s fixed version of Needham-Schroeder

Public Key

1. A→ S : A, B

2. S→ A : {Kb, B}K−1
s

3. A→ B : {Na, A}Kb

4. B→ S : B, A

5. S→ B : {Ka, A}K−1
s

6. B→ A : {Na, Nb, B}Ka

7. A→ B : {Nb}Kb

65

A Results on Protocols Library

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Ks7−→ S

A |≡
Ka7−→ A

A |≡ Na

A |≡ #(Na)

B |≡
K−1

b7−→ S

B |≡
Ks7−→ S

B |≡
Kb7−→ B

B |≡ Nb

B |≡ #(Nb)

S |≡
K−1

s7−→ S

S |≡
Ka7−→ A

S |≡
Kb7−→ B

A |≡ S |⇒
Kb7−→ B

B |≡ S |⇒
Ka7−→ A

A |≡ A
Na
⇀↽ B

B |≡ A
Nb
⇀↽ B

Additional A |≡ #(
Kb7−→ B)

B |≡ #(
Ka7−→ A)

Desired Goals Standard A |≡
Kb7−→ B

B |≡
Ka7−→ A

A |≡ B |≡ A
Nb
⇀↽ B

B |≡ A |≡ A
Na
⇀↽ B

Comment Again, the two additional assumptions represent a weakness in the
protocol. The first two outer encryptions in the BAN protocol below are unneces-
sary.

66

A.20 Lowe’s fixed version of Needham-Schroeder Public Key

BAN Protocol generated by our program

1. S→ A :

{

{

Kb7−→ B

}

K−1
s

}

Ka

2. S→ B :

{

{

Ka7−→ A
}

K−1
s

}

Kb

3. B→ A :

{

{

Kb7−→ B, A
Nb
⇀↽ B

}

K−1
b

}

Ka

4. A→ B :

{

{

Ka7−→ A, A
Na
⇀↽ B

}

K−1
a

}

Kb

67

A Results on Protocols Library

A.21 Needham-Schroeder Symmetric Key

1. A→ S : A, B, Na

2. S→ A :
{

Na, B, Kab, {Kab, A}Kbs

}

Kas

3. A→ B : {Kab, A}Kbs

4. B→ A : {Nb}Kab

5. A→ B : {Nb − 1}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Additional B |≡ #(A
Kab←→ B)

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Comment Obviously, the additional assumption used in this protocol is un-
usual and leads to the very well-known Denning-Sacco freshness attack. From
the BAN protocol below, we can see that the technique avails itself of the dubious
additional freshness assumption in much the same way as the original protocol.

68

A.21 Needham-Schroeder Symmetric Key

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. S→ B :

{

A
Kab←→ B

}

Kbs

4. A→ B :

{

Na, A
Kab←→ B

}

Kab

5. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

69

A Results on Protocols Library

A.22 Amended Needham-Schroeder Symmetric Key

1. A→ B : A

2. B→ A : {A, Nb}Kbs

3. A→ S : A, B, Na, {A, Nb}Kbs

4. S→ A :
{

Na, B, Kab, {Kab, Nb, A}Kbs

}

Kas

5. A→ B : {Kab, Nb, A}Kbs

6. B→ A : {Nb}Kab

7. A→ B : {Nb − 1}Kab

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)

B |≡ S |⇒ A
Kab←→ B

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

70

A.22 Amended Needham-Schroeder Symmetric Key

BAN Protocol generated by our program

1. A→ S : {Na}Kas

2. S→ A :

{

A |∼ Na, A
Kab←→ B

}

Kas

3. B→ S : {Nb}Kbs

4. S→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kbs

5. B→ A : {Nb}Kab

6. A→ B :

{

B |∼ Nb, Na, A
Kab←→ B

}

Kab

7. B→ A :

{

A |∼ Na, A
Kab←→ B

}

Kab

71

A Results on Protocols Library

A.23 Otway Rees

1. A→ B : Nc, {Na, Nc}Kas

2. B→ S : Nc, {Na, Nc}Kas
, {Nb, Nc}Kbs

3. S→ B : Nc, {Na, Kab}Kas
, {Nb, Kab}Kbs

4. B→ A : Nc, {Na, Kab}Kas

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Na

A |≡ #(Na)
A |≡ Nc

A |≡ #(Nc)
A |≡ S |⇒ B |∼ X

A |≡ S |⇒ A
Kab←→ B

B |≡ B
Kbs←→ S

B |≡ Nb

B |≡ #(Nb)
B |≡ Nc

B |≡ S |⇒ A
Kab←→ B

B |≡ S |⇒ A |∼ X

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

A |≡ B |≡ Nc

B |≡ A |∼ Nc

Comment A |≡ S |⇒ B |∼ X and B |≡ S |⇒ A |∼ X indicate the trust that A and
B have in the server to forward a message from the other client honestly.

72

A.23 Otway Rees

BAN Protocol generated by our program

1. A→ S : {Na, Nc}Kas

2. B→ S : {Nb, Nc}Kbs

3. S→ A :

{

A |∼ Na, B |∼ Nc, A
Kab←→ B

}

Kas

4. S→ B :

{

B |∼ Nb, A |∼ Nc, A
Kab←→ B

}

Kbs

73

A Results on Protocols Library

A.24 SPLICE/AS

1. A→ S : A, B, Na

2. S→ A : S, {S, A, Na, Kb}K−1
s

3. A→ B : A, B,
{

A, (T, L), {N2}Kb

}

K−1
a

4. B→ S : B, A, Nb

5. S→ B : S, {S, B, Nb, Ka}K−1
s

6. B→ A : B, A, {B, N2 + 1}Ka

74

A.24 SPLICE/AS

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Ks7−→ S

B |≡
K−1

b7−→ B

B |≡
Ks7−→ S

S |≡
K−1

s7−→ S

S |≡
Ka7−→ A

S |≡
Kb7−→ B

A |≡ (T, L)
A |≡ Na

A |≡ #(Na)
B |≡ Nb

B |≡ #(Nb)

A |≡ S |⇒
Kb7−→ B

B |≡ S |⇒
Ka7−→ A

Additional A |≡ A
N2
⇀↽ B

A |≡ #(A
N2
⇀↽ B)

B |≡ A |⇒ A
N2
⇀↽ B

B |≡ #(T, L)
S |≡ Na

S |≡ Nb

Desired Goals Standard B |≡ A
N2
⇀↽ B

A |≡ B |≡ A
N2
⇀↽ B

B |≡ A |≡ A
N2
⇀↽ B

Additional A |≡
Kb7−→ B

B |≡
Ka7−→ A

Comment To model the effect of plaintext message (1) and (4), of the original
protocol, we additionally assumed S |≡ Na and S |≡ Nb.

75

A Results on Protocols Library

BAN Protocol generated by our program

1. S→ A :

{

{

Na,
Kb7−→ B

}

K−1
s

}

Ka

2. S→ B :

{

{

Nb,
Ka7−→ A

}

K−1
s

}

Kb

3. A→ B :

{

{

(T, L), A
N2
⇀↽ B

}

K−1
a

}

Kb

4. B→ A :

{

{

A
N2
⇀↽ B

}

K−1
b

}

Ka

76

A.25 Hwang and Chen Modified SPLICE/AS

A.25 Hwang and Chen Modified SPLICE/AS

1. A→ S : A, B, Na

2. S→ A : S, {S, A, Na, B, Kb}K−1
s

3. A→ B : A, B,
{

A, (T, L), {N2}Kb

}

K−1
a

4. B→ S : B, A, Nb

5. S→ B : S, {S, B, Nb, A, Ka}K−1
s

6. B→ A : B, A, {B, N2 + 1}Ka

77

A Results on Protocols Library

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Ks7−→ S

B |≡
K−1

b7−→ B

B |≡
Ks7−→ S

S |≡
K−1

s7−→ S

S |≡
Ka7−→ A

S |≡
Kb7−→ B

A |≡ (T, L)
A |≡ Na

A |≡ #(Na)
B |≡ Nb

B |≡ #(Nb)

A |≡ S |⇒
Kb7−→ B

B |≡ S |⇒
Ka7−→ A

Additional A |≡ A
N2
⇀↽ B

A |≡ #(A
N2
⇀↽ B)

B |≡ A |⇒ A
N2
⇀↽ B

B |≡ #(T, L)
S |≡ Na

S |≡ Nb

Desired Goals Standard B |≡ A
N2
⇀↽ B

A |≡ B |≡ A
N2
⇀↽ B

B |≡ A |≡ A
N2
⇀↽ B

Additional A |≡
Kb7−→ B

B |≡
Ka7−→ A

Comment Our program gives the same BAN protocol as before.

78

A.25 Hwang and Chen Modified SPLICE/AS

BAN Protocol generated by our program

1. S→ A :

{

{

Na,
Kb7−→ B

}

K−1
s

}

Ka

2. S→ B :

{

{

Nb,
Ka7−→ A

}

K−1
s

}

Kb

3. A→ B :

{

{

(T, L), A
N2
⇀↽ B

}

K−1
a

}

Kb

4. B→ A :

{

{

A
N2
⇀↽ B

}

K−1
b

}

Ka

79

A Results on Protocols Library

A.26 Clark and Jacob modified modified SPLICE/AS

1. A→ S : A, B, Na

2. S→ A : S, {S, A, Na, B, Kb}K−1
s

3. A→ B : A, B,
{

(T, L), {A, N2}Kb

}

K−1
a

4. B→ S : B, A, Nb

5. S→ B : S, {S, B, Nb, A, Ka}K−1
s

6. B→ A : B, A, {N2 + 1}Ka

80

A.26 Clark and Jacob modified modified SPLICE/AS

Assumptions Standard A |≡
K−1

a7−→ A

A |≡
Ks7−→ S

B |≡
K−1

b7−→ B

B |≡
Ks7−→ S

S |≡
K−1

s7−→ S

S |≡
Ka7−→ A

S |≡
Kb7−→ B

A |≡ (T, L)
A |≡ Na

A |≡ #(Na)
B |≡ Nb

B |≡ #(Nb)

A |≡ S |⇒
Kb7−→ B

B |≡ S |⇒
Ka7−→ A

Additional A |≡ A
N2
⇀↽ B

A |≡ #(A
N2
⇀↽ B)

B |≡ A |⇒ A
N2
⇀↽ B

B |≡ #(T, L)
S |≡ Na

S |≡ Nb

Desired Goals Standard B |≡ A
N2
⇀↽ B

A |≡ B |≡ A
N2
⇀↽ B

B |≡ A |≡ A
N2
⇀↽ B

Additional A |≡
Kb7−→ B

B |≡
Ka7−→ A

Comment For all SPLICE/AS protocols, our program gives the same BAN pro-
tocol.

81

A Results on Protocols Library

BAN Protocol generated by our program

1. S→ A :

{

{

Na,
Kb7−→ B

}

K−1
s

}

Ka

2. S→ B :

{

{

Nb,
Ka7−→ A

}

K−1
s

}

Kb

3. A→ B :

{

{

(T, L), A
N2
⇀↽ B

}

K−1
a

}

Kb

4. B→ A :

{

{

A
N2
⇀↽ B

}

K−1
b

}

Ka

82

A.27 Wide Mouthed Frog

A.27 Wide Mouthed Frog

1. A→ S : A, {Ta, B, Kab}Kas

2. S→ B : {Ts, A, Kab}Kbs

Assumptions Standard A |≡ A
Kab←→ B

A |≡ A
Kas←→ S

A |≡ Ta

B |≡ B
Kbs←→ S

B |≡ #(Ts)

B |≡ A |⇒ A
Kab←→ B

B |≡ S |⇒ (A |≡ A
Kab←→ B)

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ Ts

S |≡ #(Ta)

Desired Goals Standard B |≡ A
Kab←→ B

BAN Protocol generated by our program

1. A→ S :

{

Ta, A
Kab←→ B

}

Kas

2. S→ B :

{

Ts, A |≡ A
Kab←→ B

}

Kbs

83

A Results on Protocols Library

A.28 Lowe Modified Wide Mouthed Frog

1. A→ S : A, {Ta, B, Kab}Kas

2. S→ B : {Ts, A, Kab}Kbs

3. B→ A : {Nb}Kab

4. A→ B : {Nb − 1}Kab

Assumptions Standard A |≡ A
Kab←→ B

A |≡ A
Kas←→ S

A |≡ Ta

A |≡ #(A
Kab←→ B)

B |≡ B
Kbs←→ S

B |≡ #(Ts)
B |≡ Nb

B |≡ #(Nb)

B |≡ A |⇒ A
Kab←→ B

B |≡ S |⇒ (A |≡ A
Kab←→ B)

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

S |≡ Ts

S |≡ #(Ta)

Desired Goals Standard B |≡ A
Kab←→ B

Additional B |≡ A |≡ A
Kab←→ B

A |≡ B |≡ A
Kab←→ B

Comment The two additional desired goals are for mutual entity authentica-
tion. However, the second additional goal is not met by the original protocol
unless A can recognise the nonce Nb.

84

A.28 Lowe Modified Wide Mouthed Frog

BAN Protocol generated by our program

1. A→ S :

{

Ta, A
Kab←→ B

}

Kas

2. S→ B :

{

Ts, A
Kab←→ B

}

Kbs

3. B→ A :

{

A
Kab←→ B

}

Kab

85

A Results on Protocols Library

A.29 Woo and Lam Mutual Authentication

1. P→ Q : P, Np

2. Q→ P : Q, Nq

3. P→ Q :
{

P, Q, Np, Nq

}

Kps

4. Q→ S :
{

P, Q, Np, Nq

}

Kps
,
{

P, Q, Np, Nq

}

Kqs

5. S→ Q :
{

Q, Np, Nq, Kpq

}

Kps
,
{

P, Np, Nq, Kpq

}

Kqs

6. Q→ P :
{

Q, Np, Nq, Kpq

}

Kps
,
{

Np, Nq

}

Kpq

7. P→ Q :
{

Nq

}

Kpq

Assumptions Standard P |≡ P
Kps
←→ S

S |≡ P
Kps
←→ S

Q |≡ Q
Kqs
←→ S

S |≡ Q
Kqs
←→ S

P |≡ Np

P |≡ #(Np)
Q |≡ Nq

Q |≡ #(Nq)

S |≡ P
Kpq
←→ Q

P |≡ S |⇒ P
Kpq
←→ Q

Q |≡ S |⇒ P
Kpq
←→ Q

Desired Goals Standard P |≡ P
Kpq
←→ Q

Q |≡ P
Kpq
←→ Q

P |≡ Q |≡ P
Kpq
←→ Q

Q |≡ P |≡ P
Kpq
←→ Q

86

A.29 Woo and Lam Mutual Authentication

BAN Protocol generated by our program

1. P→ S :
{

Np

}

Kps

2. S→ P :

{

P |∼ Np, P
Kpq
←→ Q

}

Kps

3. Q→ S :
{

Nq

}

Kqs

4. S→ Q :

{

Q |∼ Nq, P
Kpq
←→ Q

}

Kqs

5. Q→ P :
{

Nq

}

Kpq

6. P→ Q :

{

Q |∼ Nq, Np, P
Kpq
←→ Q

}

Kpq

7. Q→ P :

{

P |∼ Np, P
Kpq
←→ Q

}

Kpq

87

A Results on Protocols Library

A.30 Woo and Lam π

1. A→ B : A

2. B→ A : Nb

3. A→ B : {Nb}Kas

4. B→ S :
{

A, {Nb}Kas

}

Kbs

5. S→ B : {Nb}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Nb

B |≡ Nb

B |≡ #(Nb)

B |≡ B
Kbs←→ S

B |≡ S |⇒ A |∼ Nb

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

Desired Goals Standard B |≡ A |≡ Nb

BAN Protocol generated by our program

1. A→ S : {Nb}Kas

2. S→ B : {A |∼ Nb}Kbs

Comment A can check the format of Nb is that of a nonce and so we can legiti-
mately assume A |≡ Nb. A cannot assume #(Nb). This sort of assumption is made
in several subsequent protocols.

88

A.31 Woo and Lam π 1

A.31 Woo and Lam π 1

1. A→ B : A

2. B→ A : Nb

3. A→ B : {A, B, Nb}Kas

4. B→ S :
{

A, B, {A, B, Nb}Kas

}

Kbs

5. S→ B : {A, B, Nb}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Nb

B |≡ Nb

B |≡ #(Nb)

B |≡ B
Kbs←→ S

B |≡ S |⇒ A |∼ Nb

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

Desired Goals Standard B |≡ A |≡ Nb

Comment This specification is the same as Protocol A.30.
BAN Protocol generated by our program (same as before):

1. A→ S : {Nb}Kas

2. S→ B : {A |∼ Nb}Kbs

89

A Results on Protocols Library

A.32 Woo and Lam π 2

1. A→ B : A

2. B→ A : Nb

3. A→ B : {A, Nb}Kas

4. B→ S :
{

A, {A, Nb}Kas

}

Kbs

5. S→ B : {A, Nb}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Nb

B |≡ Nb

B |≡ #(Nb)

B |≡ B
Kbs←→ S

B |≡ S |⇒ A |∼ Nb

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

Desired Goals Standard B |≡ A |≡ Nb

Comment This specification is the same as Protocol A.30.
BAN Protocol generated by our program (same as before):

1. A→ S : {Nb}Kas

2. S→ B : {A |∼ Nb}Kbs

90

A.33 Woo and Lam π 3

A.33 Woo and Lam π 3

1. A→ B : A

2. B→ A : Nb

3. A→ B : {Nb}Kas

4. B→ S :
{

A, {Nb}Kas

}

Kbs

5. S→ B : {A, Nb}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Nb

B |≡ Nb

B |≡ #(Nb)

B |≡ B
Kbs←→ S

B |≡ S |⇒ A |∼ Nb

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

Desired Goals Standard B |≡ A |≡ Nb

Comment This specification is the same as Protocol A.30.
BAN Protocol generated by our program (same as before):

1. A→ S : {Nb}Kas

2. S→ B : {A |∼ Nb}Kbs

91

A Results on Protocols Library

A.34 Woo and Lam π f

1. A→ B : A

2. B→ A : Nb

3. A→ B : {A, B, Nb}Kas

4. B→ S :
{

A, B, Nb, {A, B, Nb}Kas

}

Kbs

5. S→ B : {A, B, Nb}Kbs

Assumptions Standard A |≡ A
Kas←→ S

A |≡ Nb

B |≡ Nb

B |≡ #(Nb)

B |≡ B
Kbs←→ S

B |≡ S |⇒ A |∼ Nb

S |≡ A
Kas←→ S

S |≡ B
Kbs←→ S

Desired Goals Standard B |≡ A |≡ Nb

Comment This specification is the same as Protocol A.30.
BAN Protocol generated by our program (same as before):

1. A→ S : {Nb}Kas

2. S→ B : {A |∼ Nb}Kbs

92

A.35 Yahalom

A.35 Yahalom

1. A→ B : A, Na

2. B→ S : B, {A, Na, Nb}Kbs

3. S→ A : {B, Kab, Na, Nb}Kas
, {A, Kab}Kbs

4. A→ B : {A, Kab}Kbs
, {Nb}Kab

Assumptions Standard A |≡ A
Kas←→ S

S |≡ A
Kas←→ S

B |≡ B
Kbs←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

A |≡ S |⇒ A
Kab←→ B

B |≡ S |⇒ A
Kab←→ B

A |≡ Na

A |≡ #(Na)
B |≡ Na

B |≡ Nb

B |≡ #(Nb)

Additional S |≡ #(A
Kab←→ B)

B |≡ S |⇒ #(A
Kab←→ B)

B |≡ A |⇒ S |≡ #(A
Kab←→ B)

A |≡ S |⇒ B |∼ Na

B |≡ A
Nb
⇀↽ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ B |≡ Na

Comment The original Yahalom Protocol satisfies all the desired goals. How-
ever, we can see that some of its non-standard assumptions are not robust enough

(e.g. B |≡ A
Nb
⇀↽ B). These weak assumptions might cause potential flaws. The as-

sumption above have been taken from the original BAN paper. Also we record
B |≡ Na as an initial assumption to record the effect of message (1) in the original
protocol.

93

A Results on Protocols Library

BAN Protocol generated by our program

1. B→ S : {Na, Nb}Kbs

2. S→ B :

{

B |∼ Nb, A
Kab←→ B, #(A

Kab←→ B)

}

Kbs

3. S→ A :

{

B |∼ Na, A
Kab←→ B

}

Kas

4. A→ B :

{

A
Kab←→ B

}

Kab

5. B→ A : {Na}Kab

94

A.36 BAN Simplified Version of Yahalom

A.36 BAN Simplified Version of Yahalom

1. A→ B : A, Na

2. B→ S : B, Nb, {A, Na}Kbs

3. S→ A : Nb, {B, Kab, Na}Kas
, {A, Kab, Nb}Kbs

4. A→ B : {A, Kab, Nb}Kbs
, {Nb}Kab

Assumptions Standard A |≡ A
Kas←→ S

S |≡ A
Kas←→ S

B |≡ B
Kbs←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

A |≡ S |⇒ A
Kab←→ B

B |≡ S |⇒ A
Kab←→ B

A |≡ Na

A |≡ #(Na)
B |≡ Na

B |≡ Nb

B |≡ #(Nb)
Additional A |≡ S |⇒ B |∼ Na

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ B |≡ Na

Comment We use B |≡ Na as an initial assumption in our program for the same
purpose as it is in Yahalom protocol.

95

A Results on Protocols Library

BAN Protocol generated by our program

1. B→ S : {Na, Nb}Kbs

2. S→ A :

{

B |∼ Na, A
Kab←→ B

}

Kas

3. S→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kbs

4. B→ A : {Nb, Na}Kab

5. A→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kab

96

A.37 Lowe Modified Version of Yahalom

A.37 Lowe Modified Version of Yahalom

1. A→ B : A, Na

2. B→ S : {A, Na, Nb}Kbs

3. S→ A : {B, Kab, Na, Nb}Kas

4. S→ B : {A, Kab}Kbs

5. A→ B : {A, B, S, Nb}Kab

Assumptions Standard A |≡ A
Kas←→ S

S |≡ A
Kas←→ S

B |≡ B
Kbs←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

A |≡ S |⇒ A
Kab←→ B

B |≡ S |⇒ A
Kab←→ B

A |≡ Na

A |≡ #(Na)
B |≡ Na

B |≡ Nb

B |≡ #(Nb)

Additional S |≡ #(A
Kab←→ B)

B |≡ S |⇒ #(A
Kab←→ B)

B |≡ A |⇒ S |≡ #(A
Kab←→ B)

A |≡ S |⇒ B |∼ Na

B |≡ A
Nb
⇀↽ B

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ B |≡ Na

Comment All the initial assumptions and desired goals in this protocol are
same as they are in original Yahalom protocol. Our program also gives a simi-
lar solution to Yahalom as we expect.

97

A Results on Protocols Library

BAN Protocol generated by our program

1. B→ S : {Na, Nb}Kbs

2. S→ B :

{

B |∼ Nb, A
Kab←→ B, #(A

Kab←→ B)

}

Kbs

3. S→ A :

{

B |∼ Na, A
Kab←→ B

}

Kas

4. A→ B :

{

A
Kab←→ B

}

Kab

5. B→ A : {Na}Kab

98

A.38 Paulson’s Strengthened Version of Yahalom

A.38 Paulson’s Strengthened Version of Yahalom

1. A→ B : A, Na

2. B→ S : B, Nb, {A, Na}Kbs

3. S→ A : Nb, {B, Kab, Na}Kas
, {A, B, Kab, Nb}Kbs

4. A→ B : {A, B, Kab, Nb}Kbs
, {Nb}Kab

Assumptions Standard A |≡ A
Kas←→ S

S |≡ A
Kas←→ S

B |≡ B
Kbs←→ S

S |≡ B
Kbs←→ S

S |≡ A
Kab←→ B

A |≡ S |⇒ A
Kab←→ B

B |≡ S |⇒ A
Kab←→ B

A |≡ Na

A |≡ #(Na)
B |≡ Na

B |≡ Nb

B |≡ #(Nb)
Additional A |≡ S |⇒ B |∼ Na

Desired Goals Standard A |≡ A
Kab←→ B

B |≡ A
Kab←→ B

B |≡ A |≡ A
Kab←→ B

Additional A |≡ B |≡ Na

Comment All the initial assumptions and desired goals in this protocol are
same as they are in BAN modified Yahalom protocol.

99

A Results on Protocols Library

BAN Protocol generated by our program

1. B→ S : {Na, Nb}Kbs

2. S→ A :

{

B |∼ Na, A
Kab←→ B

}

Kas

3. S→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kbs

4. B→ A : {Nb, Na}Kab

5. A→ B :

{

B |∼ Nb, A
Kab←→ B

}

Kab

100

B Description of Simulated
Annealing

In 1983 Kirkpatrick et al. [KGV83] proposed simulated annealing, a new search
technique inspired by the cooling processes of molten metals. It merges hill-
climbing with the probabilistic acceptance of non-improving moves to find a
good state S ∈ State. The basic algorithm is shown in Figure B.1.

The search starts at some initial state S0 ∈ State. There is a control parameter
T ∈ R

+ known as the temperature. This starts high at T0 and is gradually lowered,
typically by geometric cooling (that is, by multiplying by a cooling factor, α ∈ (0, 1)
at each iteration).

At each temperature, a number MIL (Moves in Inner Loop) of moves to new
states are attempted. A candidate state Y is randomly selected from the neigh-
bourhood N(S) of the current state. The new state Y is accepted if it is better
or only slightly worse than S, as measured by a function f ∈ State → N. By
‘slightly worse’ is meant ‘no worse than T ln U lower’. Here U is a random vari-
able ∈ (0, 1), and so T ln U ∈ (−∞, 0); the smaller T is, the more likely that this
term is closer to 0 and eventually improving only improving moves are accepted
(that is, the technique reduces to hill climbing).

The algorithm terminates when some stopping criterion is met. Common stop-
ping criteria, and the ones used for the work in this paper, are to stop the search
after a fixed number MaxIL of inner loops have been executed, or else when
some maximum number MUL of consecutive unproductive inner loops have

S := S0

T := T0

repeat until stopping criterion is met

repeat MIL times

Pick Y ∈ N(S) with uniform probability

Pick U ∈ (0, 1) with uniform probability

if f (Y) > f (S) + T ln U then S := Y

T := α× T

Figure B.1: Basic Simulated Annealing for Maximisation Problems

101

B Description of Simulated Annealing

been executed (that is, without a single move having been accepted).
Generally the best state achieved so far is also recorded (since the search may

actually move out of it and subsequently be unable to find a state of similar qual-
ity).

There are many improvements to efficiency that can be made, including not
generating U ∈ (0, 1) unless f (Y) < f (S).

102

	1 Introduction
	2 Protocols and Belief Logic
	2.1 Notions and Notations
	2.1.1 Idealised Protocols
	2.1.2 Encryption and Keys
	2.1.3 Nonce
	2.1.4 Basic Notation

	2.2 Inference Rules
	2.3 Illustrative Example

	3 Search Strategy -- Meta-heuristic Techniques
	3.1 Interpreting a Message and a Move Function
	3.2 Interpreting a Protocol
	3.3 The Fitness Function
	3.4 Optimisation Techniques

	4 Experimental Method and Results
	4.1 Public Key Protocols
	4.1.1 Initial Assumptions
	4.1.2 Goals
	4.1.3 Results and Statistics

	4.2 Public Key Protocols using Timestamps
	4.2.1 Initial Assumptions
	4.2.2 Goals
	4.2.3 Results and Statistics

	4.3 Hybrid Protocols
	4.3.1 Initial Assumptions
	4.3.2 Goals
	4.3.3 Results and Statistics

	4.4 Extensive Experimentation

	5 Conclusions and Further Work
	A Results on Protocols Library
	A.1 Andrew Secure RPC
	A.2 BAN Modified Andrew Secure RPC
	A.3 BAN Concrete Andrew Secure RPC
	A.4 Lowe Modified Andrew Secure RPC
	A.5 CCITT X.509 (1)
	A.6 CCITT X.509 (1c)
	A.7 CCITT X.509 (3)
	A.8 BAN modified version of CCITT X.509 (3)
	A.9 Denning-Sacco Shared Key
	A.10 Lowe Modified Denning-Sacco Shared Key
	A.11 Kao Chow Authentication v.1
	A.12 Kao Chow Authentication v.2
	A.13 Kao Chow Authentication v.3
	A.14 Kerberos V5
	A.15 KSL
	A.16 Lowe Modified KSL
	A.17 Neumann Stubblebine
	A.18 Hwang Modified Neumann Stubblebine
	A.19 Needham-Schroeder Public Key
	A.20 Lowe's fixed version of Needham-Schroeder Public Key
	A.21 Needham-Schroeder Symmetric Key
	A.22 Amended Needham-Schroeder Symmetric Key
	A.23 Otway Rees
	A.24 SPLICE/AS
	A.25 Hwang and Chen Modified SPLICE/AS
	A.26 Clark and Jacob modified modified SPLICE/AS
	A.27 Wide Mouthed Frog
	A.28 Lowe Modified Wide Mouthed Frog
	A.29 Woo and Lam Mutual Authentication
	A.30 Woo and Lam pi
	A.31 Woo and Lam pi 1
	A.32 Woo and Lam pi 2
	A.33 Woo and Lam pi 3
	A.34 Woo and Lam pi f
	A.35 Yahalom
	A.36 BAN Simplified Version of Yahalom
	A.37 Lowe Modified Version of Yahalom
	A.38 Paulson's Strengthened Version of Yahalom

	B Description of Simulated Annealing

