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1 Introduction

1.1 Background

The past two decades have seen an enormous increase in the development
and use of networked and distributed systems, providing increased func-
tionality to the user and more efficient use of resources. To obtain the ben-
efits of such systems parties will cooperate by exchanging messages over
networks. The parties may be users, hosts or processes; they are generally
referred to as principals in authentication literature.

Principals use the messages received, together with certain modelling
assumptions about the behaviour of other principals to make decisions on
how to act. These decisions depend crucially on what validity can be as-
sumed of messages that they receive. Loosely speaking, when we receive
a message we want to be sure that it has been created recently and in good
faith for a particular purpose by the principal who claims to have sent it.
We must be able to detect when a message has been created or modified
by a malicious principal or intruder with access to the network or when
a message was issued some time ago (or for a different purpose) and is
currently being replayed on the network.

An authentication protocol is a sequence of message exchanges be-
tween principals that either distributes secrets to some of those principals
or allows the use of some secret to be recognised [26]. At the end of the
protocol the principals involved may deduce certain properties about the
system; for example, that only certain principals have access to particular
secret information (typically cryptographic keys) or that a particular prin-
cipal is operational. They may then use this information to verify claims
about subsequent communication, for example, a received message en-
crypted with a newly distributed key must have been created after distri-
bution of that key and so is timely.

A considerable number of authentication protocols have been speci-
fied and implemented. The area is, however, remarkably subtle and many
protocols have been shown to be flawed a long time after they were pub-
lished. The Needham Schroeder Conventional Key Protocol was pub-
lished in 1978 [87] and became the basis for many similar protocols in
later years. In 1981, Denning and Sacco demonstrated that the protocol
was flawed and proposed an alternative protocol [42]. This set the gen-
eral trend for the field. The authors of both papers suggested other pro-
tocols based on public key cryptography (see section 2). In 1994 Martin
Abadi demonstrated that the public key protocol of Denning and Sacco
was flawed [1]. In 1995, Lowe demonstrated an attack on the public key
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protocol of Needham and
Schroeder (seventeen years after its publication). In the intervening years
a whole host of protocols have been specified and found to be flawed (as
demonstrated in this report).

This report describes what sorts of protocols have been specified and
outlines what methods have been used to analyse them. In addition, it
provides a summary of the ways in which protocols have been found to
fail. There is a large amount of material in the field and the main body of
this document is intended as a concise introduction to and survey of the
field. Some types of protocol are given little detailed attention, particu-
larly those which rely on number-theoretic properties for their security. It
is envisaged that future editions of this report will provide a complete cov-
erage. An annotated bibliography is included to guide the reader. Since
authentication relies heavily on encryption and decryption to achieve its
goals we also provide a brief review of elements of cryptography.

1.2 A Protocols Resource

Authentication never stands still! This report is intended as a compendium
of useful information related to authentication. Hopefully, this will be use-
ful to researchers and protocol designers alike. However, the authors hope
to make this a "living document" and update it as comments from the com-
munity are received. The authors 1 welcome suggestions for inclusions in
future editions (omissions, necessary corrections, new protocols, new at-
tacks etc.)

1jac@cs.york.ac.uk, jeremy@cs.york.ac.uk
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2 Cryptographic Prerequisites

2.1 General Principles

Cryptographic mechanisms are fundamental to authentication protocols.
Suppose that we have some message text P which we wish to transmit
over the network. P is generally referred to as plaintext or a datagram. A
cryptographic algorithm converts P to a form that is unintelligible to any-
one monitoring the network. This conversion process is called encryption.
The unintelligible form is known as ciphertext or a cryptogram. The precise
form of the cryptogram C corresponding to a plaintext P depends on an
additional parameter K known as the key.

The intended receiver of a cryptogram Cmay wish to recover the origi-
nal plaintext P. To do this, a second key K1 is used to reverse the process.
This reverse process is known as decryption. Encryption and decryption
are depicted in figure 1.

P

PlaintextCiphertext

C

Plaintext

DecryptionEncryption

-1

P

Key = KKey = K

ReceiverSender

Figure 1: Encryption and Decryption

The classes of encryption and decryption algorithms used are gener-
ally assumed to be public knowledge. By restricting appropriately who
has access to the various keys involved we can limit the ability to form
ciphertexts and the ability to determine the plaintexts corresponding to
ciphertexts.

2.2 Symmetric Key Cryptography

In symmetric key cryptography the encryption key K and the decryption
key K1 are easily obtainable from each other by public techniques. Usu-
ally they are identical and we shall generally assume that this is the case.
The key K is used by a pair of principals to encrypt and decrypt messages
to and from each other. Of course, anyone who holds the key can create
ciphertexts corresponding to arbitrary plaintexts and read the contents of
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arbitrary ciphertext messages. To ensure security of communication this
key is kept secret between the communicating principals. Following estab-
lished convention we shall use the notation Kab to denote a key intended
for communication between principals A and B using a symmetric key
cryptosystem.

2.2.1 Classical Cryptography

Classical cryptography has used symmetric keys. Typically classical ci-
phers have been either substitution or transposition ciphers (or a mixture)
and have worked on text characters. A substitution cipher substitutes
a ciphertext character for a plaintext character. A transposition cipher
shuffles plaintext characters. The precise substitutions and transpositions
made are defined by the key. Examples include simple, homophonic, poly-
alphabetic and polygram substitution ciphers and simple permutation ci-
phers (e.g. where successive groups of N characters are permuted in the
same way). Elements of transposition and substitution are included in
modern day algorithms too. It is not our intention to survey classical ap-
proaches to cryptography. They are well documented already [41, 99]. An
elementary introduction has been produced by Willet [114].

2.2.2 Modernday Cryptography

Modernday symmetric key algorithms are principally block ciphers or stream
ciphers.

A block cipher will encrypt a block of (typically 64 or 128) plaintext
bits at a time. The best known block cipher is the ubiquitous Data En-
cryption Standard [45], universally referred to as DES. This has been a
hugely controversial algorithm. The controversy has centred on whether
the effective key length (56 bits – reduced from 128 at the insistence of the
National Security Agency) is really sufficient to withstand attacks from
modern-day computing power (see Wiener [113] for details), and over the
design of elements called S-boxes (the design criteria were not made pub-
lic). The reader is referred to [101] for details. It is worth noting that the
algorithm is remarkably resistant to attack using the published state-of-the-
art cryptanalysis technique known as differential cryptanalysis discovered
by Biham and Shamir in 1988. As revealed by Coppersmith in 1994 [38]
this was because the technique was known to the designers of DES back in
1974! Of course, in this survey we can only comment on what is publicly
known.
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Other examples of block ciphers are MADRYGA (efficient for software
implementation and operates on 8-bit blocks), NEWDES (operates on 64-
bit blocks but with a 120-bit key), FEAL-N, RC2 and RC4 (by Ronald
Rivest) and IDEA (by Lai and Massey). Schneier has written a readable
account of the IDEA algorithm [98]. A very good overview of block ci-
phers (and others) can be found in Schneier’s general cryptography text
[99].

2.2.3 Modes of Block Cipher Usage

There are several modes in which a block cipher can be used. Principal
ones are:

 Electronic Code Book (ECB)

 Cipher Block Chaining (CBC)

 Cipher Feedback Mode (CFB)

 Output Feedback Mode (OFB)

ECB is the simplest mode. Consecutive blocks of plaintext are simply
encrypted using the algorithm. Thus, identical blocks of plaintext are al-
ways encrypted in the same way (with the same result). Its security needs
to be questioned for specific contexts. An analyst may be able to build up
a codebook of plaintext-ciphertext pairs (either known or because he can
apply cryptanalytic methods to derive the plaintexts). Also, it is possible
to modify messages (e.g. by simply replacing an encrypted block with
another).

Cipher Block Chaining (CBC) is a relatively goodmethod of encrypting
several blocks of data with an algorithm for encrypting a single block. It is
one mode in which the widely used Data Encryption Standard (DES) can
be employed. Block i of plain text is exclusively-ored (hereafter XORed)
with block i  1 of ciphertext and is then encrypted with the keyed block
encryption function to form block i of ciphertext.

For example, with initialisation block I the encryption of message block
sequence P1P2 : : : Pn with key K denoted by E(K : P1P2 : : : Pn) is given by

E(K : P1P2 : : : Pn) = C0C1C2 : : :Cn

where

C0 = I
8i; i > 0  Ci = e(K : (Ci1  Pi))
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Figure 2: Cipher Block Chaining

Here, e(K :) is the block encryption function used with key K. The en-
cryption process is shown in figure 2.

Successive ciphertext blocks are decrypted using the keyed block func-
tion d(K :) according to the rule

8i; i > 0  Pi = Ci1  d(K : Ci)

Thus, for any successive pair of ciphertext blocks we can recover the plain-
text block corresponding to the second (provided we have the key).

If we choose a different initial block I in each case then even identical
plaintext messages will have different ciphertexts. It is widely acknowl-
edged that non-repeating initial blocks are essential for adequate preser-
vation of confidentiality (unless the first block in a message is always dif-
ferent in which case it is known as a confounding block). Authors differ as
to whether they should be passed between communicating parties in the
clear (which Schneier [99] thinks is fine) or encrypted ( as recommended
byDavies and Price [39]). Voydock andKent [112] addressmany aspects of
initial block usage insisting that they should be pseudo-random for CBC.
The rationale given there and in various other texts is incomplete or sim-
ply wrong. For example Schneier states that an initial block can be a serial
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number that increments after each message but does not repeat. Clark and
Jacob [36] have shown that such an approach is potentially disastrous; they
show how for the most celebrated authentication protocol of all, adoption
of this approach would allow a third party to create the ciphertext for an
arbitrarymessage without having access to the key!

In certain network applications it is useful to be able to transmit, re-
ceive and process data chunks of size less than the block size (e.g. the pro-
cessing of character-sized chunks from a terminal). In such cases Cipher
Feedback mode (CFB) might be used. Figure 3 is based on a figure by
Schneier [99] and shows an 8-bit CFB with a 64-bit block algorithm. Here
the contents of a shift register are initialised with some value. The contents
of the shift register are encrypted as a block, and the leftmost byte of the
result is XORed with the next plaintext byte to produce a ciphertext byte.
The contents of the register are now shifted left by 8 bits and the most re-
cently created ciphertext byte is placed in the rightmost byte of the register
and the procedure repeats. The decryption procedure is easily obtained.

XOR

Cipher

Feedback

Key

Leftmost byte

Last 8 Cipher bytes

Shift Register

i

Encrypt

B

i
CP

i

Figure 3: Cipher Feedback Mode

Output Feedback mode (OFB) is shown similarly in figure 4. Here, it
is the leftmost byte of the direct output of the encryption function that is
fed back into the shift register (other sizes are possible).
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Schneier states that the initialisation vectors for CFB and OFB should
be different for eachmessage encrypted, though there is no additional ben-
efit from sending them encrypted [99]. Voydock and Kent disagree [112].

The error propagation properties of the different modes of encryption
vary but are not detailed here. The reader is referred to Schneier [99] or
Davies and Price [39] for details.

Other modes are possible, e.g. Counter mode (like OFB but with the
contents of the register simply incremented each time, i.e. no feedback),
Block Chaining mode (where the input to the encryption is the XOR of
all previous ciphertext blocks and the current plaintext block) and Prop-
agating Cipher Block Chaining (where the input to the encryption is the
XOR of the current and the immediately previous plaintext blocks and all
previous ciphertext blocks). There are a variety of other modes which are
somewhat esoteric; we shall not describe them here.

Output

Feedback

Key

XOR

Leftmost byte

Shift Register

Last 8 leftmost output bytes

i

Encrypt

B

i i
CP

Figure 4: Output Feedback Mode

2.2.4 Stream Ciphers

Stream ciphers encrypt one bit of plaintext at a time. The usual approach
is to generate a bit stream and to XOR successive bits with successive bits
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of plaintext. Clearly we should wish the bit-stream produced to be as
random as possible. Indeed, a vast amount of work into pseudo-random
stream generation has been carried out (see [99]). The streams produced
depend on a key in some way (if identical streams were produced each
time then cryptanalysis becomes easy). A keystream generator comprises
a finite state machine and an output function. Figure 5 shows two ba-

Counter mode

C
i

C
i

P
i

Output Feedback Mode

Key Key
Function

Output Function

Internal State

Next-State

K
i

K
i

Internal State

Next-State

i
P

i
C

Function

Output Function

Figure 5: Stream Cipher Approaches

sic approaches to bit-stream generation: output feedback mode (where
the value of the key affects the next state) and the output function is pretty
straightforward; andCounter mode (where the key affects the output func-
tion and the next state is straightforward, typically a counter increment).

It is also possible to use block ciphers as keystream generators (e.g. use
Counter Mode and select the leftmost bit of the encrypted block output).
For details of the above see Schneier [99].

2.3 Public Key Cryptography

In public key cryptography there is no shared secret between communi-
cating parties. The first publication on the topic was the classic paper by
Whitfield Diffie and Martin Hellman in 1976 [44]. In public key encryption
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each principal A is associated with some key pair (Ka; Ka1). The public key
Ka is made publicly available but the principal A does not reveal the pri-
vate key Ka1. Any principal can encrypt a message M using Ka and only
principal A can then decrypt it using Ka1. Thus, the secrecy of messages
to A can be ensured.

Some public key algorithms allow the private key to be used to encrypt
plaintext with the public key being used to decrypt the corresponding
ciphertext. If a ciphertext C decrypts (using Ka) to a meaningful plaintext
message P then it is assumed that the ciphertext must have been created
by A using the key Ka1. This can be used to guarantee the authenticity
of the message. The most widely known public key algorithm that allows
such use was developed by Rivest, Shamir and Adleman [92] and is uni-
versally referred to as RSA. Such algorithms are often said to provide a
digital signature capability. Simply encrypting using a private key does not
constitute a signature. Various checks must also be made by the receiver
(see Gollman [49]).

The RSA algorithm [92] works as follows:

1. pick two large primes p and q, let n = p  q

2. choose e relatively prime to (n) = (p  1)(q  1)

3. use Euclid’s algorithm to generate a d such that e  d = 1 mod (n)

4. make the pair (n; e) publicly available – this is the public key. The
private key is d.

5. a message block M is now encrypted by calculating C = Me mod n.

6. the encrypted block C is decrypted by calculating M = Cd mod n.

Here encryption and decryption are the same operation (modular expo-
nentiation).

A sender A can communicate with B preserving secrecy and ensuring
authenticity by first signing amessage using his own private key Ka1 and
then encrypting the result using B’s public key Kb. B uses his private key
to decrypt and then uses A’s public key to obtain the original message.

Public key algorithms tend to rely on the (supposed) computational
difficulty of solving certain problems (e.g. finding discrete logarithms for
the Diffie Hellman algorithm and finding prime factors for RSA). Again,
key length is an issue. Computing power is increasing rapidly and there
have been significant advances. For example, ten years ago 512 bit keys for
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RSA were thought to be very secure; today 512 bits is considered a mini-
mum requirement (and 1024 bits is often recommended). Sheer processing
capability also affects the usability of public key encryption. Public key al-
gorithms are generally much slower than symmetric key algorithms.
Schneier [99] gives a good account of relative speeds of algorithms.

There are some very useful and informative papers that deal (at least
in part) with public key cryptography. Hellman provides an excellent in-
troduction to public key cryptography and the underlying mathematics
[58]. Willet provides a much higher level view [115]. Gordon [56] pro-
vides a good but simple introduction. Diffie provides an exciting account
of the first decade of public key cryptography [43] with a particularly good
account of the attacks on knapsacks. Brickell and Odlyzko provide an ac-
count of various attacks on public key systems (and others) [25]. Other
aspects are covered in Massey’s informative general paper on cryptology
[81].

2.4 One-way Hash Algorithms

We shall often require evidence that a message that has been sent has not
been subject to modification in any way. Typically this is carried out using
a hash function. A hash function H when applied to a message M yields
a value H(M) of specific length known as the hash value of that message.
H(M) is often referred to as a message digest. The mapping of messages to
digests is one-way; given M and H(M) it should be computationally in-
feasible to find M’ such that H(M’)=H(M). The digest is a form of reduced
message calculated using a publicly known technique. A receiver of a
message can check whether a message and a corresponding digest agree.
Hash functions are largely intended for use in conjunction with cryptog-
raphy to provide signatures.

If M is a message then A can provide evidence to B that he created
it, and that it has not been tampered with, by calculating E(Kab : H(M))
and sending the message M together with the newly calculated encrypted
hash value. On receiving the message, B can calculate H(M) and then
E(Kab : H(M)) and check whether the value agrees with the encrypted
hash value received. Since the amount of encryption is small this is a quite
efficient means to demonstrate authenticity (assuming A and B do not fake
messages from the other).
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2.5 Notational Conventions

In this report we shall use the notation E(K : M) to denote the result of
encrypting message plaintext M with key K.

A protocol run consists of a sequence of messages between principals
andwill be described using the standard notation. Principals are generally
denoted by capitals such as A, B and S (for a server). The sequence of
messages

(1) A ! B : M1

(2) B ! S : M2

(3) S ! B : M3

denotes a protocol in which A sendsM1 to B, B then sendsM2 to Swho
then sends M3 to B. Attacks on protocols often involve some mischievous
principal pretending to be another. We denote a mischievous principal by
Z. The notation Z(A) denotes the principal Z acting in the role of A. Z
has unfettered access to the network medium and may place at will mes-
sages onto the net claiming to be sent from A and intercepting messages
destined for A (and possibly removing them).

A number generated by a principal A is denoted by Na. Such numbers
are intended to be used only once for the purposes of the current run of the
protocol and are generally termed nonces. We shall sometimes refine the
notion of a nonce to include a timestamp and distinguish between sequence
numbers or genuinely pseudo-random nonces. Such distinctions aremade
in, for example, the ISO entity authentication standards (see [61]).

A message may have several components; some will be plaintext and
some will be encrypted. Message components will be separated by com-
mas. Thus

(1) A ! B : A; E(Kab : Na)

denotes that in the first message of the protocol A sends to B the mes-
sage whose components are a principal identifier A together with an en-
crypted nonce E(Kab : Na).
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3 Protocol Types

In this section we provide an overview of various forms of authentica-
tion protocol in use today. At the highest level we have categorised them
according to the principal cryptographic approach taken, i.e. symmetric
key or public key. We distinguish also between those that use (one or
more) trusted third parties to carry out some agreed function and those
that operate purely between two communicating principals that wish to
achieve some mode of authentication. There are further distinctions that
can be made: the number of messages involved in the protocols (e.g. one-
pass, two-pass, three-pass etc.) and whether one principal wishes to con-
vince the second of some matter (one-way or unilateral authentication) or
whether both parties wish to convince each other of something (two-way
or mutual authentication). These distinctions are also made by the ISO
entity authentication standards (see [61]).

3.1 Symmetric Key Without Trusted Third Party

Perhaps the simplest (and yet effective) example in this class is the ISO
One-pass Symmetric Key Unilateral Authentication Protocol [62] (see also
6.1.1) shown below. It consists of the single message:

(1) A ! B : Text2; E(Kab : [TajNa]; B; Text1)

Here the text fields shown are optional; their use is implementation
specific (and we shall ignore them in this discussion). We can see that the
claimant A (i.e. the one who wishes to prove something) sends an en-
crypted message containing a nonce and the identifier of the verifier (i.e.
the principal to whom the claim is made). The nonce may be a timestamp
Ta or a sequence number Na depending on the capabilities of the envi-
ronment and the communicating principals. On receiving this message,
B, who believes that the key Kab is known only to himself and A, may
deduce that A has recently sent this message if the sequence number is
appropriate or if the timestamp has a recent value. Note here that if a ma-
licious principal has unfettered access to the network medium then use
of sequence numbers will be insufficient (since he can record message (1),
prevent B from receiving it, and replay it to B at a later time).

The best-known protocols that do not use a trusted third party are sim-
ple challenge-response mechanisms. One principal A issues data to a sec-
ond principal B. B then carries out some transformation and sends the
result to A who checks to see if the appropriate transformation has oc-
curred. Figure 6 shows a simple challenge-response protocol. In this case
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the nonce Na should be random. If the nonce were a sequence number,
or were otherwise predictable, a malicious principal could issue the next
nonce value to B and record the response. When A genuinely issued the
same nonce value at a later date the intruder could replay B0s earlier re-
sponse to complete the protocol. A could conclude only that the message
he receives was created at some time by B (but not necessarily in response
to his most recent challenge).

Na

E(Kab: Na)

Principal BPrincipal A

Figure 6: A Challenge Response Protocol

There are other variations on the challenge-response theme. Some-
times the challenge is encrypted, sometimes not; sometimes it is random,
sometimes predictable (but never before used). Gong highlights many is-
sues associated with the use of nonces for such purposes [53].

The ISO Two-Pass Unilateral Authentication Protocol is described later
in this document (see 6.1.2). The ISO Two- and Three-PassMutual Authen-
tication Protocols are described in sections 6.1.3 and 6.1.4 respectively.

Another approach to ensuring authenticity uses cryptographic check
functions. Essentially, a message is sent together with some summary or
digest calculated using a hash function using a shared key. Examples are
given in section 6.2. Examples can be found in Part 4 of the ISO entity
authentication standard [64].

3.2 Symmetric Key With Trusted Third Party

Symmetric key protocols that use a trusted third party (TTP) are by far the
most numerous in the literature. The most celebrated protocol of all time,
the Needham Schroeder Symmetric Key Authentication protocol [87] is
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described below:

(1) A ! S : A; B; Na
(2) S ! A : E(Kas : Na; B; Kab; E(Kbs : Kab; A))
(3) A ! B : E(Kbs : Kab; A)
(4) B ! A : E(Kab : Nb)
(5) A ! B : E(Kab : Nb  1)

In this protocol A requests from the server S a key to communicate with
B. He includes a random nonce Na generated specially for this run of
the protocol. This nonce will be used by A to ensure that message (2) is
timely. S creates a key Kab and creates message (2). Only A can decrypt
this message successfully since he possesses the key Kas. In doing so he
will obtain the key Kab and check that the message contains the nonce
Na. A passes on to B the encrypted message component E(Kbs : Kab; A)
as message (3).

Principal B decrypts this message to discover the key Kab and that it
is to be used for communication with A. He then generates a nonce Nb,
encrypts it (using the newly obtained key), and sends the result to A as
message (4).

Principal A, who possesses the appropriate key Kab , decrypts it, forms
Nb  1, encrypts it and sends the result back to B as message (5). B de-
crypts this and checks the result is correct. The purpose of this exchange
is to convince B that A is genuinely operational (and that message 3 was
not simply the replay of an old message).

At the end of a correct run of the protocol, both principals should be
in possession of the secret key Kab newly generated by the server S and
should believe that the other principal has the key. Rather, this is what the
protocol is intended to achieve. We shall show in section 4.1 that it is in
fact flawed.

There have been many other protocols that have used a trusted third
party to generate and distribute keys in a similar way: the Amended
Needham-Schroeder Protocol [88] (see 6.3.4), the Yahalom Protocol (see
6.3.6), the Otway-Rees Protocol [91] (see also 6.3.3) which is essentially
the same as the Amended Needham-Schroeder Protocol. Woo and Lam
provide several authentication protocols [116, 117] (6.3.10). Other exam-
ples include those by Gong and Carlsen’s secret key initiator protocols
(for mobile phone networks) (6.10.2 and 6.3.7) and the ISO Four- and Five
Pass Mutual Authentication Protocols [62] (6.3.8 and 6.3.9).

Denning and Sacco suggested fixing problems in the Needham
Schroeder protocol using timestamps. The Denning Sacco Conventional
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Key Protocol replaces the first three messages of the Needham Schroeder
protocol with:

(1) A ! S : A; B
(2) S ! A : E(Kas : B; Kab; T; E(Kbs : A; Kab; T))
(3) A ! B : E(Kbs : A; Kab; T)

Here, T is a timestamp generated by S. A and B can check for timeliness
of messages (2) and (3) (i.e. the timestamp must be within some window
centred on the respective local clock time).

Third parties may be trusted for activities other than key generation
and distribution. Consider the Wide Mouthed Frog Protocol due to Bur-
rows (but not for use in real systems) [26]:

(1) A ! S : A; E(Kas : Ta; B; Kab)
(2) S ! B : E(Kbs : Ts; A; Kab)

A is trusted to generate a session key Kab. On receiving message (1) S
checks whether the timestamp Ta is "timely" and, if so, forwards the key
to B with its own timestamp Ts. B checks whether the message (2) has
a timestamp that is later than any other message it has received from S.
Here the server S effectively performs a key translation service (providing
also trusted timestamping). Davis and Swick providemore key translation
service facilities [40].

Some protocols allow keys to be reused inmore than one session. These
are typically two-part protocols. The first part involves a principal A ob-
taining a ’ticket’ for communication with a second principal B. The ticket
generally contains a session key and is encrypted so that only the receiver
B can decrypt it. In the second part of the protocol A presents the ticket
to Bwhen he wishes to communicate; he may do this on several occasions
(until the ticket expires). These are usually called repeated authentication
protocols. Such protocols have been devised by Kehne et al [68] and also by
Neuman and Stubblebine [90].

3.3 Public Key

Protocols using public key cryptography find numerous applications in
authentication but the speed of encryption and decryption using public
key algorithms has prevented their widespread use for general commu-
nication; for example, Schneier states that RSA encryption is about 100
times slower than DESwhen both are implemented in software (the fastest
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hardware implementation of RSA has a throughput of 64 Kbaud). How-
ever, exchanging symmetric encryption keys using public key cryptogra-
phy provides an excellent use of the technology and several such distribu-
tion schemes have been created.

Needham and Schroeder proposed the following protocol in their clas-
sic work [87]:

(1) A ! S : A; B
(2) S ! A : E(Ks1 : Kb; B)
(3) A ! B : E(Kb : Na; A)
(4) B ! S : B; A
(5) S ! B : E(Ks1 : Ka; A)
(6) B ! A : E(Ka : Na; Nb)
(7) A ! B : E(Kb : Nb)

Here, we see how use is made of a trusted server S, generally called a
certification authority, that stores the public keys of the various principals
and distributes them on request sealed under its own private key Ks1.
The certification authority’s public key is generally assumed known to the
principals. Messages (1), (2) and (5), (6) are used by A and B to obtain
each other’s public keys. Message (3) is encrypted under B0s public key
and so can only be decrypted successfully by B. It contains a challenge
Na together with A0s identifier. B decrypts this to obtain the challenge,
forms a challenge of his own Nb and encrypts both challenges under A0s
public key and sends the result as message (6). A then decrypts message
(6). Since only B could have obtained the information necessary to send
this message A knows that B is operational and has just responded to his
recent challenge. A then encrypts B0s challenge Nb using B’s public key
Kb and sends message (7). B then decrypts and checks that it contains
his challenge and concludes that A is operational and indeed initiated the
protocol. This protocol (and the reasoning given above) has only recently
been shown to be flawed [74].

Some key distribution protocols use public key cryptography, for ex-
ample Digital’s SPX (see Schneier’s book [99] or Woo and Lam [117]). The
draft CCITT X.509 standard [29] uses public key cryptography for authen-
ticated communication. The ISO authentication framework makes exten-
sive use of public key cryptography.

Denning and Sacco provide an example of how to use public key cryp-
tography to distribute session keys [42]. Martin Abadi noticed in 1994 that
it was terribly flawed [1].

Public key cryptography may also be used to provide digital signa-
tures. RSA [92] can be use to sign a message by encrypting under the
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private key. It can also be used to sign a hash value of a complete mes-
sage. The actual message can also be sent in the clear with the encrypted
hash value appended. A major alternative to the use of RSA developed,
amid some controversy, by the United States National Security Agency
(NSA) is the Digital Signature Algorithm. It is based on El Gamal encryp-
tion. Schneier provides a good account of the algorithm [99] and a good
journalistic account of the controversy can be found in the paper by Adam
[2]. Other digital signatures schemes include ESIGN, McEliece (based on
algebraic coding theory). Akl provides a good tutorial guide to digital
signatures in general [3].

3.4 Hybrid Protocols

There are some protocols that use both public and symmetric key cryp-
tography. An example of such is the unusual (but seemingly very effec-
tive) Encrypted Key Exchange (EKE) protocol by Bellovin andMerritt [15].
This protocol is unusual in that it uses symmetric key cryptography to dis-
tribute ’public’ keys. It also seems to tolerate fairly poor mechanisms of
symmetric encryption.

3.5 Other Forms of Protocol

There are many other types of authentication protocol. For example, pro-
tocols that deal with non-repudiation, secret voting, anonymous transac-
tions, anonymous signatures etc. The reader is referred to Schneier for
details [99]. Examples of various international standard protocols can be
found in [61], [62], [63], [64], [65]. Recent protocols include a beacon based
protocol by Seberry et al [66] and a robust password exchange protocol by
Hauser et al [57]. Liebl [73] provides an overview of authentication proto-
cols (in less detail than here).

3.6 General

There are many applications of authentication technology that are not dis-
cussed above. Simmons provides an example of the need for authenticity
in the face of a very hostile enemy for the purposes of verifying nuclear
test ban treaties [100]. Anderson provides an indication of how electronic
payment systems work [9]. The same author discusses societal and legal
aspects of cryptographic technology [8], [7].
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4 Attacking Authentication protocols

In this section we detail various ways in which protocols fail and give
examples.

4.1 Freshness Attacks

A freshness attack occurs when a message (or message component) from
a previous run of a protocol is recorded by an intruder and replayed as
a message component in the current run of the protocol. The classic ex-
ample of such an attack occurs in the Needham Schroeder conventional
(symmetric) key protocol described in section 3.2.

At the end of a correct run of the protocol, each principal should be
in possession of the secret key Kab newly generated by the server S and
believe that the other has the key. That is what the protocol is intended to
achieve. In 1981, Denning and Sacco demonstrated that the protocol was
flawed [42]. Consider message (3). Although B decrypts this message and
(if it is indeed well-formed) assumes legitimately that it was created by
the server S, there is nothing in the message to indicate that it was actually
created by S as part of the current protocol run. Thus, suppose a previously
distributed key K0ab has been compromised (for example, by cryptanaly-
sis) and is known to an intruder Z. Z might have monitored the network
when the corresponding protocol run was executed and recorded message
(3) consisting of E(Kbs : K0ab; A). He can now fool B into accepting the key
as new by the following protocol (omitting the first two messages):

(3) Z(A) ! B : E(Kbs : K0ab; A)
(4) B ! Z(A) : E(K0ab : Nb)
(5) Z(A) ! B : E(K0ab : Nb  1)

B believes he is following the correct protocol. Z is able to form the cor-
rect response in (5) because he knows the compromised key K0ab. He can
now engage in communication with B using the compromised key and
masquerade as A. Denning and Sacco suggested that the problem could
be fixed by the use of timestamps [42]. The original authors suggested
an alternative fix to this problem by means of an extra handshake at the
beginning of the protocol [88].

4.2 Type Flaws

Amessage consists of a sequence of components eachwith some value (for
example, the name of a principal, the value of a nonce, or the value of a

23



key). Themessage is represented at the concrete level as a sequence of bits.
A type flaw arises when the recipient of a message accepts that message as
valid but imposes a different interpretation on the bit sequence than the
principal who created it.

For example, consider the Andrew Secure RPC Protocol

(1) A ! B : A; E(Kab : Na)
(2) B ! A : E(Kab : Na+ 1; Nb)
(3) A ! B : E(Kab : Nb+ 1)
(4) B ! A : E(Kab : K0ab; N0b)

Here, principal A indicates to B that he wishes to communicate with
him and sends an encrypted nonce E(Kab : Na) as a challenge in (1). B
replies to the challenge and issues one of his own by sending the message
E(Kab : Na+ 1; Nb). A replies to B0s challenge by forming and sending
E(Kab : Nb+ 1) to B. B now creates a session key K0ab and distributes
it (encrypted) together with a sequence number identifier N0b for future
communication.

However, if the nonces and keys are both represented as bit sequences
of the same length, say 64 bits, then an intruder could record message (2),
intercept message (3) and replay message (2) as message (4). Thus the
attack looks like:

(1) A ! B : A; E(Kab : Na)
(2) B ! A : E(Kab : Na+ 1; Nb)
(3) A ! Z(B) : E(Kab : Nb+ 1)
(4) Z(B) ! A : E(Kab : Na+ 1; Nb)

Thus principal A may be fooled into accepting the nonce value Na + 1
as the new session key. The interpretations imposed on the plaintext bit
string of the message are shown in figure 7.

The use of the nonce value as a key may not lead to a security compro-
mise but it should be noted that nonces cannot be assumed to be good
keys. Furthermore, nonces do not necessarily have to be random, just
unique to the protocol run. Thus a predictable nonce might be used. In
such cases A will have been fooled into accepting a key whose value may
be known to the intruder.

The above protocol is flawed in other ways too. For example, it is
equally possible to record message (4) of a previous run and replay it in
the current run, i.e. there is a freshness attack, as pointed out by Burrows,
Abadi and Needham [26].
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of Creator

Interpretation
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of Receiver

Interpretation

Decryption

Encryption

Nb’Kab

NbNa + 1

Ciphertext

1001101100111100 1101101100010010

1001101100111100 1101101100010010

Figure 7: Bit Stream Interpretations and Type Flaw

The Otway-Rees protocol [91] provides another example of a protocol
subject to a type flaw attack.

(1) A ! B : M; A; B; E(Kas : Na; M; A; B)
(2) B ! S : M; A; B; E(Kas : Na; M; A; B); E(Kbs : Nb; M; A; B)
(3) S ! B : M; E(Kas : Na; Kab); E(Kbs : Nb; Kab)
(4) B ! A : M; E(Kas : Na; Kab)

The above protocol causes a key Kab created by the trusted server S to
be distributed to principals A and B. M is a protocol run identifier.

After initiating the protocol A expects to receive a message back in (4)
that contains the nonce Na used in (1) together with a new session key Kab
created by S. If M is (say) 32 bits long, A and B each 16 bits long and Kab
is 64 bits then an intruder Z can simply replay the encrypted component
of message (1) as the encrypted component of message (4). Thus

(1) A ! Z(B) : M; A; B; E(Kas : Na; M; A; B)
(4) Z(B) ! A : M; E(Kas : Na; M; A; B)

Here A decrypts E(Kas : Na; M; A; B) checks for the presence of the nonce
Na and accepts (M,A,B) as the new key. M, A and B are all publicly known
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(since they were broadcast in the clear). Similarly, it is clear that an in-
truder can play the role of S in messages (3) and (4) simply replaying the
encrypted components of message (2) back to B. The attack is:

(1) A ! B : M; A; B; E(Kas : Na; M; A; B)
(2) B ! Z(S) : M; A; B; E(Kas : Na; M; A; B); E(Kbs : Nb; M; A; B)
(3) Z(S) ! B : M; E(Kas : Na; M; A; B); E(Kbs : Nb; M; A; B)
(4) B ! A : M; E(Kas : Na; M; A; B)

He can now listen in to conversation between A and B using the now
publicly available key (M; A; B).

Further examples of type flaws are given by Syverson [109] andHwang
et al [60].

4.3 Parallel Session Attacks

A parallel session attack occurs when two or more protocol runs are exe-
cuted concurrently and messages from one are used to form messages in
another.

As a simple example consider the following one-way authentication
protocol:

(1) A ! B : E(Kab : Na)
(2) B ! A : E(Kab : Na+ 1)

Successful execution should convince A that B is operational since only
B could have formed the appropriate response to the challenge issued in
message (1). In addition, the nonce Na may be used as a shared secret
for the purposes of further communication between the two principals.
In fact, an intruder can play the role of B both as responder and initiator.
The attack works by starting another protocol run in response to the initial
challenge.

(1:1) A ! Z(B) : E(Kab : Na)
(2:1) Z(B) ! A : E(Kab : Na)
(2:2) A ! Z(B) : E(Kab : Na+ 1)
(1:2) Z(B) ! A : E(Kab : Na+ 1)

Here A initiates the first protocol with message (1.1). Z now pretends
to be B and starts the second protocol run with message (2.1), which is
simply a replay of message (1.1). A now replies to this challenge with
message (2.2). But this is the precise value A expects to receive back in the
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first protocol run. Z therefore replays this as message (1.2). At the very
least A believes that B is operational. In fact, B may no longer exist. The
attack is illustrated in figure 8. Solid arrows indicate messages of the first
protocol run, broken arrows indicate messages of the second protocol run.

E(Kab:Na)

E(Kab:Na)

E(Kab:Na+1)

E(Kab:Na+1)

Principal

A

Intruder

Z

Figure 8: Simple Parallel Session Attack

In the above attack Z used principal A to do some work on his behalf.
He needed to form an appropriate response to the encrypted challenge but
could not do so himself and so he "posed the question" to Awho provided
the answer. A is is said to act as an oracle (because he always provides the
correct answer) and attacks of this form are often called oracle attacks.

An interesting example of an oracle attack occurs in theWide-Mouthed
Frog Protocol (not intended for use in real systems). The protocol is de-
scribed by Burrows, Abadi and Needham [26].

(1) A ! S : A; E(Kas : Ta; B; Kab)
(2) S ! B : E(Kbs : Ts; A; Kab)

Here, each principal (A and B in the above) shares a key with the server
S. If A wishes to communicate with a principal B then he generates a key
Kab and a timestamp Ta and forms message (1) which is sent to S.

On receivingmessage (1) S checks whether the timestamp Ta is "timely"
and, if so, forwards the key to B with its own timestamp Ts. B checks
whether message (2) has a timestamp that is later than any other message
it has received from S (and so will detect a replay of this message).

The first way it can be attacked is by simply replaying the first mes-
sage within an appropriate time window - this will succeed since S will
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produce a new second message with an updated timestamp. If S0s no-
tion of timeliness is the same as B0s (i.e. it accept messages only if the
timestamp is later than that of any other message it has received from the
sender) then this attack will not work.

The second method of attack allows one protocol run to be recorded
and then the attacker continuously uses S as an oracle until he wants to
bring about re-authentication between A and B.

( 1 ) A ! S : A; E(Kas : Ta; B; Kab)
( 2 ) S ! B : E(Kbs : Ts; A; Kab)
(10 ) Z(B) ! S : B; E(Kbs : Ts; A; Kab)
(20 ) S ! Z(A) : E(Kas : T0s; B; Kab)
(100) Z(A) ! S : A; E(Kas : T0s; B; Kab)
(200) S ! Z(B) : E(Kbs : T00s; A; Kab)

Z now continues in the above fashion until he wishes to get A and
B to accept the key again. He does this by allowing A and B to receive
messages intended for them by S.

Parallel session attacks abound in the literature [103, 117, 108, 60]. Bird
et al [18, 19] illustrate parallel session attacks and present informal meth-
ods for analysing for their presence.

4.4 Implementation Dependent Attacks

Carlsen [31] indicates that some protocol definitions allow both secure and
insecure implementations. Typing attacks could be prevented if the con-
crete representations of component values contained redundancy to iden-
tify a sequence of bits as representing a specific value of a specific type
(and the principals made appropriate checks). Few protocol descriptions
require such enforcement of types explicitly. Thus, the implementation
approach adopted may severely affect the actual security of a protocol
that conforms to the description and implementation-dependent attacks
are possible.

Similarly we saw in subsection 4.2 how the implementation of nonces
(random or predictable) could severely affect the security of a protocol. In
that case it merely determined the degree of damage caused by an already
flawed protocol.

Perhaps the most interesting (and least understood) area where
implementation-dependent attacks may arise is the interaction between a
specific protocol and the actual encryption method used. In the protocols
we have described so far little has been said about the properties required
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of an encryption algorithm. The next section shows that the naïve use of
certain algorithms (that are generally considered strong) in the context of
specific protocols may produce insecure results.

4.4.1 Stream Ciphers

A stream cipher encrypts a plaintext bit stream on a bit-by-bit basis. The
encrypted value of a particular bit may depend on the key K, random
initialisation data R and the plaintext bits encrypted so far.

Consider the last two messages of the Needham Schroeder protocol
described in section 3.2.

(4) B ! A : E(Kab : Nb)
(5) A ! B : E(Kab : Nb  1)

Suppose that the cipherstream for message (4) is b1b2 : : : bn1bn. Now if
Nb is odd then the final plaintext bit (assumed to be the least significant
bit) will be 1 and Nb  1 will differ only in that final bit. On a bit by bit
encryption basis, the cipherstream for message (5) can be formed simply
by flipping the value of the final bit bn. On average the nonce will be odd
half of the time and so this form of attack has a half chance of succeeding.
This form of attack was originally described by Boyd [21]. It appears that
this form of attack is not limited to stream ciphers. Analysis reveals that
similar attacks can also bemounted against certain uses of cipher feedback
mode for block ciphers. Furthermore, if the element that is subject to bit
flipping represents a timestamp then the scope for mischief seems greater
(but seems unrecorded in the literature).

It is interesting to note that under the same set of assumptions a much
more virulent attack can be carried out by A. Message (3) of the protocol
is given below:

(3) A ! B : E(Kbs : Kab; A)

Flipping the final bit of this message could turn the A into a C under
decryption. Since A knows the key Kab he could fool B into believing he
shared this key with C and effectively masquerade as C.

4.4.2 Cipher Block Chaining

Another form of attack concerns the use of Cipher Block Chaining de-
scribed in section 2.2.3. For any successive pair of ciphertext blocks we
can recover the plaintext block corresponding to the second (provided we
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have the key). Suppose that E(K : P1P2P3) = IC1C2C3 Then C1C2C3 looks
like a ciphertext that begins with initialisation block C1, and decrypts to
P2P3. Similarly C1C2 decrypts to P2 (it uses C1 as an initialisation block)
and C2C3 decrypts to P3.

Thus we can see that without appropriate additional protection valid
messages may be created if their contents are subsequences of generated
messages. To distinguish this form of attack from those that follow we
shall call this form of flaw a subsequence flaw.

Consider again message (2) of the Needham Schroeder protocol of sub-
section 4.1.

(2) S ! A : E(Kas : Na; B; Kab; E(Kbs : Kab; A))

Suppose that this has ciphertext C0C1C2C3::: and that all components have
length one block. Then E(Kas : Na; B) = C0C1C2. But such a message is
of the form A might expect to receive in message (3) when B has initiated
the protocol. Thus, he can be fooled into accepting the publicly known Na
as a key. Thus use of CBC mode of encryption with this protocol will not
suffice.

Stubblebine and Gligor [106] have demonstrated attacks via cut and
paste methods where the ciphertexts of messages are split and conjoined
appropriately to form the ciphertexts of other messages (which should
only be formable by those in possession of the appropriate key). This is
illustrated in figure 9.

We see that the spliced ciphertext message decrypts to appropriate
plaintext except for the block immediately after the join. Denoted by X
in the figure, it is likely that it is random gibberish but in some cases that
may be precisely what is expected (e.g. if the block is expected to contain
a random number). Mao and Boyd have also highlighted the dangers of
CBC use [79], pointing out that in many cases it will be possible to deter-
mine precisely what value X takes if the intruder has knowledge of the
plaintext block corresponding to the ciphertext immediately after the ci-
phertext join. In the example shown in figure 9, we have

X = C3  dK(C
0

2)

X = C3  (C0

1  P0

2)

and so if P0

2 is known then so is X since the ciphertext blocks are publicly
broadcast.

It is dangerous to believe that attacks of the above form lose their power
if the plaintext block is not publicly known or guessable; such blocks will
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generally be known to the parties communicating in a protocol who may
misuse their knowledge (see below).

Of particular note are initialisation attacks—attacks that involve modu-
lation of the initialisation vector C0. Consider a ciphertext that starts with
C0C1 and suppose that we know that the initial plaintext block was P1.
Then

P1 = C0  dK(C1)

Now for any desired block valueW we have

W = W  P1  P1

since anything XORed with itself is 0. And so we have (substituting for
the second P1)

W = W  P1  (C0  dK(C1))

and so

W = C0

0  dK(C1)

where C0

0 = W  P1  C0 and so C0

0C1 is the ciphertext corresponding to
plaintext W. In this fashion we can replace the initial known plaintext
block P1 with our own choiceW. This is potentially very disturbing since
the rest of the message is unaffected.

As an example of the danger of this attack, consider again message
(2) of the Needham Schroeder protocol. We can record message (2) of a
previous run of this protocol between A and B. In particular we can replay
the old message (2) after modifying the initial block from the old (and
known) value of the nonce Na with the new one issued in the current run
of the protocol. Thus, we can impersonate the trusted server S. Now
consider the contents of message (3) of that protocol:

(3) A ! B : E(Kbs : Kab; A)

Since A knows the key in message (3), he can create a new message (3)
whenever he likes for any key value he likes. One might argue that if A
wants to misbehave he can do so much more simply than this but this
misses the point: B works on the assumption that the contents of message
(3) were created by the trusted server S. This is clearly not the case.

We have illustrated these attacks using the Needham Schroeder pro-
tocol simply because it is the best known and simple to understand. The
above forms of attack present problems with a good number of protocols.
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Wehave illustrated various forms of cryptoalgorithm dependent flaws.
The above description is by no means exhaustive. Indeed, other modes of
encryption have given rise to problems in implemented protocols. In par-
ticular, Propagating Cipher Block Chaining (PCBC) mode was shown to
be deficient and led to the Kerberos V.5 protocol adopting CBC mode (V.4
used PCBC). Criticisms of the Kerberos protocols were given by Bellovin
and Merritt [14]. Other aspects relating to Cipher Block Chaining can be
found in the recent paper by Bellare et al [13].

4.5 Binding Attacks

In public key cryptography the integrity of the public keys is paramount.
Suppose your public key is Ky and an intruder’s public key is Ki. The
intruder is able to decrypt any messages encrypted with Ki. Principals
wishing to convey information to you secretly will encrypt using what
they believe is your public key. Thus, if the intruder can convince others
that your public key is Ki then they will encrypt secret information using
Ki and this will be readable by the intruder.

Thus, the principals in charge of distributing public keys must ensure
that the above cannot occur; there must be a verifiable binding between a
public key and the corresponding agent. In some authentication protocols,
this has not been achieved. Consider the following protocol:

(1) C ! AS : C; S; Nc
(2) AS ! C : AS; E(Kas1 : AS;C; Nc; Ks)

Here, a prospective client C wants to communicate with S and needs the
public key of S. The certification authority AS is the repository for princi-
pals’ public keys. C sends message (1) to request the public key of S. He
includes a nonce Nc to ensure the freshness of the expected reply.

AS replies with message (2). The principal identifier AS is sent in the
clear to tell C which public key to use to decrypt the following ciphertext.
The components of the encrypted part signify that the message was cre-
ated by AS, that this message has been created in response to a request
from a client C with nonce Nc and that the public key requested is Ks.
However, the reader may note that there is nothing in the encrypted part
of message (2) that assures the recipient that the key is really the public
key of S. This leads to the following attack:

(1:1) C ! Z(AS) : C; S; Nc
(2:1) Z(C) ! AS : C; Z; Nc
(2:2) AS ! Z(C) : AS; E(Kas1 : AS;C; Nc; Kz)
(1:2) Z(AS) ! C : AS; E(Kas1 : AS;C; Nc; Kz)
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Here the intruder Z intercepts the initial message from C to AS and sim-
ply replaces the identifier of the intended server S with his own identifier
Z: and sends the result to AS as message 2.1. AS, believing that C has re-
quested Z’s public key, replies with message (2.2). Z simply allows this to
be received by C asmessage (1.2). C performs appropriate decryptions and
checks and believes that he has received the public key of S. This attack
(and a similar one) was identified by Hwang and Chen [59]. They suggest
that this problem can be solved by explicitly including the identifier of the
requested server S in message (2). The protocol then becomes:

(1) C ! AS : C; S; Nc
(2) AS ! C : AS; E(Kas1 : AS;C; Nc; S; Ks)

Problems with signing after encryption arose some time ago with the
draft CCITT X.509 standard. L’Anson and Mitchell [12] showed certain
deficiencies in the protocols as did Burrows, Abadi and Needham [26] (see
6.9.1).

4.6 Encapsulation Attacks

In a great many protocols a principal A may arrange for a second prin-
cipal B to encrypt some data chosen by A. As a rule such data should be
regarded as ’user data’ and carefully considered as a vehicle for cryptosys-
tem dependent attacks. As a simple example consider the following key
translation protocol due to Davis and Swick [40]:

(1) B ! A : E(Kbt : A;msg)
(2) A ! T : E(Kbt : A;msg); B
(3) T ! A : E(Kat : msg; B)

In this protocol all participants share keys with the trusted server T.
The server acts as intermediary. A accepts message (3) as proof that B sent
the message msg to him via T. The reversal of principal and message com-
ponents appears to be made to introduce asymmetry (and hence protect
against reflections). However, if msg begins with a principal identifier C
then message (3) may be passed off as a message (1) but originated by A
and intended for C. Since B chooses the contents of msg he can arrange
this. Can we protect against this by means of some integrity check? Gen-
erally the answer will be yes but this is not without its pitfalls. If messages
are of variable length then in many cases, it may be possible to embed a
whole message (including CRC check say) in the msg component. If CBC
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mode of encryption is used then a perfectly formed encrypted message
could be extracted (this depends on how initial vectors are chosen).

Note that user data is very common, typically in the form of principal
identifiers or nonces and the like. Thus if a plaintext message P were 3
blocks long (including checks) and another message had a freely chosen
nonce N then if this nonce is 3 or more blocks in length then a CBC encap-
sulation attack becomes possible. Similar attacks will hold when a stream
cipher is used (but here it will generally have to be the initial segment of a
message).

4.7 Other Forms of Attack

The above forms of attack may be regarded as representative of the dan-
gers involved in designing authentication protocols. In general, they do
not require a great deal of mathematical sophistication to comprehend.
More sophisticated attacks that take advantage of particular algebraic prop-
erties of the cryptoalgorithm when used in the context of authentication
protocols are given in the excellent paper by Judy Moore [85].

In addition, more traditional forms of attack such as cryptanalysis can
be launched on several protocols. Mao and Boyd [80] have recently in-
vestigated ways of protecting against such attacks. Paul Kocher’s recent
discovery of an attack on RSA via timing analysis might well have pro-
found and more general impact [72].

Aspects of redundancy have also been addressed by Gong [51]. Pro-
tocols using passwords have been addressed by several authors [15], [54].
Carlsen [31] has a category called elementary flaws which is used to group
protocols which are breakable with little effort because they provide little
or no protection. The (unintentionally flawed) CCITT X.509 protocol and
the (intentionally flawed— it was intended as a example to highlight defi-
ciencies in the use of BAN logic) Nessett protocol [89] are included in this
category. It is a matter of opinion as to when a flaw is considered elemen-
tary and the choice is somewhat arbitrary. Clark and Jacob have discov-
ered a flaw similar to the CCITT X.509 one in a recently published proto-
col [34]. Anderson and Needham provide introductory accounts of how
protocols may fail and provide good advice on how to construct secure
protocols [10, 11]. Anderson also provides a highly readable and some-
what distressing account of how management aspects as well as technical
aspects can cause systems to fail [5].
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4.8 Conclusions

Protocol construction might seem a simple task; protocols often comprise
only a fewmessages. This is, however, clearly deceptive and the examples
we have shown above indicate that the invention of secure protocols is a
remarkably subtle affair.

The current explosion in distributed system development and network
usage means that there is a pressing need for a framework and tool sup-
port for the rigorous development and analysis of new security protocols.
Although significant advances have been made in recent years, there is
clearly some way to go! As Lowe has shown [76] the same mistakes seem
to be made time after time.

There are, however, signs that the community is getting to grips with
the matter at hand. There is a gradual realisation that it is the whole sys-
tem that is important and that a considerable number of factors need to
be taken into account. Anderson emphasises the management aspects in
banks [5]. Abadi and Needham take a strong practical engineering ap-
proach providing ten useful rules of thumb in their excellent general de-
sign guide [1].

The subtlety of some attacks indicates that a systematic (and auto-
mated) approach to analysis is essential. The next section indicates some
of the methods and tools that have been used to date.
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5 Formal Methods for Analysis

In this section we review the major approaches to the specification and
analysis of authentication protocols. Several methods have been tried,
each with their strengths and weaknesses. We address them as follows:

 the use of existing formal methods to specify and analyse authenti-
cation protocols;

 the use of logics of knowledge and belief;

 the use of expert systems and algebraic term-rewriting systems.

This is the classification used by Rubin and Honeyman [95] in their re-
view article. As indicated by Rubin andHoneyman, the above methods as
implemented are all independent of the cryptographic mechanism used.
This is of course a strength since in producing a protocol specification we
might not yet wish to specify a particular implementational mechanism.
However, it also highlights a gap in the formal support for protocol de-
velopment: tool support for the identification of cryptosystem dependent
insecurities.

5.1 Extant Formal Verification Systems

Early formal efforts concentrated on the use of existing formal specifica-
tion and verification systems. This is hardly surprising; a great deal of ef-
fort was expended by the security community (developers, evaluators and
Government agencies) to use formal specification and verification tech-
niques for many aspects of security. Toolsets had been developed, or were
being developed, and use could be made of the experience gained in other
areas.

The first such attempt appears to be that of Kemmerer, who in 1987
used the Ina Jo development environment to specify and prove properties
of a cryptographic system [69]. The attempt was successful and demon-
strated that proof technology could be brought to bear successfully on
problems in the field. Effectively, security of the system is expressed as
state invariants which are then shown to be maintained under controlled
transitions. The work was concerned with the correctness of the system.
There was no attempt to model, for example, an active intruder on the
network.

Boyd and Mao have used the Z specification language to specify as-
pects of a key distribution systems [24]. No proofs are attempted. The Z
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language has been used in many areas of security outside of authentica-
tion. Within the UK it is often the language of choice for specification for
Governmental agencies. Details of these uses are omitted here. More re-
cently, the B notation has been used to specify authentication systems [17].
This method shows some promise as tool support emerges.

The use of such state-based techniques seems of limited use. There is
little or no attempt to model an attacker (Kemmerer models a passive in-
truder, Mao and Boyd model none). There is an implicit assumption that
the functionality specified is sufficient to maintain security. Without an ex-
plicit statement of what attacks are possible it is impossible to see whether
the specified operations actually do maintain security. Such methods are
primarily concerned with the preservation of correctness rather than secu-
rity.

Other formal specification techniques have been used for authentica-
tion protocols, e.g. LOTOS has been used to specify the X.509 directory
framework. Finite-state machines have also been used by several authors
for the specification and analysis of protocols. None of these uses provides
analytical support for security in the face of an active intruder. Rubin and
Honeyman [95] provides some details.

Recent work by the Formal Systems Europe and Programming Re-
search Group at Oxford [94] has used verification techniques for process
algebras to analyse security protocols. In particular work has been carried
out using CSP. Principals in the protocol are specified as CSP processes op-
erating in parallel. In addition, a general attacker is added that can carry
out actions that may reasonably be expected of an attack (listening, faking,
replaying etc.)

An authentic run of the protocol is specified (the protocol terminates
with success only if the message sequence is what the protocol intended).
The implementation of the protocol which comprises the various princi-
pals as agents must now be shown to satisfy the specification. The Fail-
ures Divergences Refinement (FDR) tool is used to check possible traces of
the implementation against the specification. Roscoe and Gardiner have
created a variety of heuristics to prune down the search space to make the
model checking feasible.

The results have been very promising (subtle and hitherto unknown
protocol flaws have been discovered using the approach). For example,
17 years after its publication a flaw was found in the Needham Schroeder
Public Key protocol by Lowe using the FDR tool [75]. See also [77]. Roscoe
and Gardiner provide an account of the initial results of their research in
[94]. The extension of the work to handle algebraic elements is also avail-
able [47] [48]. A particularly pleasing part of the work is the willingness to
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investigate the operation of protocols under the relaxation of trust in prin-
cipals (or the weakening of assumptions). Further work on the use of CSP
to capture and verify security properties has been carried out by Schnei-
der [97]. An overview of the CSP approach to authentication protocols is
given by Ryan [96].

5.2 The Use of Logics

Logics have seen widespread use in the analysis of authentication proto-
cols. The logics used have been principally of two types:

 epistemic logics (that is, logics of knowledge);

 doxastic logics (that is, logics of belief).

Traditionally, issues of trust have been dealt with using belief logics and
issues of security have been dealt with using knowledge logics. Syverson
[107] provides a good overview of how logics can be used for the analysis
of authentication protocols. He indicates that it is possible to reason about
both trust and security using either approach but that in practice he has
found that epistemic logics are more efficient. The greatest amount of ef-
fort has been expended in the use of belief logics and it is to this that we
turn our attention first.

5.2.1 BAN Logic

In 1989, Burrows, Abadi and Needham published what is probably the
most influential document in authentication literature [26]. They provided
a logic (referred to universally as BAN logic) to describe the beliefs of prin-
cipals involved in a protocol. The set of beliefs held by a principal changes
as he receives protocol messages. The authors provide a set of inference
rules that define how the set of beliefs changes. Thus, given an initial set of
beliefs the logic allows the analyst to determine what the final belief state
is.

BAN logic has a special place in authentication history; it represents
the first attempt to provide a formal language to describe what the as-
sumptions of a protocol are and also what the goals are. In general, protocol
descriptions have generally stated what the principals should do and not
what they were trying to achieve.

The logic has stimulated a great deal of controversy. Nessett [89] pro-
vides an example of a clearly insecure protocol which is nevertheless ac-
cepted as secure by the BAN logic. Effectively, a shared key K is encrypted
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under a private key and broadcast to the network. Since the correspond-
ing public key is generally known, the message can be decrypted by all
to obtain the secret shared key. In their rejoinder [27] the BAN authors
point out that their logic dealt with trust and not confidentiality, stating
that the obvious publication of the shared key in the indicated manner
contradicted a belief in its suitability for use.

This would appear correct, but the situation is still rather unsatisfying.
Additional problems have been identified. Snekkenes [102] showed that
permutations of protocol steps left the results unaffected.

It is possible that a principal may decrypt some random text to obtain
some putative ”formula” using some key that he holds. For the decryp-
tion to succeed the result of decryption must be meaningful in some way.
Gong, Needham and Yahalom [55] introduce the notion of recognisability
in their logic (general referred to as GNY) to cater for this. Also, the orig-
inal BAN logic assumes that there is sufficient redundancy in a message
for a principal to detect a message he himself originated (thus reflection
attacks are assumed to be catered for outside of BAN analysis). GNY logic
makes origination explicit. GNY allows preconditions to be attached to
rules to achieve different levels of belief. Thus, different levels of trust
are allowed by the logic. Most BAN work concentrates on the analysis of
protocols. When used for development, problems may arise because com-
pletely infeasible protocols may be specified that nevertheless achieve the
desired goals according to the protocol (e.g. by specifying that principals
send messages that contain information they simply do not have). This
is dealt with by Gong [52] whose extended logic requires that principals
make use only of information that is legitimately available to them.

Boyd and Mao [24] provide many criticisms of BAN logic (and other
descendants): the formalisation approach is somewhat vague; it allows
beliefs that may legitimately be regarded as nonsensical (e.g. belief in a
nonce) and themethod of determining assumptions is ad hoc. Instead they
provide a language for describing protocols and a partially mechanised
approach to idealisation. As pointed out by Rubin and Honeyman [95]
there is still informal judgement at work in the idealisation process. The
reasoning process is backwards (rather than forwards as in BAN logic),
thus the reasoning proceeds from the desired conclusion to derive initial
beliefs.

There have been other belief-logic approaches. Boyd and Mao have in-
troduced a non-monotonic logic of belief (i.e. one which allows previously
held beliefs to be revoked) [24]. Campbell et al [30] introduce the notion
of uncertainty into BAN by assigning probabilities to assumptions and to
rules of inference. This allows conclusions drawn to be treated as uncer-
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tain. Linear programming methods are used to determine the precise
bounds of probabilities.

Kessler and Wedel modify BAN to allow the incorporation of plaintext
messages [71]. This widens the scope of what can be analysed. They also
replace the nonce-verification rule of BANwith a ”has recently said ” rule.
A recipient of a message no longer believes that the sender of a message
believes the contents, rather he now just deduces that the sender sent it
recently. A rule is introduced to allow a principal to try keys that he has
(or can generate) without actually believing that the key is appropriate for
the message in question. Kessler and Wedel’s most important suggestion
is the incorporation of a passive eavesdropper into the system. By the
determination (by closure) of information available to such an intruder,
certain types of confidentiality breaches can be detected (e.g. the the Nes-
sett flaw). The authors provide an example of BAN’s inability to deal with
a parallel session attack. Recent work by Boyd andMao has indicated that
care needs to be takenwhen cleartext is omitted [23] but Oorschot disputes
the views they take [120].

Overall, BANhas proved of substantial use. It often seems like amarked
improvement on its successors which have added conceptual apparatus to
deal with its perceived deficiencies at the expense of considerable increase
in complexity. This is indeed the view of Roger Needham (commenting
on GNY logic). Kessler and Wedel note that BAN extensions tend to be
extensions to the original BAN logic, not to its successors. BAN logic has
unearthed many protocol flaws and provides a very cost-effective means
of detecting (some) flaws. In terms of value for money it has much to be
said for it. The rule would appear to be ”Try BAN first; it doesn’t cost a
great deal and it often produces results.” The method is clearly not with-
out its difficulties; it should be regarded as a useful tool. BAN logic deals
with with the beliefs of trustworthy principals; it does not deal with confi-
dentiality. Since confidentiality is essential to maintaining authentication
other methods will need to be brought to bear for system security.

An important aspect of the BAN approach is that it forces the analyst
to be precise about what the goals and assumptions of a protocol actually
are. It is often very difficult to determine these from many specifications.

5.2.2 Other Logics

General purpose logics (or adapted forms) have also been employed in
the services of authentication. Bieber [16] provides a quantified extension
called CKT5 of the modal logic KT5 (together with send and receive op-
erators) and uses it to couch and prove authentication properties. Carlsen
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[32] indicates how various deficiencies of the standard notation can be
overcome by providing rules for a standard protocol specification into a
CKT5 logic specification. Snekkenes has shown that the sort of analysis
carried out in the Bieber method is insufficient to detect multi-role flaws,
i.e. where a principal does not restrict himself to playing just one agent.
He also suggests how to extend Bieber’s approach to cope with the prob-
lem. Snekkenes notes in his doctoral dissertation that principal operation
is couched in rather complex formulae. Snekkenes has also carried out
significant work that uses the HOL (Higher Order Logic) specification lan-
guage and tool support to specify and prove properties about protocols
[104].

5.3 Expert Systems and Algebraic Rewriting Systems

There have been a few notable attempts to provide automated analysis of
protocols via search techniques. Early work byMillen et al led to the devel-
opment of the Interrogator tool [84]. The user guide provides an updated
account of the tools facilities [83]. Protocols are specified in a prolog-based
syntax. Knowledge of the various principals is built up and recorded as
the protocol progresses. The tool, with guidance from the user, can be
used to investigate ways in which states can be reached where security
is compromised, i.e. start from an insecure state and attempt to see how
you could have got there. The tool appears usable and has been used to
find flaws in protocols. It is one of the tools included in a comparative
study of three systems [70]. The comments there indicate that the tool at
present has problems in discovering flaws in which a principal takes on
more than one role (if so this is a weakness shared with other systems, see
[103]). Also the paper notes

There are, in general, many different ways to specify the same
protocol, which are ”correct” in some sense. Yet they lead to
different running times, and some may exclude possible pene-
trations.

Search-path pruning heuristics may lead to some penetrations beingmissed.
Snekkenes [104] points out that the Interrogator does not allow the iden-
tification of guess-based attacks. BAN logic does not address these either.
As far as we are aware the Interrogator has not discovered any new at-
tacks.

Meadows has developed an analysis tool based on term rewriting (the
NRL Protocol Analyser). The specification language is again prolog-based
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and fairly easy to follow. Principals possess beliefs and also know various
words which make up messages. Receipt of a message causes the state of
the system to change. Words and beliefs held by a principal occur as a
result of receiving messages. Various rewrite rules are specified as part of
the protocol (e.g. the result of encrypting and then decrypting some plain
text with the same key produces te original plaintext). The tool attempts
to find scenarios to reach an insecure state. The tool looks technically ef-
fective but Rubin and Honeyman [95] report that these types of tools are
rather difficult to use by designers. Interestingly, the tool failed to find a
flaw in the TMN protocol due to the way in which the properties of the
RSA algorithm had been couched [70]. The analysis process is not entirely
automated; lemmas for the tool to prove must be generated by the user.
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6 A Library of Protocols

6.1 Symmetric Key Protocols Without Trusted Third Party

6.1.1 ISO Symmetric Key One-Pass Unilateral Authentication Protocol

This protocol [62] consists of a single message from one principal A to a
second B. A secret key Kab is assumed to be shared between these two
principals.

(1) A ! B : Text2; E(Kab : [TajNa]; B; Text1)

The use of the text fields is application specific. There is a choice between a
sequence number Na and a timestamp Ta which ’depends on the technical
capabilities of the claimant and the verifier as well as the environment.’

6.1.2 ISO Symmetric Key Two-Pass Unilateral Authentication Protocol

In this protocol the claimant A is authenticated by the verifier B by the
means of challenge-response. The protocol is fairly familiar:

(1) B ! A : Rb; Text1
(2) A ! B : Text3; E(Kab : Rb; B; Text2)

Here Rb is a random number. On receiving message (2) B decrypts the en-
crypted component and checks for the presence of both B and Rb issued
in message (1). At the end of the protocol B may conclude that A is op-
erational (or at least was the originator of message (2) after he (B) issued
message (1)).

6.1.3 ISO Symmetric Key Two-Pass Mutual Authentication

This protocol allows each communicating principal to establish that the
other is operational. Again, a secret key is assumed to be shared between
A and B.

(1) A ! B : Text2; E(Kab : [TajNa]; B; Text1)
(2) B ! A : Text4; E(Kab : [TbjNb]; A; Text3)

This protocol is in fact two independent uses of the one-pass authentica-
tion protocol (see 6.1.1). Use of the text fields is suggested as a way of
binding the two messages.

Again, the use of sequence numbers or timestamps ’depends on the
technical capabilities of the claimant and the verifier as well as the envi-
ronment.’
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6.1.4 ISO Symmetric Key Three-Pass Mutual Authentication

Here mutual authentication is achieved by the use of random numbers Ra
and Rb.

(1) B ! A : Rb; Text1
(2) A ! B : Text3; E(Kab : Ra; Rb; B; Text2)
(2) B ! A : Text5; E(Kab : Rb; Ra; Text4)

On receiving message (2) B checks for the presence of both B and Rb sent
in message (1). On receiving message (3) A checks both Rb and Ra are the
ones sent in message (1) and (2) respectively.

6.1.5 Using Non-Reversible Functions

In this protocol, the responding principal is trusted to generate a new ses-
sion key K. On receiving message (2) B decrypts and then checks that
the correct value of f (Rb) has been sent. He forms a one-way hash value
of the other nonce Ra and encrypts it under the newly distributed key K
and sends the result to A, who similarly decrypts and checks the value is
correct.

(1) B ! A : B; Rb
(2) A ! B : A; E(Kab : f (Rb); Ra; A; K)
(3) B ! A : B; E(K : f (Ra))

6.1.6 Andrew Secure RPC Protocol

This protocol has been shown to be flawed. It is intended to distribute a
new session key between two principals A and B. In the final message (4)
the nonce N0b is a handshake number to be used in future messages.

(1) A ! B : A; E(Kab : Na)
(2) B ! A : E(Kab : Na+ 1; Nb)
(3) A ! B : E(Kab : Nb+ 1)
(4) B ! A : E(Kab : K0ab; N0b)

The problem with this protocol is that there is nothing in message (4)
that A knows to be fresh. An intruder can simply replay this message at
a later date to get A to accept it as the final message of a protocol run (i.e.
replace the final message sent by B). There is also a parallel session attack.
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6.2 Authentication Using Cryptographic Check Functions

All ISO protocols in this section can be found in Part 4 of the ISO 9798
Standard [64]. The keyed function fKab(X) returns a hashed value for data
X in a manner determined by the key Kab.

6.2.1 ISO One-Pass Unilateral Authentication with CCFs

(1) A ! B : [TajNa]; B; Text2; fKab([TajNa]; B; Text1)

6.2.2 ISO Two-Pass Unilateral Authentication with CCFs

(1) B ! A : Rb; Text1
(2) A ! B : Text3; fKab(Rb; B; Text2)

6.2.3 ISO Two-Pass Mutual Authentication with CCFs

(1) A ! B : [TajNa]; Text2; fKab([TajNa]; B; Text1)
(2) B ! A : [TbjNb]; Text4; fKab([TbjNb]; A; Text3)

This protocol is two independent uses of the single pass unilateral authen-
tication protocol.

6.2.4 ISO Three-Pass Mutual Authentication with CCFs

(1) B ! A : Rb; Text1
(2) A ! B : Ra; Text3; fKab(Ra; Rb; B; Text2)
(3) B ! A : Text5; fKab(Ra; Ra; Text4)

6.3 Symmetric Key Protocols Involving Trusted Third Par-

ties

6.3.1 Needham Schroeder Protocol with Conventional Keys

This is the most celebrated (or best-known) of all Security Protocols. The
original presentation is given in [87] (where it forms protocol 1). The more
usual notational conventions are adopted here.

(1) A ! S : A; B; Na
(2) S ! A : E(Kas : Na; B; Kab; E(Kbs : Kab; A))
(3) A ! B : E(Kbs : Kab; A)
(4) B ! A : E(Kab : Nb)
(5) A ! B : E(Kab : Nb  1)
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The most famous attack is by Denning and Sacco [42]. There is another
potential weakness which depends on the nature of the assumptions made
about cryptographic support.

The main problem with this protocol is that B has no way of ensuring
that the message (3) is fresh. An intruder can compromise a key and then
replay the appropriate message (3) to B and then complete the protocol.
Also, A could (should he so wish) also spoof message (3) in the same way
(causing a stale key to be reaccepted by B).

If a stream cipher is used then the difference between the ciphertexts
in (4) and (5) is very small (one bit) and this allows a simple attack to be
launched. The reader is referred to [21]. See also section 4.4.1.

6.3.2 Denning Sacco Protocol

Denning and Sacco suggested fixing the freshness flaw in the Needham
Schroeder protocol above by the use of timestamps. The protocol becomes:

(1) A ! S : A; B
(2) S ! A : E(Kas : B; Kab; T; E(Kbs : A; Kab; T))
(3) A ! B : E(Kbs : A; Kab; T)

T is a timestamp. B can check for timeliness of message (3) (allowing for
clock drift and network delays). There is now no need for the extra ex-
change between A and B of the Needham-Schroeder protocol.

6.3.3 Otway-Rees Protocol

TheOtway-Rees Protocol [91] is awell-known protocol that has been shown
to be flawed. The notation of the original differs from common usage and
so the form presented here is that given in [26].

(1) A ! B : M; A; B; E(Kas : Na; M; A; B)
(2) B ! S : M; A; B; E(Kas : Na; M; A; B); E(Kbs : Nb; M; A; B)
(3) S ! B : M; E(Kas : Na; Kab); E(Kbs : Nb; Kab)
(4) B ! A : M; E(Kas : Na; Kab)

In the aboveM is a nonce (a run identifier). Inmessage (1) A sends to B the
plaintext M; A; B and an encrypted message readable only by the server S
of the form shown. B forwards the message to S together with a similar
encrypted component. The server S decrypts the message components
and checks that the components M; A; B are the same in both messages. If
so, then it generates a key Kab and sends message (3) to Bwhich forwards
part of the message to A. A and Bwill use the key Kab only if the message
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components generated by the server S contain the correct nonces Na and
Nb respectively.

An attack on the protocol is given below:

(1) A ! Z(B) : M; A; B; E(Kas : Na; M; A; B)
(4) Z(B) ! A : M; E(Kas : Na; M; A; B)

In this attack principal A is fooled into believing that the triple M; A; B is
in fact the new key. This triple is of course public knowledge. This is an
example of a type flaw. Of course, it is also possible to wait until message
(2) of the original protocol has been sent and then reflect appropriate com-
ponents back to both A and B and then monitor the conversation between
them.

6.3.4 Amended Needham Schroeder Protocol

In 1987 Needham and Schroeder [88] suggested a fix to the original Need-
ham Schroeder Protocol. This is given below.

(1) A ! B : A
(2) B ! A : E(Kbs : A; Nb0)
(3) A ! S : A; B; Na; E(Kbs : A; Nb0)
(4) S ! A : E(Kas : Na; B; Kab; E(Kbs : Kab; Nb0; A))
(5) A ! B : E(Kbs : Kab; Nb0; A)
(6) B ! A : E(Kab : Nb)
(7) A ! B : E(Kab : Nb  1)

The protocol is thought to be secure (there would appear to be a cryp-
tographic implementation dependent flaw; namely the bit flipping flaw
described by Boyd [21]).

6.3.5 Wide Mouthed Frog Protocol

The following protocol is given in [26]. It is due to Burrows.

(1) A ! S : A; E(Kas : Ta; B; Kab)
(2) S ! B : E(Kbs : Ts; A; Kab)

A is trusted to generate a session key Kab. On receiving message (1) S
checks whether the timestamp Ta is "timely" and, if so, forwards the key
to B with its own timestamp Ts. B checks whether the message (2) has a
timestamp that is later than any other message it has received from S. The
protocol is flawed (possibly in several ways).

48



The first way it can be attacked is by simply replaying the first mes-
sage within an appropriate timewindow - this will cause re-authentication
since S will produce a new second message with an updated timestamp.
The second method of attack allows one session to be recorded and then
the attacker continuously uses S as an oracle until he wants to bring about
re-authentication between A and B.

( 1 ) A ! S : A; E(Kas : Ta; B; Kab)
( 2 ) S ! B : E(Kbs : Ts; A; Kab)
(10 ) Z(B) ! S : B; E(Kbs : Ts; A; Kab)
(20 ) S ! Z(A) : E(Kas : T0s; B; Kab)
(100) Z(A) ! S : A; E(Kas : T0s; B; Kab)
(200) S ! Z(B) : E(Kbs : T00s; A; Kab)

and now Z is in a position to replay appropriate messages to A and B

(1) A ! Z(S) : E(Kas : T0s; B; Kab)
(2) Z(S) ! B : E(Kbs : T00s; A; Kab)

The above has been discovered independently by several authors.

6.3.6 Yahalom

The Yahalom protocol is given below. It has been shown to be flawed by
several authors. There are also some attacks based on assumptions about
cryptographic implementation which were noticed by Clark and Jacob
(many protocols are equally susceptible).

(1) A ! B : A; Na
(2) B ! S : B; E(Kbs : A; Na; Nb)
(3) S ! A : E(Kas : B; Kab; Na; Nb); E(Kbs : A; Kab)
(4) A ! B : E(Kbs : A; Kab); E(Kab : Nb)

One attack on the Yahalom protocol is given below:

(1) Z(A) ! B : A; Na
(2) B ! Z(S) : B; E(Kbs : A; Na; Nb)
(3) ! : Omitted
(4) Z(A) ! B : E(Kbs : A; Na; Nb); E(Na; Nb : Nb)

Other attacks can be mounted on the protocol. Attacks on a modified form
of this protocol can be found in [108].
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6.3.7 Carlsen’s Secret Key Initiator Protocol

This protocol is fairly self-explanatory and may be found in [33].

(1) A ! B : A; Na
(2) B ! S : A; Na; B; Nb
(3) S ! B : E(Kbs : Kab; Nb; A); E(Kas : Na; B; Kab)
(4) B ! A : E(Kas : Na; B; Kab); E(Kab : Na); N0b
(5) A ! B : E(Kab : N0b)

6.3.8 ISO Four-Pass Authentication Protocol

(1) A ! B : TVPa; B; Text1

(2) S ! A :
Text4; E(Kas : TVPa; Kab; B; Text3);

E(Kbs : [TsjNs]; Kab; A; Text2)

(3) A ! B :
Text6; E(Kbs : [TsjNs]; Kab; A; Text2);

E(Kab : [TajNa]; B; Text5)
(4) B ! A : Text8; E(Kab : [TbjNb]; A; Text7)

6.3.9 ISO Five-Pass Authentication Protocol

(1) A ! B : Ra; Text1
(2) B ! S : R0b; Ra; A; Text2
(3) S ! B : Text5; E(Kbs : R0b; Kab; A; Text4); E(Kas : Ra; Kab; B; Text3)
(4) B ! A : Text7; E(Kas : Ra; Kab; B; Text3); E(Kab : Rb; Ra; Text6)
(5) A ! B : Text9; E(Kab : Ra; Rb; Text8)

6.3.10 Woo and Lam Authentication Protocols

The following series of one-way authentication protocols are similar. Some
are known to be incorrect. The published accounts of these protocols are
given in [117]. Woo and Lam state that a protocol is correct if

"whenever a responder finishes execution of the protocol, the
initiator of the protocol is in fact the principal claimed in the
initial message".

Woo and Lam start with a protocol Π f and progressively simplify it to
Π. The final simplification leads to a flawed protocol. Note: in their 1994
paper [117] Woo and Lam state that they assume that principals can detect
the replay of messages they have created.
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The protocol Π f .

(1) A ! B : A
(2) B ! A : Nb
(3) A ! B : E(Kas : A; B; Nb)
(4) B ! S : E(Kbs : A; B; Nb; E(Kas : A; B; Nb))
(5) S ! B : E(Kbs : A; B; Nb)

The protocol Π1.

(1) A ! B : A
(2) B ! A : Nb
(3) A ! B : E(Kas : A; B; Nb)
(4) B ! S : E(Kbs : A; B; E(Kas : A; B; Nb))
(5) S ! B : E(Kbs : A; B; Nb)

The protocol Π2.

(1) A ! B : A
(2) B ! A : Nb
(3) A ! B : E(Kas : A; Nb)
(4) B ! S : E(Kbs : A; E(Kas : A; Nb))
(5) S ! B : E(Kbs : A; Nb)

The protocol Π3.

(1) A ! B : A
(2) B ! A : Nb
(3) A ! B : E(Kas : Nb)
(4) B ! S : E(Kbs : A; E(Kas : Nb))
(5) S ! B : E(Kbs : A; Nb)

The protocol Π.

(1) A ! B : A
(2) B ! A : Nb
(3) A ! B : E(Kas : Nb)
(4) B ! S : E(Kbs : A; E(Kas : Nb))
(5) S ! B : E(Kbs : Nb)
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The protocol Π can be attacked as follows:

(1 ) Z(A) ! B : A
(2 ) B ! Z(A) : Nb
(3 ) Z(A) ! B : G
(4 ) B ! Z(S) : E(Kbs : A; G)
(10) B ! Z(R) : B
(20) Z(R) ! B : Z; E(Kzs : Nb)
(30) B ! Z(R) : E(Kbs : Z; E(Kzs : Nb))
(40) Z(B) ! S : E(Kbs : Z; E(Kzs : Nb))
(50) S ! Z(B) : E(Kbs : Nb)
(5 ) Z(S) ! B : E(Kbs : Nb)

Here Z waits for B to start up a protocol run at (1’) with some principal
R to complete the attack.

Alternatively it may be attacked as follows:

(1 ) Z(A) ! B : A
(10) Z ! B : Z
(2 ) B ! Z(A) : Na
(20) B ! Z : Nz
(3 ) Z(A) ! B : G
(30) Z ! B : E(Kzs : Na)
(4 ) B ! S : E(Kbs : A; G)
(40) B ! S : E(Kbs : Z; E(Kzs : Na))
(50)
(5 ) S ! B : E(Kbs : Na)

These protocol attacks are indeed given in [117]. However, the proto-
cols would appear to be subject to some straightforward replay attacks.
For example, in Π3

(1) Z(A) ! B : A
(2) B ! Z(A) : Nb
(3) Z(A) ! B : Nb
(4) B ! Z(S) : E(Kbs : A; Nb)
(5) Z(S) ! B : E(Kbs : A; Nb)

Similar attacks may be mounted against Π1 andΠ2 etc. as stated above
Woo and Lam assume explicitly that principals can detect replays of mes-
sages they have created. Even if this were so (and we would prefer the
mechanism to be part of the protocol, a point raised also by Lowe [76]) the
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security of the protocol would still depend on the properties of the cryp-
tosystem used. Thus, Woo and Lam note that Π is not susceptible to the
above form of attack. This is not necessarily the case. If we assume that
the symmetric cipher is commutative then we can carry out the following
attack:

( 1 ) B ! Z : B
(2:1) Z(A) ! B : A
(2:2) B ! Z(A) : N
(1:2) Z ! B : E(N : Kzs)
(1:3) B ! Z : E(E(N : Kzs) : Kbs)
(2:5) Z(S) ! B : E(N : Kbs)

6.3.11 Woo and LamMutual Authentication protocol

Here is a protocol due to Woo and Lam [117] that combines mutual au-
thentication and key distribution.

(1) P ! Q : P; N1
(2) Q ! P : Q; N2
(3) P ! Q : E(Kps : P; Q; N1; N2)
(4) Q ! S : E(Kps : P; Q; N1; N2); E(Kqs : P; Q; N1; N2)
(5) S ! Q : E(Kps : Q; N1; N2; Kpq); E(Kqs : P; N1; N2; Kpq)
(6) Q ! P : E(Kps : Q; N1; N2; Kpq); E(Kpq : N1; N2)
(7) P ! Q : E(Kpq : N2)

There is a novel attack on this protocol due to Clark, Jacob and Ryan
[37]. Effectively, the principal Q can launch a parallel session attack that
causes P to accept as new a previously issued key. The attack consists of
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the following steps:

(1:1) P ! Q : P; N1
(2:1) Q ! P : Q; N1
(2:2) P ! Q : P; N2
(1:2) Q ! P : Q; N2
(1:3) P ! Q : E(Kps : P; Q; N1; N2)
(1:4) Q ! S : E(Kps : P; Q; N1; N2); E(Kqs : P; Q; N1; N2)
(1:5) S ! Q : E(Kps : Q; N1; N2; Kpq); E(Kqs : P; N1; N2; Kpq)
(1:6) Q ! P : E(Kps : Q; N1; N2; Kpq); E(Kpq : N1; N2)
(1:7) P ! Q : E(Kpq : N2)
(2:3) Q ! P : E(Kqs : Q; P; N1; N2)
(2:4) P ! Q(S) : E(Kqs : Q; P; N1; N2); E(Kps : Q; P; N1; N2)
(2:5) Q(S) ! P : E(Kqs : P; N1; N2; Kpq); E(Kps : Q; N1; N2; Kpq)
(2:6) P ! Q : E(Kqs : P; N1; N2; Kpq); E(Kpq : N1; N2)
(2:7) Q ! P : E(Kpq : N2)

Q launches a parallel session in response to P initiating the protocol and
uses the same nonce in message (2.1). He waits for P0s reply N2 and then
uses that as his response in the first protocol. The first protocol then com-
pletes as normal. The second protocol proceeds with Q intercepting all
communications intended for S and replaying the components of message
(1.5) back as those of message (2.5) (with order reversed) to cause P to re-
accept the key. This is recorded in [37]. The above is not a particularly
strong attack but indicates clearly that the protocol does not provide the
authenticity guarantees that it should.

Lowe has recently found a more vicious attack based on the same no-
tion of message component symmetry [76].

6.4 Signatures with Conventional Key Encryption

6.4.1 Needham-Schroeder Signature Protocol

This protocol comes from the classic paper [87] (where it is Protocol 3).
Principal A wants to send a message to B and guarantee its origin and in-
tegrity. First he forms a characteristic value (digest) CS of the message (us-
ing a suitable one-way function). He then sends this to the trusted server
S in message (1). S, who also holds the key Kas is able to recover the
digest CS and form an authenticator (including the claimed sender) to be
sent to A. Note Kss is a key known only to the server S. A can then send
the message and its authenticator to B who subsequently asks for the au-
thenticator information to be made visible to him. He then calculates the
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digest of the message received and checks the result against the CS value
returned to him by S.

(1) A ! S : A; E(Kas : CS)
(2) S ! A : E(Kss : A;CS)
(3) A ! B : Message; E(Kss : A;CS)
(4) B ! S : B; E(Kss : A;CS)
(5) S ! B : E(Kbs : A;CS)

6.5 Symmetric Key Repeated Authentication protocols

6.5.1 Kerberos Version 5

This protocol is in three parts each of which is now explained. The protocol
involves a userU and four computer principals: a client C; a server Swith
whom C wishes to communicate; and two trusted servers G and A. G
is known as a Ticket Granting Server and provides keys for communication
between clients such as C and and servers such as S. A is known as the Key
Distribution Centre and provides keys for communication between clients
such as C and ticket granting servers such as G. The full protocol has three
parts each consisting of two messages between the client C and each of
the servers in turn as shown in figure 10. In the protocol descriptions
that follow shared secret keys are written with subscripts of the principals
who share (or who will share) them. Thus, Kcg denotes the key for secure
communication between C and G. We use Ku to denote the key used to
encrypt communications between A and C on behalf of the user U. It is
a key obtained by hashing U0s password. A stores this password, C will
request it from U.

The first part of the protocol concerns only C and A.

(1) C ! A : U; G; L1; N1
(2) A ! C : U; Tcg; E(Ku : G; Kcg; Tstart; Texpire; N1)

where

Tcg = E(Kag : U;C; G; Kcg; Tstart; Texpire)

In message (1) the client C informs the key distribution centre A that
he wishes to communicate on behalf of user U with the ticket granting
server G. A lifetime L and a nonce N1 are sent too. A generates a new
key Kcg for this purpose and encrypts it under the key Ku it shares (or
will share when U enters his password) with C. It also forms a ’ticket’
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Figure 10: Kerberos Exchanges

Tcg that contains the user identity, the client identity, the identity of G,
the new key Kcg together with timestamp information. The Tstart; Texpire
limit the interval over which the ticket is considered as valid. This ticket
is encrypted using the key Kag shared between A and G. C uses the key
Ku to decrypt the third component of message (2) and obtains the key Kcg
which it can now use to communicate with G. This is carried out in the
second part of the protocol described below:

(3) C ! G : S; L2; N2; Tcg; Acg
(4) G ! C : U; Tcs; E(Kcg : S; Kcs; T0start; T0expire; N2)

where

Acg = E(Kcg : C; T)

Tcs= E(Kcg : U;C; S; Kcs; T0start; T0expire)

The result of the above is that G issues C with a ticket Tcs and a key Kcs to
communicate with S. The authenticator Acg ensures timeliness ofmessage
(3).

In the third part of the protocol C uses the newly obtained key Kcs and
ticket Tcs to obtain the services of S.

(5) C ! S : Tcs; Acs
(6) S ! C : E(Kcs : T0)
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where

Acs = E(Kcs : C; T0)

He forms further authenticator Acs, and sends the result to S together with
the newly acquired encrypted ticket as message (5). S carries out decryp-
tion on the ticket to obtain the session key Kcs and then uses this key to
obtain the authentication information. If everything is in order, message
(6) is returned.

6.5.2 Neuman Stubblebine

This protocol contains two parts: one to bring about the exchange of some
ticket and the second is a protocol for multiple authentications. We call
these protocols repeated authentication protocols. In theNeuman Stubblebine
Protocol [90] given below, the first four messages are the initial protocol.

(1) A ! B : A; Na
(2) B ! S : B; E(Kbs : A; Na; tb); Nb
(3) S ! A : E(Kas : B; Na; Kab; tb); E(Kbs : A; Kab; tb); Nb
(4) A ! B : E(Kbs : A; Kab; tb); E(Kab : Nb)

The repeated authentication part of the protocol is given below.

(1) A ! B : N0a; E(Kbs : A; Kab; tb)
(2) B ! A : N0b; E(Kab : N0a)
(3) A ! B : E(Kab : N0b)

Attacks have been successfully mounted on both parts of the protocol.
Possible attacks can be found in [60]. The first attack on the initial pro-
tocol is given below.

(10) Z(A) ! B : A; Na
(20) B ! Z(S) : B; E(Kbs : A; Na; tb); Nb
(30)
(40) Z(A) ! B : E(Kbs : A; Na(= Kab); tb); E(Na : Nb)

The subsequent protocol can then be attacked as follows:

(10) Z(A) ! B : N0a; E(Kbs : A; Na(= Kab); tb)
(20) B ! Z(A) : N0b; E(Kab : N0a)
(30) Z(A) ! B : E(Kab : N0b)
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The following parallel session attack can be used:

(1 ) Z(A) ! B : N0a; E(Kbs : A; Kab; tb)
(2 ) B ! Z(A) : N0b; E(Kab : N0a)
(10) Z(A) ! B : N0b; E(Kbs : A; Kab; tb)
(20) B ! Z(A) : N00b; E(Kab : N0b)
(3 ) Z(A) ! B : E(Kab : N0b)

In this attack the initial ticket is recorded from a previous legitimate run
of the protocol.

6.5.3 Kehne Langendorfer Schoenwalder

Here is the KLS repeated authentication protocol. The first five messages
form the ticket distribution part. The key Kbb is known only to B.

(1) A ! B : Na; A
(2) B ! S : Na; A; Nb; B
(3) S ! B : E(Kbs : Nb; A; Kab); E(Kas : Na; B; Kab)
(4) B ! A : E(Kas : Na; B; Kab); E(Kbb : tb; A; Kab); Nc; E(Kab : Na)
(5) A ! B : E(Kab : Nc)

The repeated protocol is:

(10) A ! B : N0a; E(Kbb : tb; A; Kab)
(20) B ! A : N0b; E(Kab : N0a)
(30) A ! B : E(Kab : N0b)

The repeated authentication part of the protocol is subject to an attack that
is identical in form to the parallel session attack on the Neuman Stub-
blebine repeated protocol.

6.5.4 The Kao Chow Repeated Authentication Protocols

In 1995, Kao and Chow proposed a similar repeated authentication pro-
tocol that was not susceptible to the attacks on the Neuman Stubblebine
protocol [67].

(1) A ! S : A; B; Na
(2) S ! B : E(Kas : A; B; Na; Kab); E(Kbs : A; B; Na; Kab)
(3) B ! A : E(Kas : A; B; Na; Kab); E(Kab : Na); Nb
(4) A ! B : E(Kab : Nb)
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This protocol suffers when a session key is compromised (as in the Den-
ning Sacco attack on the Needham Schroeder protocol). The authors there-
fore proposed (in the same paper) to use a different key purely for the
handshake. The protocol now becomes:

(1) A ! S : A; B; Na
(2) S ! B : E(Kas : A; B; Na; Kab; Kt); E(Kbs : A; B; Na; Kab; Kt)
(3) B ! A : E(Kas : A; B; Na; Kab); E(Kt : Na; Kab); Nb
(4) A ! B : E(Kt : Na; Kab)

This protocol is further extended to encompass tickets.

(1) A ! S : A; B; Na
(2) S ! B : E(Kas : A; B; Na; Kab; Kt); E(Kbs : A; B; Na; Kab; Kt)

(3) B ! A :
E(Kas : A; B; Na; Kab);

E(Kt : Na; Kab); Nb; E(Kbs : A; B; Ta; Kab)
(4) A ! B : E(Kt : Na; Kab); E(Kbs : A; B; Ta; Kab)

6.6 Public Key Protocols without Trusted Third Party

All the ISO protocols in this section may be found in Part 3 of the ISO/IEC
9798 Standard [63].

6.6.1 ISO Public Key One-Pass Unilateral Authentication Protocol

(1) A ! B : CertA; [TajNa]; B; Text2; E(K1
a : [TajNa]; B; Text1)

6.6.2 ISO Public Key Two-Pass Unilateral Authentication Protocol

(1) B ! A : Rb; Text1
(2) A ! B : CertA; Ra; Rb; B; Text3; E(K1

a : Ra; Rb; B; Text2)

6.6.3 ISO Public Key Two-Pass Mutual Authentication Protocol

(1) A ! B : CertA; [TajNa]; B; Text2; E(K1
a : [TajNa]; B; Text1)

(2) B ! A : CertB; [tbjNb]; A; Text4; E(K1
b : [tbjNb]; A; Text3)

This protocol is in fact two independent applications of the single pass
unilateral authentication protocol.
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6.6.4 ISO Three-Pass Mutual Authentication Protocol

(1) B ! A : Rb; Text1
(2) A ! B : CertA; Ra; Rb; B; Text3; E(K1

a : Ra; Rb; B; Text2)
(3) A ! B : CertB; Rb; Ra; A; Text5; E(K1

b : Rb; Ra; A; Text4)

This is the unilateral two-pass protocol with message (3) added.

6.6.5 ISO Two Pass Parallel Mutual Authentication Protocol

(1 ) A ! B : CertA; Ra; Text1
(10) B ! A : CertB; Rb; Text2
(2 ) B ! A : Rb; Ra; A; Text6; E(K1

b : Rb; Ra; A; Text5)
(20) A ! B : Ra; Rb; B; Text4; E(K1

a : Ra; Rb; B; Text3)

6.6.6 Bilateral Key Exchange with Public Key

(1) B ! A : B; E(Ka : Nb; B)
(2) A ! B : E(Kb : f (Nb); Na; A; K)
(3) B ! A : E(K : f (Na))

6.6.7 Diffie Hellman Exchange

In the Diffie-Hellman algorithm two numbers are publicly agreed by the
communicating principals A and B. Let these numbers be G and N. The
protocol is

(1) A ! B : X = GxmodN
(2) B ! A : Y = GymodN

A chooses X = GxmodN for some random x and sends the result to B as
message (1). B chooses Y = GymodN for some random y and sends the
result to A as message (2). A computes k = YxmodN and B computes k =

XymodN. The result of these two calculations is the same and equal to the
new session key. This provides ameans of key exchange but no guarantees
of authenticity.
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6.7 Public Key Protocols with Trusted Third Party

6.7.1 Needham-Schroeder Public Key Protocol

This protocol appears in the classic paper [87]. It has recently been shown
to contain a flaw by Gavin Lowe as part of the project research work.

(1) A ! S : A; B
(2) S ! A : E(K1

s : Kb; B)
(3) A ! B : E(Kb : Na; A)
(4) B ! S : B; A
(5) S ! B : E(K1

s : Ka; A)
(6) B ! A : E(Ka : Na; Nb)
(7) A ! B : E(Kb : Nb)

Lowe has discovered an attack on this protocol ([74]). Messages 1, 2, 4
and 5 are concerned purely with obtaining public key certificates and are
omitted from the description of the attack below:

(3 ) A ! Z : E(Kz : Na; A)
(30) Z(A) ! B : E(Kb : Na; A)
(60) B ! Z(A) : E(Ka : Na; Nb)
(6 ) Z ! A : E(Ka : Na; Nb)
(7 ) A ! Z : E(Kz : Nb)
(70) Z(A) ! B : E(Kb : Nb)

6.8 SPLICE/AS Authentication Protocol

This is a mutual authentication protocol between a client C and a server
S using a certification authority AS to distribute public keys where neces-
sary. In the protocol T is a timestamp and L is a lifetime.

(1) C ! AS : C; S; N1

(2) AS ! C : AS; E(K1
AS : AS;C; N1; KS)

(3) C ! S : C; S; E(K1
C : C; T; L; E(KS : N2))

(4) S ! AS : S;C; N3

(5) AS ! S : AS; E(K1
AS : AS; S; N3; KC)

(6) S ! C : S;C; E(KC : S; N2 + 1)

This protocol has been shown to be flawed (in different ways) by Hwang
and Chen [59] and also Gavin Lowe.
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In the first attack it is possible to impersonate a client:

(1 ) Z ! AS : Z; S; N1

(2 ) AS ! Z : AS; E(K1
AS : AS; Z; N1; KS)

(3 ) Z(C) ! S : C; S; E(K1
Z : C; T; L; E(KS : N2))

(4 ) S ! Z(AS) : S;C; N3

(40) Z(S) ! AS : S; Z; N3

(5 ) AS ! S : AS; E(K1
AS : AS; S; N3; KZ)

(6 ) S ! Z(C) : S;C; E(KZ : S; N2 + 1)

In the second attack it is possible to impersonate the server:

(1 ) C ! Z(AS) : C; S; N1

(10) Z(C) ! AS : C; Z; N1

(2 ) AS ! C : AS; E(K1
AS : AS;C; N1; KZ)

(3 ) C ! Z(S) : C; S; E(K1
C : C; T; L; E(KZ : N2))

(4 ) Z ! AS : Z;C; N3

(5 ) AS ! Z : AS; E(K1
AS : AS; Z; N3; KC)

(6 ) Z(S) ! C : S;C; E(KC : S; N2 + 1)

In the third attack (by Gavin Lowe) message (3) is replayed within the
possible time window to re-achieve authentication.

6.8.1 Hwang and Chen’s Modified SPLICE/AS

Hwang and Chen [59] proposed an enhanced protocol to overcome the
flaws (that they had identified) in SPLICE protocol presented above. This
modified SPLICE/AS protocol has recently been shown by Clark and Ja-
cob to be flawed too.

(1) C ! AS : C; S; N1

(2) AS ! C : AS; E(K1
AS : AS;C; N1; S; KS)

(3) C ! S : C; S; E(K1
C : C; T; L; E(KS : N2))

(4) S ! AS : S;C; N3

(5) AS ! S : AS; E(K1
AS : AS; S; N3;C; KC)

(6) S ! C : S;C; E(KC : S; N2 + 1)

For the purposes of the attack we need only consider messages (3) and
(6) and so we assume that all public keys are appropriately obtained or
possessed.

(3 ) C ! Z(S) : C; S; E(K1
C : C; T; L; E(KS : N2))

(30) Z ! S : Z; S; E(K1
Z : Z; T; L; E(KS : N2))

(60) S ! Z : S; Z; E(KZ : S; N2 + 1)
(6 ) Z(S) ! C : S;C; E(KC : S; N2 + 1)
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The problem arises because the server S is fooled as to the origin of the
encrypted nonce in (3’). It is created by C in (3) but is used by Z in (3’)
who pretends to have created it himself.

6.9 Denning Sacco Key Distribution with Public Key

This protocol is intended to provide a means for a conventional communi-
cations key Kab to be generated by A and passed to B securely. S provides
certificates to A and B.

(1) A ! S : A; B
(2) S ! A : CertA;CertB
(3) A ! B : CertA;CertB; E(Kb : E(K

1
a : Kab; Ta))

where CertA = E(K1
s : A; Ka; T) is the public key certificate of A signed by

S etc. There is a problem with this protocol (discovered by Abadi in 1994).
B can now decrypt to obtain the session key and timestamp signed by A
and form a message of the form

(3) B(A) ! C : CertA;CertC; E(Kc : E(K1
a : Kab))

and can now masquerade as A to C.

6.9.1 CCITT X.509

This is the classic description, as it appears in [26], of three protocols (con-
sisting either of message 1, messages 1 and 2 or all three below. It has been
shown to be flawed.

(1) A ! B : A; E(K1
a : Ta; Na; B; Xa; E(Kb : Ya))

(2) B ! A : B; E(K1
b : tb; Nb; A; Na; Xb; E(Ka : Yb))

(3) A ! B : A; E(K1
a : Nb)

Attacks have been found by L’Anson and Mitchell [12] and by the Bur-
rows Abadi and Needham [26]. The problem is that there is signing af-
ter encryption. If an encrypted message has a component that is itself
encrypted under a public key then it cannot be deduced that the sender
actually knows the contents of that component.
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6.10 Miscellaneous

6.10.1 Shamir Rivest Adelman Three Pass protocol

The following protocol differs in that the participants share no secrets. It
was suggested as a means of transmitting data over an insecure channel.
It assumes that encryption is commutative. It is known to be subject to a
variety of attacks.

(1) A ! B : E(Ka : M)
(2) B ! A : E(Kb : E(Ka : M))
(3) A ! B : E(Kb : M)

The first attack simply uses A as an oracle.

(1) A ! Z(B) : E(Ka : M)
(2) Z(B) ! A : E(Ka : M)
(3) A ! Z(B) : M

Carlsen suggests that it might be possible to simply check whether the
message returned in (2) is in fact encrypted, but there would seem to be
a very simple attack, namely one where a legitimate principal C takes on
the role of B but using his own key.

There is also another attack:

(1 ) A ! Z(B) : E(Ka : M)
(10) Z(B) ! A : E(Ka : M)
(20) A ! Z(B) : M
(2 ) Z(B) ! A : bogus
(3 ) A ! Z(B) : E(Ka : bogus)

6.10.2 Gong Mutual Authentication Protocol

This protocol [50] is based on the use of one-way functions rather than
encryption. In the following protocol f and g are both one-way (publicly
known) functions (they may be identical). Each principal A and B shares
a secret, Pa and Pb respectively, with the authentication server S. Na, Nb
and Ns are nonces.

(1) A ! B : A; B; Na
(2) B ! S : A; B; Na; Nb
(3) S ! B : Ns; f (Ns; Nb; A; Pb) (k; ha; hb); g(k; ha; hb; Pb)
(4) B ! A : Ns; hb
(5) A ! B : ha
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In message (3) (k; ha; hb) = f (Ns; Na; B; Pa) is calculated by the server S. k
is a secret to be shared between A and B, while ha and hb are called hand-
shake numbers. The symbol  represents the XOR function. Principal B
computes f (Ns; Nb; A; Pb) to retrieve (k; ha; hb) from the second item of the
message. It also computes g(k; ha; hb; Pb) to check against the third item
that tampering has not taken place. After receiving message (4). A com-
putes f (Ns; Na; B; Pa) to get (k; ha; hb) . If the value of hb matches the one
sent by B then A replies with message (5). The literature surveyed has not
indicated that the protocol is flawed.

6.10.3 Encrypted Key Exchange – EKE

This is an unusual protocol due to Bellovin and Merritt [15] and has the
following steps:

(1) A ! B : E(P : Ka)
(2) B ! A : E(P : E(Ka : R))
(3) A ! B : E(R : Na)
(4) B ! A : E(R : Na; Nb)
(5) A ! B : E(R : Nb)

Here P is a password used as a symmetric key, Ka is a randomly generated
public key. R is a randomly generated session key. There would appear
to be a fairly straightforward parallel session attack on the above protocol
(unreported in the literature)

(1:1) A ! Z(B) : E(P : Ka)
(2:1) Z(B) ! A : E(P : Ka)
(2:2) A ! Z(B) : E(P : E(Ka : R))
(1:2) Z(B) ! A : E(P : E(Ka : R))
(1:3) A ! Z(B) : E(R : Na)
(2:3) Z(B) ! A : E(R : Na)
(2:4) A ! Z(B) : E(R : Na; Nb)
(1:4) Z(B) ! A : E(R : Na; Nb)
(1:5) A ! B : E(R : Nb)
(2:5) Z(B) ! A : E(R : Nb)

65



6.10.4 Davis Swick Private Key Certificates

The first protocol given by Davis and Swick [40] is for key translation via
a trusted translator T. The protocol is given below:

(1) B ! A : E(Kbt : A;msg)
(2) A ! T : E(Kbt : A;msg); B
(3) T ! A : E(Kat : msg; B)

On receiving message (3) A assumes that msg originated with B and
was destined for A. If B arranges for msg = CX for some identifier C then
message (3) becomes E(C; XB : Kat). B can now use this to masquerade as
A in message (1). Sufficient redundancy would need to be placed in the
message to prevent this attack (noticed by Clark and Jacob). The protocol
does not ensure timeliness.

A scaled up version of the key translation service is also presented.

(1) B ! A : E(Kbt : A;msg)
(2) A ! T : E(Kbt : A;msg); E(Kt : Kbt; B; Lb); E(Kt : Kat; A; La)
(3) T ! A : E(Kat : msg; B)

Here Kt is T0smaster key used to signed the key containing tickets. La
and Lb are lifetimes. E(Kat : Kat; A; La) is A0s private key certificate created
by T.

There is a key distribution protocol:

(1) B ! T : E(Kt : Kbt; B; Lb)
(2) T ! B : E(kt : K0bt; B; L0b); E(Kbt : K0bt; T; L0b; checksum)

Another key distribution protocol is given:

(1) A ! T : E(Kt : Kat; A; La); encKbt; B; LbKt
(2) T ! A : E(Kbt : Kab; A; Lab)E(Kat : Kab; B; Lab; checksum)
(3) A ! B : E(Kab : msg; A); E(Kbt : Kab; A; Lab)
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the effect of untrustworthy behaviour of a principal and more complex
distribution protocols).

The formal model as it currently stands needs some adjustment. The prob-

lem lies with their definition of security for states of the system. Whilst it
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the notion of suitable definition of initial state must be addressed. It is per-

fectly feasible to set up an initial state (and in general such a state will not

be a pathological one, i.e. it will have some keys) that is useless. For ex-

ample, a state where the only pair in the whole system is (k1;Charles) and

this pair is in the local store of both Alice and Bob. It is a relatively trivial

matter to alter the definition of the security criterion to rule out this sort of

possibility though. A good paper and one of the few to talk about deriving

protocols rather than post-hoc verifying them.

[25] E. F. Brickell and A. M. Odlyzko. Cryptanalysis: A Survey of Recent
Results. Proceedings of the IEEE, 76(5), May 1988.

This paper provides an excellent overview of some advanced (in 1988) at-

tacks on a variety of algorithms. A number of attacks are described on

knapsack variants, Ong-Schnorr-Shamir and Okamaoto-Shiraishi signa-

tures schemes, RSA and others. It also addresses the Data Encryption Stan-

dard.

[26] Michael Burrows, Martin Abadi, and Roger Needham. A Logic of
Authentication. Technical Report 39, Digital Systems Research Cen-
ter, February 1989.

We give a section by section account of this paper. This may seem a little
excessive but the paper is clearly the most important paper in the field.

Section 1 Authentication protocols guarantee that if principals really are
who they say they are then they will end up in possession of one or more
shared secrets, or at least be able to recognise the use of others’ secrets.

There are lots of authentication protocols. It is not clear precisely what
these protocols achieve. As a result a formal approach is needed to explain
precisely what assumptions are being made within a protocol and what
conclusions can legitimately be derived from the successful execution of
the protocol.

Some aspects of authentication protocols have been deliberately ignored
(no attempt to cater for authentication of untrustworthy principals and no
analysis of encryption scheme strength).
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The authors are fairly limited in what they claim for the logic that follows:

Our goal, however, is not to provide a logic that would explain every
authentication method, but rather a logic that would explain most of
the central concepts in authentication.

This is important as BAN logic has often been unfairly criticised.

The authors then give informal accounts of some important notions in au-
thentication

 If you’ve sent Joe a number that you have never used for this purpose
before and if you subsequently receive from Joe something that de-
pends on knowing that number then you ought to believe that Joe’s
message originated recently — in fact, after yours.

 If you believe that only you and Joe know K then you ought to believe
that anything you receive encrypted with K as key comes originally
from Joe.

 If you believe that Kis Joe’s public key, then you should believe that
any message you can decrypt with K comes originally from Joe.

 If you believe that only you and Joe know X then you ought to believe
that any encrypted message that you receive containing X comes
originally from Joe.

Section 2 In this section the authors present their formalism based on a
many-sortedmodal logic. Messages are regarded as statements in the logic.
There are principals, keys and formulae. A number of logical constructs are
given.

The authors assume explicitly that a principal is able to detect and ignore
message he has sent. The logic is monotonic within a protocol run (that is,
beliefs that hold at the start of the run hold at the end). Moreover, the logic
assumes that if a principal utters a formula X then he actually believes it.

The authors state “each encryptedmessage contains sufficient redundancy
to be recognised and decrypted unambiguously”. This idea of recognis-
ability will be taken up by other authors. Indeed, the notion is a subtle an
important one. The notational convenience of omitting the sender of a mes-
sage is often used. It is, of course the case, that decryptionwill be necessary
if the actual sender of a message is to be known: that is: the message must
have sufficient authenticity.

The authors then present a set of postulates fairly modestly: “we do not
present the postulates in the most general form possible; our main concern
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is to have enough machinery to carry out some realistic examples and to
explain the method”.

Some of the constructs introduced by the authors in this section have a
notion of trust involved. The nature of this trust is not made explicit. From
the examples, however, it can be seen that trusting a principal to know a
shared secret means that he will not release it himself; if this were not the
case then many of the later postulates do not make sense. The formalism
assumes that all sessions with a shared key are between two parties P and
Q. Multiple party sessions are of course a practical possibility.

In the description of the nonce verification rule (if I believe that X is fresh
and that you have uttered X, then I should believe that you believe X, be-
cause you must have uttered X recently and hence still believe it) the au-
thors suggest that they could introduce a “recently said” operator to over-
come the restriction that Xmust be cleartext. This idea will be taken up by
other authors.

The authors then present the notion of an idealised protocol. Standard de-
scription of protocols give a fairly concrete description of what bits go
where in a message. This is not particularly useful for logical manipula-
tion and so the authors transform each protocol message into a formula.
Parts of the formula which do not contribute to the beliefs are omitted;
thus there is no cleartext in BAN messages. Each protocol is a sequence
of encrypted formulæ. The authors claim that their idealised formulæare
clearer and more complete than other traditional descriptions. They also
state that deriving an encoding from an idealised protocol is far less time
consuming and error prone than understanding the meaning of a particu-
lar informal encoding. Omitting cleartext gives rise to some problems, e.g.
the direct leakage of information.

Loosely speaking, a message m can be interpreted as a formula X if when-
ever the recipient getsm hemay deduce that the sendermust have believed
X when he sent the message. This process is fairly controversial. There
would appear to be an implicit assumption that we choose the strongest
feasible formula for X. Failure to do this may require the addition of initial
assumptions that would not be necessary under an alternative idealisation.
It seems that in addition to iteration of initial beliefs for the purposes of
proof, as suggested by the authors, one might well iterate over idealisation
too.

The protocol analysis takes the following steps

1. The idealised protocol is derived form the original one.

2. Assumptions about the initial state are written.

3. Logical formulae are attached to statements of the protocol, as asser-
tions about the state of the system after each statement.
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4. The logical postulates are applied to the assumptions and the asser-
tions, in order to discover beliefs held by the parties in the protocol.

Effectively we produce an annotated protocol in much the same way as we
could produce an annotated program.

The authors state that there is no (refined) notion of time in their logic, nor
do they address concurrency issues.

Section 3 The authors state that there is room for debate as to what the
goals of an authentication protocol should be. Several plausible candidates
are suggested, the actual goals will of course be system specific.

Sections 4–11 These sections apply the BAN logic presented to several
protocols:

Section 4 The Otway-Rees Protocol

Section 5 The Needham Schroeder Protocol with conventional keys.

Section 6 The Kerberos Protocol

Section 7 TheWide-mouthed Frog Protocol

Section 8 The Andrew Secure RPC Handshake

Section 9 The Yahalom Protocol

Section 10 The Needham-Schroeder Public Key Protocol

Section 11 The CCITT X.509 Protocol(s)

We shall not describe the analyses in detail here.

Sections 12–13 The remaining sections show how the logic can be ex-
tended to handle hashing and provide a more formal semantics for the
logic.

This paper is essential reading. Most security protocol papers reference it,
or one of its other forms, and several criticise it (some more fairly than
others). The paper is well written and provides the basis for numerous
extensions.

[27] Michael Burrows, Martin Abadi, and Roger M. Needham. Rejoinder
to Nessett. ACM Operating Systems Review, 24(2):39–40, April 1990.

This is the BAN authors’ refutation of Nessett’s criticism [89]. They quote
from their paper [26] that they did not intend to deal with security issues
such as “unauthorised release of secrets”. This would appear justified. The
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authors state that Nessett’s example “accurately points out an intended
limitation or our logic” but indicate that the assumption by principal B that
the published key is in fact good is contradictory. Though this is allowed
by the formalism they claim “though notmanifested by our formalism, it is
not beyond the wit of man to notice. From this absurd assumption, Nessett
derives an equally absurd conclusion”.

This rejoinder is pretty much to the point! Part of BAN logic folklore.

[28] Michael Burrows, Martin Abadi, and RogerM. Needham. The Scope
of a Logic of Authentication. Revised Research Report 39, Digital
Systems Research Center, 1994.

This is intended as an annex to the original BAN report [26].

[29] C. C. I. T. T. Recommendation X.509. The Directory-Authentication
Framework. C. C. I. T. T., December 1988.

This contains draft proposals for various protocols.

[30] E. A. Campbell, R. Safavi-Naini, and P. A. Pleasants. Partial Belief
and Probabilistic Reasoning in the Analysis of Secure Protocols. In
Proceedings 5th IEEE Computer Security Foundations Workshop, pages
84–91. IEEE Computer Society Press, 1992.

A rather interesting paper; there is clearly work to be done in this (or re-
lated) areas. The paper describing a formal system in which elements of
logic have probabilities associated with them. This allows the real world
to be modelledmore accurately. Logical deductions depend on the correct-
ness of such elements and so are associated with probabilities. The paper
finds bounds on various probabilities of interest using linear programming
methods. Some examples are given.

Well worth a read.

[31] Ulf Carlsen. Cryptographic Protocol Flaws. In Proceedings 7th IEEE
Computer Security Foundations Workshop, pages 192–200. IEEE Com-
puter Society, 1994.

This paper presents a categorisation of protocol flaws. The categories are:

Elementary flaws some protocols may provide only marginal protection,
e.g. ones that communicate passwords in the clear, or the Nessett
counterexample [89] to the BAN analysis approach.

Password guessing flaws (passwords may be used to generate keys, and
the practical limitations of such approaches allow a brute force but
biased search)
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Freshless flaws identified by the inability of one principal to detect
whether a message has been created recently or not. The Denning-
Sacco attack [42] on the conventional key Needham Schroeder proto-
col is a famous example. Burrows Abadi and Needham demonstrate
a freshness flaw in the Andrew Secure RPC protocol [26].

Oracle flaws a principal inadvertently acts as a decryption agent for a
penetrator. There are examples of single-role and multi-role oracle
attacks (i.e. when a principal is limited to one role or may take part
in several roles). The three-pass protocol of Rivest, Shamir and Adle-
man is the subject of these oracle attacks. The three-pass protocol has
the following steps:

(1) A ! B : E(Ka : M)
(2) B ! A : E(Kb : E(Ka : M))
(3) A ! B : E(Kb : M)

After receiving the message at line 2 A decrypts with key ka and as-
suming commutativity sends the result back to B in line 3. The single
role oracle flaw is for the intruder simply to pretend to be B and re-
turn fMgka back to A in line 2 and hence obtain M in line 3. The au-
thor suggests that a “typing” check (to see whether the third message
is really an encrypted one) might solve this problem. As presented
there is a more obvious problem that shows that this will not work,
namely there is nothing to stop the intruder simply acting as B using
a key kc that she knows in place of kb. The protocol then works as
normal. Have I missed something?

Type flaws a subclass of oracle flaws where in addition to using a frag-
ment of the protocol as an oracle, the penetrator exploits the inability
of at least one principal to associate a word (or message) with a par-
ticular state of a particular protocol. Five different “types” of infor-
mation can be distinguished:

 cryptographic protocol;

 protocol run;

 transmission step;

 message (sub) components;

 primitive types.

The paper then gives example type flaws exposed in the Neuman-
Stubblebine protocol and the Otway-Rees protocol.

Internal Flaws these are due to a principal failing to carry out the neces-
sary internal actions correctly (e.g. failing tomake a check). The paper
states that a common feature of many formal and semi-formal crypto-
graphic protocol specification methods is their lack of stating internal
actions.
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Cryptosystem related flaws these arise due to the interactions of proto-
cols and the particular cryptographic methods employed.

The paper is well-written and very useful. Of particular note is the discus-
sion of type flaws.

[32] Ulf Carlsen. Generating Formal Cryptographic Protocol Specifica-
tions. In Proceedings 7th IEEE Computer Security Foundations Work-
shop. IEEE Computer Society Press, 1994.

The traditional method of specifying protocols has a well-defined syntax
but no semantics. They tend verymuch to resemble the implementation. In
this paper the author provides a means to automatically supply an inter-
pretation by making plausible assumptions. Rules are provided to deter-
mine the types of message components (keys, addresses,nonces etc), and
to infer assumptions and goals. Internal actions are addressed too (for ex-
ample, the presence of a word with type “nonce” implicitly indicates that
a nonce should be generated. Also, checking of values can be inferred. A
tool has been developed that can take a standard notational specification
and generate a protocol specification in the CKT5 language. Predicates are
created describing the behaviours of each principal, the assumptions and
goals for each principal. Overall statements of correctness (of the goals
with respect to the assumptions) can then be stated and proved. A very
interesting paper since it provides one means for overcoming some of the
well-known deficiencies of the standard notation.

[33] Ulf Carlsen. Optimal Privacy and Authentication on a Portable
Communications System. Operating Systems Review, 28(3):16–23,
1994.

This paper reviews some previous work in the field of portable communi-

cation systems (PCSs). Various flaws are exposed and some fixes offered.

The paper discusses both initiator and responder (i.e. the other end) pro-

tocols. Secret and public key approaches are addressed. The paper is well

worth a read (the area is set to become very big). One of the suggested pro-

tocols seems flawed (the responder protocol of figure 5 of the paper does

not necessarily provide authentication of the RCE to the portable).

[34] John Clark and Jeremy Jacob. On The Security of Recent Protocols.
Information Processing Letters, 56(3):151–155, November 1995.

In this paper the authors describe some attacks on recently published pro-
tocols highlighting assumptions about cipher block chaining use but also
a flaw in a (corrected) version of the SPLICE authentication protocol (also
independently discovered by Lowe of the Programming Research Group
at Oxford).
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[35] John Clark and Jeremy Jacob. Attacking authentication protocols.
High Integrity Systems, 1(5):465–474, August 1996.

This paper provides a summary of ways in which protocols fail and pro-

vides many examples of such flaws. Methods of attack include: freshness

attacks, type flaws, parallel session attacks, binding attacks and some im-

plementation dependent attacks (e.g. Boyd’s bit flipping with stream ci-

phers and cipher block chaining mishaps). Appraisal is probably best left

to the reader!

[36] John Clark and Jeremy Jacob. Non-Repeatability is Not Enough.

A preliminary paper. The authors demonstrate that advice on the use of

cipher block chaining is either wrong or the rationale is incomplete. If pre-

dictable initial blocks are used then in many cases it will be possible for a

principal to create the ciphertext for an arbitrary message of his choice.

[37] John Clark and Jeremy Jacob. Freshness is Not Enough: Note on
Trusted Nonce Generation and Malicious Principals.

In this paper the authors demonstrate an unusual attack on a mutual au-
thentication protocol by Woo and Lam [117] described in section 6.3.11.
Malicious choice of a nonce by one principal can cause a previously issued
key to be accepted as fresh by the other principal.

[38] D. Coppersmith. The Data Encryption Standard (DES) and its
strength against attacks. IBM Journal of Research and Development,
38(3):243–250, May 1994.

In this paper the author argues that the DES algorithm is remarkably re-
silient to differential cryptanalytical attacks. This is because the method
was known to the IBM designer team in 1974. This should wake the reader
up! What is in the public domain clearly lags well behind what is known
to Governments and their agents. The criteria for designing the infamous
S-boxes are described and discussed.

An essential read for cryptanalysts everywhere.

[39] D. W. Davies and W. L. Price. Security for Computer Networks. John
Wiley and Sons, 1 edition, 1994.

This is a well-established text in the field covering a variety of network
security concepts. It encompasses both theoretical approaches to authenti-
cation as well as practical examples. The information is a little dated now
but this is still a useful book.

[40] DDavis and R Swick. Network Security via Private-Key Certificates.
Operating Systems Review, pages 64–67, 1990.
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A private key certificate is effectively a ticket published by a server to it-

self. The ticket contains a key, principal identifier and lifetime. The identi-

fied principal may supply the ticket and use the corresponding key until

the ticket expires. Various applications are suggested (key translation and

key distribution). On close analysis it would appear that two of the sug-

gested protocols can be attacked: the initial key translation protocol makes

assumptions about the content of the user supplied component of a mes-

sage (if it starts with a principal identifier then fraudulent messages can

be created using the translator as an oracle). The key distribution between

server domains using public key allows one of the servers to masquerade

as the other.

[41] D. E. Denning. Cryptography and Data Security. Addison Wesley,
1982.

This has become a classic text for introductory cryptography. It covers the-
ory of cryptography and explains the fundamentals of various algorithms
before moving on to cover non-communications aspects of security.

[42] Dorothy Denning and G. Sacco. Timestamps in Key Distribution
Protocols. Communications of the ACM, 24(8), August 1981.

The authors examine first the Needham Schroeder conventional key proto-
col [87]. Under the assumption that keys cannot be compromised the pro-
tocol is regarded as secure. But if a key is compromised then it is shown
that a penetrator can fool a principal into accepting that key again (it is
worth noting that a malicious initiator, who obtained the key in the first
place, can also cause the key to be re-accepted).

However, this problem is removed by the incorporation of timestamps into
the protocol messages. This is the most widely cited protocol flaw.

The paper then discusses the use of timestamps in public key systems to
distribute public keys and also shared keys. Finally the consequences of
the compromise of private keys is addressed.

The protocol to distribute symmetric keys using public keys is flawed but
this was discovered only in 1994 by Martin Abadi (see 6.9).

A well-written and very clear technical note. A landmark paper.

[43] Whitfield Diffie. The First Ten Years in Public Key Cryptography.
Proceedings of the IEEE, 76(5):560–577, May 1988.

An excellent survey of public key cryptography. The paper provides a tech-
nical introduction to the various advances in the area (exponential key ex-
changes, knapsacks, RSA, the rise-fall cycle of knapsacks etc). The paper
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than addresses implementation issues and where public key cryptography
is going. A good read generally.

[44] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

A classic paper in the field. Heralds the birth of public key cryptography.

[45] Federal Information Processing Standard 46 – the Data Encryption Stan-
dard, 1976.

This is the prime reference for the Data Encryption Standard. It is well-

written and easy to read. The algorithm is of course described elsewhere.

[46] W. Fumy and P. Landrock. Principles of Key Management. IEEE
Journal on Selected Areas in Communications, pages 785–793, June 1993.

This paper provides an overview of issues involved in keymanagement. It
describes security requirements and a hierarchical approach to providing
them. It’s quite high level but is quite deceptive in its range.

[47] Paul Gardiner, Dave Jackson, Jason Hulance, and Bill Roscoe. Se-
curity Modelling in CSP and FDR: Deliverable Bundle 2. Technical
report, Formal Systems (Europe) Ltd, April 1996.

This report indicates how algebraic techniques can be incorporated within
the CSP/FDR approach to security protocol analysis. Such algebraic ma-
nipulation is necessary if the approach is to discover attacks which utilise
for example particular properties of encryption (commutativity of encryp-
tions etc.). Implementation details (code) are given in this report. The re-
port describes how algebra may be modelled within an extended form of
CSP (that used by FDR2) with results of initial evaluation. Later sections
address how the approach can be applied to the analysis of some well-
known protocols. Implementation attacks arising due to particular modes
of encryption (e.g. CBC, CFB etc) are identified as highly troublesome; the
state space becomes enormous very quickly.

[48] Paul Gardiner, Dave Jackson, and Bill Roscoe. Security Modelling
in CSP and FDR: Deliverable Bundle 3. Technical report, Formal
Systems (Europe) Ltd, July 1996.

This represents a continuation and enhancement of the work reported in

[47]. The refined approach is used to detect a well-known flaw in the

CCITT protocol. One enhancement is the use of a ”lazy spy” — consid-

ering only those behaviours of an intruder which are reachable given the

specific history of values observed in a sequence of protocol runs (rather

than the whole behaviour space of the intruder).
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[49] Dieter Gollman. What do we mean by Entity Authentication? In
Proceedings 1996 IEEE Symposium on Research in Security and Privacy,
pages 46–54. IEEE Computer Society, may 1996.

The goals of authentication provide the basis for much controversy. In this
paper Gollman identifies 4 notions of authentication. He points out that
some ”attacks” on protocols really depend on what you think the pro-
tocol is intended to achieve. Examples are given. He maintains that the
description of authentication in user-oriented anthropomorphic language
may at times be harmful. We need to be aware of the gap between the
user-oriented descriptions and the electronic message passing that actu-
ally occurs. The paper also addresses the misuse of encryption by protocol
specifiers.

[50] Li Gong. Using One-way Functions for Authentication. Computer
Communication Review, 19(5):8–11, October 1989.

This brief paper presents a mutual authentication algorithm based on the

notion of keyed (with passwords) one-way functions. The protocol also ef-

fects key distribution. The approach has the benefit that one-way functions

are probably easier to create than encryption algorithms since there is no

need to ensure invertibility. It is claimed that using one-way functions to

develop authentication protocols would not necessarily restrict the capa-

bilities that could be offered.

[51] Li Gong. A Note on Redundancy in Encrypted Messages. Computer
Communication Review, 20(5):18–22, October 1990.

Redundancy in messages can be used to provide checks that a message
has not been modified in transit. Explicit redundancy can be detected by
anyone with the correct encryption key. An example would be data con-
catenated with a checksum and which is then encrypted. A problem is that
this provides a means by which an attacker can verify keys he or she has
guessed. Protocols that encrypt with weak keys, for example passwords,
are vulnerable to a guessing attack. Implicit redundancy can only be recog-
nised by the intended recipient(s) who knows the key for a particular ex-
ample for a particular exchange. Examples are given.

[52] Li Gong. Handling Infeasible Specifications of Cryptographic Pro-
tocols. In Proceedings of The 4th IEEE Computer Security Foundations
Workshop, pages 99–102. IEEE Computer Society, June 1991.

This paper addresses the issue of specification and analysis of infeasible

specifications when the analysis is BAN style [26]. The paper provides an

outline of how GNY logic [55] can be amended so that principals can send
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only messages they can realistically expect to. This is done via the notion

of eligibility. The method ensures that before a message can be sent, the

sender must be in possession of the bit strings to be transmitted and it

must hold the beliefs implied by transmission of the message. Inference

rules to accommodate the changes are presented.

[53] Li Gong. Variations on the Themes of Message Freshness and Re-
play and Replay or, the Difficulty of Devising Formal Nethods to
Analyse Cryptographic Protocols. In Proceedings 6th Computer Se-
curity Foundations Workshop, pages 131–136. IEEE Computer Society
Press, 1993.

This paper describes a variety of ways in which freshness identifiers may
be used. Three parties are identified:

 the supplier who creates the identifier;

 the prover that inserts the identifier in a message; and

 the verifier who establishes the freshness of a message by examining
the message composition, especially the use of the freshness identi-
fier.

The paper addresses the use of timestamps, truly random numbers, coun-
ters, pseudorandom numbers, synchronised counters and pseudorandom
number generators and fresh encryption keys. The paper presents a table
indicating which mode of use is secure for a particular freshness approach
indicating whether the prover is to be trusted or not. A brief categorisation
of message replays is then given.

[54] Li Gong, A. Lomas, R. Needham, and J. Saltzer. Protecting Poorly
Chosen Secrets from Guessing Attacks. IEEE Journal on Selected Areas
in Communications, 11(5), jun 1993.

In some systems the use of weak keys is permitted, for example the use
of passwords to encrypt authentication data. An intruder might consider
guessing such keys as his best line of attack against the system. For such at-
tacks to work he needs to be able to check whether his guess is correct. The
protocol should make such verification impossible. This leads to the con-
cept of verifiable text. The authors demonstrate several protocols that use
random nonces to mask redundancy that might give rise to verifiability.
The paper is unusual and well worth a read.

[55] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About
Belief in Cryptographic Protocols. In Deborah Cooper and Teresa
Lunt, editors, Proceedings 1990 IEEE Symposium on Research in Secu-
rity and Privacy, pages 234–248. IEEE Computer Society, May 1990.
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This paper presents an extension to the original BAN logic [26]. Interesting
extensions include the notion of recognisability (the use of typing would
prevent many identified protocol flaws), the notion of possessions (for-
mulæ that a principal can posses, because he has seen them, and so on).
In distinction to BAN-logic a principal does not have to believe in a for-
mula in order to include it in a message (he merely has to possess it). Also
included are explicit “not-originated here” indications for message compo-
nents allowing the principal to detect replays of messages he himself has
created. There are also message extensions by which preconditions for ac-
tually sending a message are attached to it. The derivation rules given are
much more numerous (over 40) than those given in BAN.

[56] John Gordon. Public Key Cryptosystems. In Proceedings of Networks
’84, 1984.

This is an introduction to public key cryptography for the beginner. The
paper is very light but there are some helpful analogies for the non-
cognoscenti.

The paper gives an outline of one-way functions, trapdoors, key exchange,
public key approaches and electronic signatures.

In general little maths is assumed (indeed the notions of modular arith-
metic are explained for example) and many of the details are glossed over
(e.g. on explaining the disguising of super-increasing sequences in the
knapsack problem). Merkle-Hellman and RSA schemes are outlined very
briefly.

[57] R. Hauser, P. Jansen, R. Molva, G. Tsudik, and E. van Herreweghen.
Robust and Secure Pasword and Key Change Method. In Dieter
Gollmann, editor, Computer Security—ESORICS ’94, number 875 in
Lecture Notes in Computer Science, pages 107–122. Springer, 1994.

This paper addresses the problem of how passwords can be changed in
a distributed environment and in the presence of failures (for example,
acknowledgement messages not getting through).

There is a description of Kerberos (V4 and V5) CHANGEPW and a critical
examination (note that there is a typographical error in the V4 description).
The question is then raised as to what happens in the protocol when fail-
ures occur.

A robust solution to the password update problem is then provided. It as-
sumes that a user who does not successfully complete a transaction (from
his point of view) will repeat attempts to change the password in the same
way. Effectively the request message contains tickets with the old (new)
password encrypted with the new (old) password (it’s more complex than
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this). The authentication server will either store the “old” password or the
“new” password with the user depending on whether the previous at-
tempt succeeded or not. Decrypting an appropriate ticket ought to give
sufficient proof of identity. If the server already has carried out the update
then there is no change and a success response is given, otherwise the up-
date process goes ahead. Switching the order of the tickets (which would
allow an intruder to reverse the change) is protected against by the inclu-
sion of nonces (and functions thereof) to ensure that the ordering of the
messages is determinable (one is actually a timestamp).

It is hard to say how much of a problem this paper addresses. Intuitively

it would seem far from “crucial” as stated by the authors. The proposed

solution is quite neat though and certainly it seems efficient. Worth a read.

[58] Martin E Hellman. The Mathematics of Public Key Cryptography.
Scientific American, pages 130–139, August 1979.

This article provides a very good introduction to public key cryptogra-
phy mathematics. The author addresses general principles such as NP-
hardness and provides an explanation of knapsack and RSA approaches.
The mathematics is described well and many simple examples are given.
A very good place to start.

[59] Tzonelih Hwang and Yung-Hsiang Chen. On the security of
SPLICE/AS: The authentication system in WIDE Internet. Informa-
tion Processing Letters, 53:97–101, 1995.

This paper presents two attacks on the SPLICE/AS authentication proto-
col. The flaws are caused by signing after encryption. Solutions are offered
to fix the flaws. Clark and Jacob [34] show that there still remains a flaw.

[60] Tzonelih Hwang, Narn-Yoh Lee, Chuang-Ming Li, Ming-Yung Ko,
and Yung-Hsiang Chen. Two Attacks on Neuman-Stubblebine Au-
thentication Protocols. Information Processing Letters, 53:103–107,
1995.

This paper presents two attacks on the Neuman Stubblebine protocol. The
first is that given by Carlsen [31] in 1994 (but note that this paper was sub-
mitted before Carlsen’s was published). The second is a parallel session
attack using the one principal as an oracle. Suggestions of how to avoid
this are made. The authors are aware of the problem to be solved and in
addition to the method shown they suggest some alternatives (such as per-
muting the order of encryption to avoid replays in different messages). In
fact it would appear that this approach is actually more secure since the
protocol as it stands could be implemented using cipher block chaining.
In that case a replay becomes possible, with the replayed message just an
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initial segment of the first message; this wouldn’t be the case if there was
some plaintext permutation before encryption.

The improvement for the subsequent authentication protocol also depends
on implementation for security. Examination shows that if cipher block
chaining is used then there is a problem with the improved solution. Thus,
the offered solution is implementation dependent.

[61] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 1: General Model, 1991.

This is the introductory part of the ISO/IEC 9798 standard dealing with en-
tity authentication mechanisms . Its basic function is to provide definitions
and notation used in the subsequent parts.

[62] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 2: Entity authentication using symmetric
techniques, 1993.

This part of the ISO/IEC 9798 standard presents several unilateral andmu-
tual authentication protocols based on shared key cryptography. Advice is
given on the use of text fields and also on the choice of time varying pa-
rameters(e.g. random, sequence numbers and timestamps).

[63] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 3: Entity authentication using a public key
algorithm, 1995.

This part of the ISO/IEC 9798 standard presents several unilateral and
mutual authentication protocols based on public key cryptography. They
would appear secure at present.

[64] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 4: Entity authentication using crypto-
graphic check functions, 1993.

This part of the ISO/IEC 9798 standard presents several unilateral andmu-
tual authentication protocols based on keyed hash functions.

[65] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 5: Entity authentication using zero knowl-
edge techniques, 1993.

This part of the ISO/IEC 9798 standard presents several unilateral andmu-
tual authentication protocols based on shared key cryptography. Advice
on the use of optional text fields and also on the choice of time varying
parameters is given too (e.g. random, sequence numbers and timestamps).
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[66] A Jiwa, J Seberry, and Y Zheng. Beacon Based Authentication. In
Dieter Gollmann, editor, Computer Security — ESORICS ’94, number
875 in Lecture Notes in Computer Science, pages 125–142. Springer,
1994.

The paper provides a good introduction to Beacon-based authentication.
Conventions in cryptography are explained and an outline of Rabin’s (the
originator) approach to beacon use is given. A beacon emits at regular in-
tervals a random integer in the range 1 to N where N is publicly known.
The use of this emitted token is given with respect to the contract signing
problem. (How do we solve the problem of one party receiving a commit-
ment from another and yet not being committed him/herself?)

Simplifying, the parties exchange preliminary contracts and commitments
to sign (conditional) followed by random integers I1 and I2. Let I = (I1+

I2) mod N. They now exchange messages committing them to the contract
if the next beacon token is I. A party may not commit. If so, he has a 1 in
N chance of getting the other party at a disadvantage (and an N  1 in N
chance of not getting away with it and having to explain his/her lack of
commitment).

A beaconised version of the Needham Schroeder protocol is then given.

The paper is well written and addresses an approach that has not been

given much attention.

[67] I Lung Kao and Randy Chow. An Efficient and Secure Authenti-
cation Protocol Using Uncertified Keys. Operating Systems Review,
29(3):14–21, July 1995.

This presents various repeated authentication protocols. The authors in-
dicate how the use of uncertified keys, i.e. whose validity is not ensured
when they are first used may bring performance benefits.

[68] A. Kehne, J. Schöenwälder, and H. Langendörfer. A Nonce-Based
Protocol for Multiple Authentication. Operating Systems Review,
26(4):84–89, 1992.

Amodern repeated authentication protocol . An initial protocol distributes
a shared key Kab to principals A and B and also a ticket fT; A; Kabgbb sealed
by B using a key known only to herself. Repeated authentication can then
be carried out by presenting the ticket and using the key Kab (distributed
to A by the server under a key shared by it and A) and several nonces.
After the protocols are presented the BAN logic [26] is used to analyse
the protocol. The aim of this protocol is to overcome reliance on accurate
distributed clocks (it uses only local clocks for timestamp checks).
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There are some problems with the protocol, as pointed out by Syverson
[109]. It might be argued that there is a flaw in the idealisation of the proto-
col. Indeed this is argued by Neuman and Stubblebine [90] that the fresh-
ness beliefs in the repeated authentication protocol are invalid. Syverson
disagrees with this view and indicates that it is perfectly possible to take
another interpretation of “run of the protocol”, namely that a run is a sin-
gle initial protocol and all subsequent runs of the repeated authentication
protocol. It would appear that BAN as it currently stands does not handle
repeated authentications using tickets.

For the authentication goals they set the authors argue that their initial

protocol is minimal with respect to the number of messages.

[69] R. A. Kemmerer. Using Formal Verification Techniques to Analyse
Encryption Protocols. In Proceedings of the 1987 IEEE Symposium on
Research in Security and Privacy, pages 134–139. IEEE Computer So-
ciety Press, 1987.

This is one of the first papers to apply logic to the analysis of encryption
protocols (rather than algorithms). This is done using a variant of the Ina
Jo specification language (and so represents a use of a well-known general
specification notation for protocol specification and analysis purposes).

The modern trend has been away from off-the-shelf technologies but this

may change.

[70] C. Meadows R. Kemmerer and Jonathan Millen. Three Systems for
Cryptographic Protocol Analysis. Journal of Cryptology, 7(2):79–130,
1994.

A useful paper. Three systems are described: the Interrogator, the NRL
Protocol Analyser and the use of Ina Jo. The tools are used to analyse the
TMN protocol with very interesting results. Well worth a read.

[71] V. Kessler and G. Wedel. AUTLOG—An advanced logic of authen-
tication. In Proceedings of the Computer Security Foundations Workshop
VII, pages 90–99, 1994.

This paper proposes an extension of BAN Logic [26]. It borrows some as-

pects of existing extensions (e.g. recognisability) but introduces a number

of new ones. In particular there is a recently said predicate as original sug-

gested by Burrows Abadi and Needham. There is an attempt to simplify

the idealisation process by pushing certain aspects of beliefs about keys

into the deduction rules. The idealisation process still looks pretty complex

though. The authors also introduce the notion of a passive eavesdropper.

This can be used to detect certain types of flaw (such as the Nessett flaw

92



[89]). The paper concludes with discussion about the inability of the logic

to handle parallel runs.

[72] Paul C. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and
other Systems Using Timing Attacks. Extended Abstract on PK’s
WWW Page — http://www.cl.cam.ac.uk/users/rja14/, dec 1995.

A paper that will probably cause quite a stir since it presents an attack
on a variety of public key encryption schemes. The attacks are based on
noting the amount of time taken to encrypt text. The preliminary results
look worrying indeed.

Essential reading!.

[73] Armin Liebl. Authentication in Distributed Systems: A Bibliogra-
phy. Operating Systems Review, 27(4):122–136, October 1993.

This paper provides a brief but wide ranging bibliography of seventy-one
papers in authentication. It surveys the field in terms of goals of authenti-
cation, design aspects of cryptographic protocols, protocol categorisation
(private, public , hybrid, one-ways functions etc.) and verification of proto-
cols. There is a neat table of where to find relevant information on various
protocols. The column indicating which protocols are flawed is now out of
date!

[74] Gavin Lowe. An Attack on the Needham-Schroeder Public Key Au-
thentication Protocol. Information Processing Letters, 56(3):131–136,
November 1995.

Seventeen years after publication of the Needham Schroeder Public Key
protocol [87] Lowe discovers what everyone else has missed – a parallel
session attack. This brief paper is very clear in its descriptions. The flaw
was found using the FDR refinement checking tool.

[75] Gavin Lowe. Breaking and fixing the needham schroeder public-
key protocol using fdr. In Proceedings of TACAS, volume 1055, pages
147–166. Springer Verlag, 1996.

In this paper Lowe describes how the CSP refinement checker FDR was
used to identify a hole in the security of the well known Needham
Schroeder Public Key Protocol 6.7.1. He presents an account of how princi-
pals and intruder communications are modelled in CSP (with a restricted
number of principals) and presents an argument to show that the analysis
performed is sufficient to guarantee its correctness when more principals
are added to the system.
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[76] Gavin Lowe. SomeNewAttacks upon Security Protocols. InProceed-
ings of the Computer Security Foundations Workshop VIII. IEEE Com-
puter Society Pres, 1996.

This paper records a number of attacks on protocols. The aim is largely to

show that the same mistakes in protocol design are being made time and

time again. The paper contains a more vicious attack on the Woo and Lam

Mutual Authentication Protocol than that identified by Clark and Jacob (a

public nonce is accepted as a key) (see 6.3.11). This new attack requires

a principal to accept messages he has created. Woo and Lam actually state

that reflections are detected by principals and so the protocol has nomeans

of enforcing this. Lowe believes that such functionality should be captured

by the protocol and not be left as an implementation dependency. Attacks

on the KSL protocol 6.5.3 and on the TMN protocol are given.

[77] Gavin Lowe. SPLICE-AS: A Case Study in Using CSP to Detect Er-
rors in Security Protocols. Technical report, Programming Research
Group, Oxford, 1996.

In this paper the author indicate show the CSP refinement checker FDR is

used to analyse a recently published protocol (which is actually a correc-

tion of a previous one).

[78] Wenbo Mao and Colin Boyd. Towards the Formal Analysis of Se-
curity Protocols. In Proceedings of the Computer Security Foundations
Workshop VI, pages 147–158. IEEE Computer Society Press, 1993.

In this paper authors examine some of the defects of BAN logic. After not-

ing that BAN logic passes as secure some patently flawed and insecure

protocols they address some specific weakness. First the idealisation pro-

cess is examined (does not take into account context-specific information),

then elements of the nature of belief are examined (such as the senseless-

ness of believing in a nonce). The elicitation of assumptions is also a very

difficult area. The authors then go on to provide their own formalism in-

tended to cater for flaws identified. An element of preprocessing is car-

ried out to identify the implicit use in the protocol description of various

elements (e.g. nonces are identified as challenges, response are identified

etc.). A set of BAN-like inference rules are given. Two protocols are then

analysed using the system.

[79] WenboMao and Colin Boyd. Development of Authentication Proto-
cols: Some Misconceptions and a New Approach. In Proceedings 7th
Computer Security Foundations Workshop, pages 178–186. IEEE Com-
puter Society Press, 1994.
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This paper addresses two important points regarding authentication pro-
tocols. The first is that non-secret data is often encrypted by a principal in
order to be retrieved by the intended recipient through decryption. Boyd
and Mao argue convincingly that a more desirable way of proceeding is
to rely on the one-way service of cryptographic systems rather than the
secrecy service. Thus, use of hash functions can be used in order not to
provide to much cryptoanalytic information.

The secondmisconception relates to implementation — the choice of cryp-
tographic algorithm. The authors indicate that the use of cipher block
chaining for all cryptographic services in authentication protocols may be
dangerous and give an example of how a “cut and paste” attack can be
mounted on the Otway-Rees protocol.

The third point attacked by the authors is the misuse of redundancy, which
can lead to significant provision of cryptoanalytic information.

The authors state that the use of a single notation for all cryptographic
services gives a lack of precision that has lead to many weaknesses and
provide a notation that distinguishes between encryption for confidential-
ity and one way services. Their method requires that only secret data be
subject to confidentiality encryption.

Overall, the paper is well-written, varied in its scope and very useful.

[80] Wenbo Mao and Colin Boyd. On Strengthening Authentication Pro-
tocols to Foil Cryptanalysis. In Dieter Gollmann, editor, Computer
Security—ESORICS 94, number 875 in Lecture Notes in Computer
Science, pages 193–204. Springer, November 1994.

This paper indicates how certain classes of protocols allow a mischiever to
generate large amounts of plaintext-ciphertext pairs. A Kerberos descrip-
tion is given and an indication shown that the protocols is subject to an
interesting attack.

Suppose a principal sends a request to a server S in the clear. Server S
replies with a ticket that includes an encrypted part containing: flag bits,
session key, address, names, timestamps, lifetimes, host addresses and au-
thorisation data, all encrypted under the symmetric key Kas. Now much
of this data is known or nearly so. For timestamps etc. the format of the
data is known if not the exact data. In the case of an internal adversary B
(with whom A wishes to communicate) this is entirely known. However,
the amount of data that can be obtained by B in such a way is very small.
More important is that the original request is in the clear and so message
requests from A can be spoofed ad nauseam. Nowwhat happens if the en-
cryption is done using cipher block chaining? Because the session key will
be different in each run, the sequences of ciphertext blocks will be different
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too. Theway CBCworks allows Ci and Pi+C(i1) to be ciphertext plaintext
pairs. Since the session key is different in each run, this merely ensures that
different runs allow different plaintext ciphertext pairs to be created.

A description of the KryptoKnight authentication system is then given.

This too is subject to an attack generating plaintext ciphertext pairs. Reme-

dies are provided. In one a nonce is exchanged encryptedwhich then forms

part of the MAC generation key. There is effectively a one-time channel

and so only one plaintext ciphertext pair is possible on each run. Another

scheme using exponentiation key exchange is given.

[81] James L. Massey. An Introduction to Contemporary Cryptology.
Proceedings of the IEEE, 76(5):533–549, May 1988.

A very good introduction to the history, terminology and theory of cryp-

tology. The author describes both secret key and public key cryptography.

The reader will need some mathematics to follow the text. the paper is

unusual in that it also attempts to introduce the underlying information

theoretic concepts to the reader as well as the more usual algorithm fare.

[82] Cathy Meadows. Formal verification of cryptographic protocols: A
survey. In Proceedings of Asiacrypt 96, 1996.

Meadows provides a comprehensive account of the use of formal tech-
niques in the development of security protocols. As well as given a survey
she also indicates where formal techniques are lacking in use. For example,
the use of formal techniques in the design of protocols (i.e. from specifica-
tion) and also at very low levels.

[83] JonathanMillen. The Interrogator User’s Guide. Technical Report M
93B0000172, MITRE, 202 Burlington Road, Bedford, MA 01730-1420,
may 1994.

The Interrogator plays an important part in the development of tool sup-
port for protocol analysis. The user specifies the protocol in a prolog-based
syntax and can use the tool interactively to determine whether specific
states can be reached or specific data items compromised. Its use is illus-
trated via examples (the Needham Schroeder conventional key distribu-
tion protocol, the Diffie Hellman key Exchange and the TMN protocol).
the tool provides an automatic search facility but informed guidance from
the user is need to reach the stagewhere automated support is appropriate.

An important tool.

[84] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Pro-
tocol Security Analysis. IEEE Transactions on Software Engineering,
13(2):274–288, February 1987.
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This paper gives a description of the Interrogator tool. The user guide [83]

is a better place to find detailed information.

[85] Judy H. Moore. Protocol Failures in Cryptosystems. Proceedings of
the IEEE, 76(5), May 1988.

The use of particular algorithms in conjunction with particular protocols
can have disastrous results. This is not because of any inherent weakness
in the cryptoalgorithms themselves, rather it is because the way in which
they are used requires that they possess certain properties which they do
not in fact have. It is the security of the whole system that must be consid-
ered not just the algorithm or the protocol in isolation. The paper provides
several ways in which features of RSA render its indicated use dangerous:
a notary protocol is given in which it is possible to forge a signature on
data because exponentiation preserves the multiplicative structure; com-
mon modulus and low exponent protocol failures are explained; a low en-
tropy example is cited (the failure arises because of the high redundancy of
human speech). Finally various symmetric key failures are identified. The
paper is useful in that it highlights the difficulties in going from specifi-
cation to implementation. All too often specifiers do not state the precise
qualities they demand of cryptoalgorithms.

This is an important paper. The whole area of cryptoalgorithm - protocol

interaction badly needs addressing (still).

[86] Louise E. Moser. A Logic of Knowledge and Belief about Computer
Security. In J Thomas Haigh, editor, Proceedings of the Computer Secu-
rity Foundations Workshop III, pages 57–63. IEEE, Computer Society
Press of the IEEE, 1989.

This paper provides a brief overview of the development of modal log-
ics and their use in reasoning about authentication protocols. It intro-
duces a new logic that combines a monotonic logic of knowledge and be-
lief augmented by a non-monotonic unless operator. For beliefs of the for
“B(p) unless B(q)” B(p) is assumed to be true unless refuted by other evi-
dence. An example application of the logic is given. Principals wishing to
communicate ask a server for a key to be distributed. A characterisation of
knowledge and belief about the protocol is recorded in 18 axioms. These
axioms encompass rules about beliefs as a result of sending and receiv-
ing of messages, knowledge of principals’ keys and belief in their security,
and trustworthiness of principals. The logic takes the view that belief in
a proposition p is presumed unless it is refuted. This has some interest-
ing consequences—for example, should we assume that each principal be-
lieves that “k is a key” for all k (Axiom 1d begins to look strange in this
context).
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A few example consequences of the axioms are then given. The text con-
cludes that there is a need for quantification to be included in the logic.
Future plans include also the use of nested unless predicates. Combining
the logic with a temporal logic is the final suggestion. Currently no tool
support is available for the logic (but the authors consider it essential).

The characterisation seems rather complex and as indicated above the ac-

tual axioms might usefully be examined. But there is a logic at work here

with a sound semantics. An important paper, and worth a read.

[87] Roger Needham and Michael Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers. Communications of the
ACM, 21(12), December 1978.

One of the classic authentication papers. In this paper the authors ad-
dress issues of establishing interactive communication between principals,
authenticated one-way communication (for example, mail systems) and
signed communication.

Two protocols for establishing interactive communication are presented:
one using conventional symmetric key encryption and the other using
public key encryption. The former contains the classic replay flaw[42]. It is
is usually referred to as “The Needham Schroeder Protocol” but this could
equally apply to any of the three protocols presented in this paper. The au-
thors were aware of many possible attacks and provide a rationale for their
protocols. The public key protocol has recently been shown to be suscepti-
ble to a parallel session attack by Gavin Lowe. The final protocol described
is a means of obtaining digital signatures via a third party using symmetric
key encryption.

The authors assume that keys are not readily discoverable by exhaustive search
or cryptanalysis. As we were later to find out, more restrictive assumptions
would be needed.

The paper ends with the well-known quote:

Finally, protocols such as those developed here are prone to extremely
subtle errors that are unlikely to be detected in normal operation. The
need for techniques to verify the correctness of such protocols is great,
and we encourage those interested in such problems to consider this
area.

One of the landmark papers in authentication. Essential reading.

[88] Roger M. Needham and M. D. Schroeder. Authentication Revisited.
Operating Systems Review, 21(7):7–7, January 1987.

98



In this paper the authors revisit their famous conventional (symmetric) key

authentication protocol and show how an extra exchange between the two

authenticating principals can be used to overcome the freshness deficiency

identified by Denning and Sacco (who overcame the problem by the use

of timestamps) [42]. The extra exchange includes a nonce from the second

principal B to be provided to the authentication server. This is then in-

cluded by the authentication server in the authentication ticket passed to

B as part of the protocol, thereby ensuring freshness.

[89] Daniel M. Nessett. A Critique of the Burrows, Abadi and Needham
Logic. ACM Operating Systems Review, 24(2):35–38, April 1990.

This brief paper (and its rejoinder) formed the start of what might be de-
scribed as “BANwars”— the debate over what Burrows, Abadi andNeed-
ham claimed for BAN logic (first order claim) [26], what others claimed
they claimed (second order claim) and what the capabilities of BAN logic
and its derivatives are (no claims, just investigative science).

Nessett misquotes (or misinterprets) the BAN authors statements regard-
ing goals of authentication. This paper implies that the BAN authors had
a particular position on what the belief goals of a protocol should be. This
is simply wrong; the BAN authors give the indicated goals merely as ex-
amples of what might be suitable in particular circumstances. Indeed, the
BAN authors even describe the Otway Rees protocol is a “well designed
protocol that may have use in certain environments”, even though the pro-
tocol does not achieve the goals Nessett states they regard as necessary (a
point raised by Syverson [107]).

The more important point of this paper is that it provides an example pro-
tocol that is obviously insecure but the flaw is not detected by BAN anal-
ysis. The crux of the example is that a principal can broadcast a message
that contains a key for shared use and a nonce all encrypted with her pri-
vate key. This is obviously readable by everyone (with the public key) and
so the protocol is insecure. The protocol given is sufficient to establish first
and second order beliefs of both parties in the goodness of the key.

The paper is now part of authentication folklore.

[90] B. Clifford Neuman and Stuart G. Stubblebine. A Note on the Use of
Timestamps as Nonces. Operating Systems Review, 27(2):10–14, April
1993.

This paper gives an alternative protocol similar to that given by Kehne et
al [68] for repeated authentication. The ticket is slightly different to the one
used in that protocol. In addition, although timestamps are still local, the
ticket is sealed by the authentication server, rather than by one of princi-
pals.
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The paper criticises the application of BAN logic [26] to the KLS protocol
[68], stating that it violates the notion of freshness. Furthermodifications to
this protocol are suggested. The tradeoffs involved in adopting particular
approaches to authentication (e.g. timestamps or nonces) are examined.

The protocol has certain flaws as exposed by Hwang et al [60].

[91] D. Otway and O. Rees. Efficient and Timely Mutual Authentication.
Operating Systems Review, 21(1):8–10, January 1987.

This paper presents the well-known Otway-Rees protocol. The notation is
a little different from usual. The description is of interest for historical rea-
sons: the protocol has become one of those regularly subject to analysis
techniques (e.g. BAN [26]). There are some classic replay flaws in the pro-
tocol.

[92] R. Rivest, A. Shamir, and L. Adleman. AMethod for Obtaining Dig-
ital Signatures and Public Key Cryptosystems. Communications of the
ACM, 21(2):120–126, February 1978.

The authors present the RSA algorithm for the first time in an academic
journal (it had appeared previously in one of Martin Gardner’s columns).
A classic paper.

[93] A.W. Roscoe. Intensional Specifications of Security Protocols. In
Proceedings 9th IEEE Computer Security Foundations Workshop, pages
28–38. IEEE Computer Society Press, 1996.

The author introduces two notions of specification: extensional and inten-
sional.

An extensional specification indicates what the protocol is to achieve (but
not how). Given a set of assumptions prior to the protocol about ”states of
mind” of the principals an extensional specification will give what proper-
ties of those states of mind of the principals must hold after execution of
the protocol. The author illustrates how such specifications may be found
lacking if attacks are to be found. An intensional specification describes
properties of how communications between principals must occur. It does
not specify precisely what is achieved. A deviation from the designer’s in-
tended sequence of communications is an attack. Other methods must be
applied to address what the protocol actually achieves (e.g. BAN analysis).
Coding such specifications in CSP allows the refinement checker FDR to
be brought to be to search for deviational attacks. Well worth a read. The
work was carried out under the Strategic Research Plan managed by the
DERA.
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[94] Bill Roscoe and Paul Gardiner. Security Modelling in CSP and FDR:
Final Report. Technical report, Formal Systems Europe, oct 1995.

This report summarise how CSP can be used to model principals’ be-
haviour in security protocols. Authentication is couched as a refinement
problem and the refinement checker FDR is used to carry out a state space
exploration to determine whether a proposed ’implementation’ actually
satisfies the specification of authentication. This report is the initial out-
put of the Formal Systems work indicating that CSP/FDR could be a very
promising means of analysing security protocols. The work was carried
out under the Strategic Research Plan managed by the DERA.

[95] A. D. Rubin and P. Honeyman. Formal Methods for the Analysis
of Authentication Protocols. Technical Report Technical report 93–7,
CITI, November 1993.

This paper provides a review of extant literature in the field of authenti-

cation protocols. The paper begins with some introductory definitions and

a description of the Needham-Schroeder protocol [87], its flaws and their

resolution by timestamps. This serves as a good motivation for the subject

matter that follows. The various approaches to analysis are then investi-

gated. The reference material is wide-ranging and the text is well written.

[96] Peter Ryan. The Design and Verification of Security Protocols. Tech-
nical report, Defence Evaluation Research Agency, August 1996.

This report provides a readable summary of the modelling of authentica-
tion protocols using CSP and how the FDR tool can be used to verify that a
protocol is secure. The approach models principals, a general intruder and
the network medium as communicating CSP processes. The approach has
the merit that several themes of security can be addressed (confidentiality,
integrity, availability, etc). Examples of where the approach has discovered
new attacks are given. The considerable promise shown by the approach
is indicated but at the same time current limitations and possible develop-
ments are clearly addressed and discussed.

[97] Steve Schneider. Security Properties and CSP. In Proceedings of the
1996 IEEE Symposium on Security and Privacy, pages 174–187. IEEE
Computer Society Press, may 1996.

This paper addresses issues how confidentiality and authenticity of mes-
sages can be addressed within the CSP framework. The paper provides a
brief introduction to CSP and can be read without prior knowledge of the
process algebra.
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[98] B. Schneier. The IDEA Encryption Algorithm. Dr. Dobb’s Journal,
pages 50–56, December 1993.

This article provides a good, easily understood description of the IDEA
conventional key encryption algorithm. This is a 64-bit block algorithm
with a 128-bit key. The main diagram seems slightly out of kilter with the
text though.

Software implementations are about 1.5 to 2 times as fast as correspond-

ing DES implementations. The author cites a VLSI implementation that

encrypts at 177MBits/s when clocked at 35MHz.

[99] Bruce Schneier. Applied Cryptography. Wiley, 1994.

Probably the best available introductory text on modern day cryptogra-

phy and its applications. It is easy to read and very wide ranging in the

topics covered. Many conventional key and public key algorithms are de-

scribed together with known weaknesses. A significant amount of effort is

expended explaining various cryptographic protocols. There are several at-

tacks on protocols described but some attacks that we know about are not

covered.

[100] G.J. Simmons. How to Insure that Data Aquired to Verify Treaty
Compliance are Trustworthy. Proceedings of the IEEE, 76(5):621–627,
May 1988.

A cold war summary paper! Rather less flippantly, Simmons provides a
readable account on the work of treaty verification (for nuclear tests) car-
ried out at Sandia Laboratories. Descriptions are given of both symmetric
key and public key approaches.

[101] Miles E. Smid and Dennis K. Branstad. The Data Encryption Stan-
dard: Past and Future. Proceedings of the IEEE, 76(5):550–559, May
1988.

This is a good paper to read. It examines the history of DES, why it was
produced, who were the major stakeholders and how it was taken up by
various bodies. An overview of its applications is given. Not much techni-
cal information but a good overview of the state of play in 1988.

[102] Einar Snekkenes. Exploring the BAN Approach to Protocol Analy-
sis. In 1991 IEEE Symposium on Research in Security and Privacy, pages
171–181. IEEE Computer Society Press, 1991.

Snekkenes shows that BAN logic is incapable of detecting errors due to
permutation of protocol steps. He also shows that it is unlikely that a BAN
type approach can hope to provide good analysis of zero-knowledge type
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protocols. A class of protocols is introduced called terminating protocols
and it is shown that Dan Nesset’s flawed protocol [89] belongs to this class.

[103] E. Snekkenes. Roles in Cryptographic Protocols. In Proceedings of the
1992 IEE Symposium on Security and Privacy. IEEE Computer Society
Press, 1992.

In this paper Snekkenes shows that Bieber’s approach to protocol verifica-

tion [16] may not detect flaws that arise due to principals taking on more

than one role in a protocol. Bieber’s logic may, however, be successfully

modified.An example protocol is given that is deemed secure by both BAN

analysis and Bieber CKT5 analysis.

[104] Einar Snekkenes. Formal Specification and Analysis of Cryptographic
Protocols. PhD thesis, Faculty of Mathematics and Natural Sciences,
University of Oslo, Norwegian Defence Research Establishment,
P.O. Box 25, N-2007, Kjeller, Norway, jan 1995.

This DPhil thesis provides a formal framework for specifying and reason-
ing about protocols. Numerous theories have been written in HOL to sup-
port the analysis of protocols.

[105] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Ker-
beros:An Authentication Service for Open Network Systems. jan
1988.

The most usual academic reference for the early Kerberos. Very clearly
written. The paper addresses protocol issues but also administration and
application programmer views.

[106] Stuart G. Stubblebine and Virgil D. Gligor. On Message Integrity in
Cryptographic Protocols. In Proceedings of the 1992 IEEE Symposium
on Research in Security and Privacy, pages 85–104. IEEE, 1992.

This paper deals with the possibility of forging messages by cutting and
splicing of transmitted messages. The principal mode of encryption con-
sidered is cipher block chaining (CBC). The Kerberos authentication pro-
tocols is chosen as an example to be attacked in this way. The paper ad-
dresses the adequacy (or otherwise) of checksums to protect against such
malicious modification. A detailed but very good read.

[107] Paul Syverson. The Use of Logic in the Analysis of Cryptographic
Protocols. In Teresa F. Lunt and John McLean, editors, Proceedings
of the 1991 IEEE Symposium on Security and Privacy, pages 156–170.
IEEE Computer Society, May 1991.
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The author is concerned with placing the use of logics for analysing secu-
rity protocols on a formal footing. In particular there is a worry that the
capabilities and limitations of particular logics are not really understood
and that some tool is needed to allow analysis of the logics. He proposes
possible worlds semantics as that tool.

Section 2 : Security Trust and Intentionality The author categorises
the objectives of protocol analysis logics for both epistemic (knowledge)
and doxastic logics (belief). Loosely, belief is concerned with trust, func-
tionality and a legitimate subject’s point of view, whereas knowledge log-
ics are used to investigate security and a penetrator’s viewpoint.

Though intuitively epistemic logic seems more appropriate for security
and doxastic logics for trust, each is formally capable of capturing and rea-
soning about trust and security. Practical concerns about the amount of
work involved in doing proofs lead the author to recommend that future
research concentrate on epistemic logics.

Section 3: BAN Logic This section provides a critique of BAN logic
[26] and also comments on others’ critiques of BAN.

Syverson points out that while the BAN authors themselves have a good
idea of what they are doing, others are occasionally confused about the
authors’ goals. In particular the goals of authentication are a considerable
source of confusion. Nessett’s criticisms [89] are examined. The author cor-
rectly points out that the BAN authors take no position on the goals of
authentication, rightly considering these goals to be application specific.

One of the BAN authors’ statements “common belief in the goodness of
K is never required—that is, A and B need not believe that they both be-
lieve that. . . that they both believe that K is good” is criticised, because such
demonstration is known to be impossible in general. He goes on to give an
example where second order beliefs are insufficient and concludes that the
degree of belief demonstrated by a protocol varies according to the appli-
cation.

The author also takes to task Cheng and Gligor for several misattributions.
He also examines Nessett’s claims and points out that in places the original
BAN paper might give the impression of handling (at least some) security
issues. He refers to the table of protocols included in the BAN paper but
indicates that the authors of BAN included these ‘bugs’ as “aspects our
formalism helped bring to light”.

It is maintained that BAN logic has been much misinterpreted and that in
practice it has helped reveal several flaws. As a formal method, however,
the author does not support the use of BAN logic.
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Section 4: Semantics The author examines the role of semantics. One
of the major roles of a semantics is to give a means of evaluating log-
ics. Generally, we would want to show soundness and completeness. Al-
though soundness is often the principal concern, for security applications
completeness is seen as being of “utmost importance”. A formal semantics
provides a precise structure with respect to which such completeness and
soundness can be proven. The author argues that if a semantics takes its
structure directly from the logic, then no assurance is gained about the ad-
equacy of the logic from soundness or completeness theorems (indeed they
should be trivial). A further view on formal semantics is that it supplies an
alternative view (diversity).

The author introduces possible world semantics offering this as a means of
exposing the Nessett flaw.

Overall: The paper is well written and is well worth a read.

[108] Paul Syverson. A Taxonomy Of Replay Attacks. In Proceedings of
the 7th IEEE Computer Security Foundations Workshop, pages 131–136.
IEEE Computer Society Press, 1994.

This paper presents a taxonomy of replay attacks; or rather, two tax-
onomies: an origination taxonomy (based on the protocol run of origin of
replayed message) and a destination taxonomy (based on the recipient of
the replayed message relative to its intended recipient). Origination splits
replays into run-external attacks (replay of messages from outside the cur-
rent protocol run) and run-internal ( replay of messages from inside the cur-
rent protocol run). Run-external attacks are further divided into interleav-
ings (requiring contemporaneous protocol runs) and classic replays (not
necessarily requiring contemporaneous runs).

Within the origination taxonomy can be placed the destination taxonomy:
deflections (message is sent either to a sender —a reflection— or to a third
party) and straight replays (intended recipient receives the message but it is
delayed).

The paper goes on to describe how the taxonomy provides a framework
in which to discuss countermeasures ’ capabilities and how it highlights
the capabilities of various logical analysis approaches (for example, BAN
is generally directed at classic replays). Some examples of replay attacks
are given on the BAN-Yahalom protocol.

The taxonomy actually applies to message fragments rather than mes-
sages. In practice it may be necessary to use more than one type of replay
to mount a successful attack.

The paper is worth a read. There is little startling but that is the way with
taxonomies. Those presented in this paper appear useful. The emergence of
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useful taxonomies indicates perhaps that protocol development and anal-
ysis has come of age?

[109] Paul Syverson. On Key Distribution for Repeated Authentication.
In Operating Systems Review, pages 24–30, 1994.

This paper describes the two-part Neuman Stubblebine protocol and then
shows how it can be attacked. The attacks assume certain implementation
dependencies (for example, that the substitution of a nonce for a key will
go undetected and that direction bits are not used). After a discussion of
countermeasures the paper then presents a variant of the Neuman Stub-
blebine protocol, which is free from the previous attacks, but then shows
how it itself can be attacked. A final protocol that incorporates elements
of the KSL protocol [68] is then presented. The paper concludes with an
analysis of what the goals of the KSL and NS repeated authentication pro-
tocols were and of the utility of BAN logic [26] for addressing repeated
authentication.

A good paper, with some nice attacks.

[110] Paul Syverson and Catherine Meadows. A Logic language for Spec-
ifying Cryptographic Protocol Requirements. In Proceedings of the
1993 IEEE Symposium on Research in Security and Privacy, pages 165–
177. IEEE Computer Society Press, May 1993.

As yet unread. Here for completeness.

[111] Gene Tsudik. Message Authentication with One-Way Hash Func-
tions. Operating Systems Review, 22(5):29–38, 1992.

This paper assesses the merits of two approaches to using hash functions

to provide message authentication: the secret prefix and secret suffixmeth-

ods. The paper proposes a useful hybrid.

[112] Victor L. Voydock and Stephen T. Kent. Security Mechanisms in
High-Level Network Protocols. Computing Surveys, 15(2):135–171,
June 1983.

An early protocol security classic. This paper describes attacks on commu-

nications protocols and measures that can be taken to counter them. Best

of all is the low level detail on cryptosystem usage (in particular, the con-

sequences of the use of particular approaches to the choice of initialisation

vectors in DES). Essential reading.

[113] Efficient DES Key Search, Crypto 93, August 1993.
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This paper addresses in considerable detail a design for a pipelined key-
search machine for DES. A very good paper. Probably the most detailed
hardware paper to reach a conference ever!

[114] MichaelWillet. Cryptography Old andNew. Computers and Security,
Vol 1:177–186, 1982.

This is a simple introduction to cryptography assuming no maths whatso-
ever. It gives a good introductory account to the history of cryptography
and introduces various types of encryption algorithm. It is of course a lit-
tle dated. It takes the reader from Caesar ciphers to DES and public key
cryptography (but no details on the latter).

[115] Michael willet. A Tutorial on Public Key Cryptography. Computers
and Security, pages 1–20, 1982.

Willett provides a very brief overview of mainstream public key cryptog-

raphy (concentrating on RSA and Merkle Hellman Knapsacks).

[116] T. Y. C. Woo and S. S. Lam. Authentication for Distributed Systems.
Computer, 25(1):39–52, January 1992.

This paper provides a good introduction to some principles of authentica-
tion, explaining some basic cryptography, what the threats to a system are,
what sorts of parties may wish to carry out authentication exchanges. The
paper provides some paradigms of authentication exchanges. Two case
studies (Kerberos and SPX) are given. There are some errors in the paper.
Woo and Lampublished some corrections shortly after this paperwas pub-
lished indicating that figure 5 on page 47 needs augmenting: the principal
P needs to be included to precede the principal Q in steps 5 and 6. Some
of the protocols shown are susceptible to attack nevertheless. Indeed, Woo
and Lam themselves have published a correction to another of the proto-
cols [117].

[117] T. Y. C. Woo and S. S. Lam. A Lesson on Authentication Protocol
Design. Operating Systems Review, pages 24–37, 1994.

A previous paper by the authors [116] described a protocol that was sub-

sequently found to be flawed. The authors explain how they started with a

secure (but elaborate) one-way authentication protocol and progressively

simplified it to take out what was regarded as superfluous information.

The simplification steps are given and the transition to insecurity is iden-

tified. The authors give a Principal of Full information, which dictates that

the initiator and responder include in every outgoing message all of the

information that has been gathered so far in the authentication exchange.

A number of simplification heuristics are given. These are demonstrated
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by application to a mutual authentication protocol. It would appear that

there is a problem with the description given in this paper. The transition

to insecurity occurs in the step before the one identified by the authors.

Effectively a parallel session attack can be mounted to enable a malicious

agent to start and complete an authentication exchange with a server with-

out the principal whose identity he claims knowing that such an authenti-

cation has taken place.

[118] S. Yamaguchi, K. Okayama, and H. Miyahara. Design and Imple-
mentation of an Authentication System in WIDE Internet Environ-
ment. In Proceedings of the 10th Regional Conference on Computers and
Communication Systems, 1990.

The original description of the SPLICE Authentication System. See [34].

[119] Alec F Yasinsac andWilliam AWulf. A Formal Semantics for Evalu-
ating Cryptographic Protocols. The paper has been superceeded by
a later version published in the IEEE Symposium on Security and
Privacy 1994., 1993.

This paper provides a good introduction to some relevant issues for au-
thentication protocols. It provides an overview of the historic development
of protocols. After supplying an appraisal (albeit brief) of the capabilities
of current approaches to protocol verification the authors go on to suggest
an approach based on the notion of weakest precondition calculus. They
say:

Our review of the problem of protocols verification has brought
us back repeatedly to the field of program verification. Actions
of principals in programs can be thought of as analogous to the
operations of programs.

The general idea is that protocol steps are viewed in terms of their results,
i.e. they are effectively state transformers, with the sending and receiving
of messages modelled as memory accesses.

A language CPAL (Cryptographic Protocol Analysis Language) is given
in which the goals of authentication can be specified. Whereas BAN logic
models the evolution of principals’ beliefs, the aim of the current paper
is to model the actions a user can take. CPAL provides a language to de-
scribe those actions (send/receive messages on a network, encryption and
decryption, creating keys, timestamps and nonces, cox/different comput-
ing functions and making comparisons and simple decisions). Note that
the approach taken is that a protocol does not require a notion of looping
(effectively only assignment and alternation are needed).
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With the simplified execution model the idea is that the goals of the proto-
col are stated as a postcondition and then wp-calculus is used to derive the
preconditions for success of the protocols (i.e. the initial assumptions).

The appendix to this paper gives a description of the CPAL language
and an indication of its use to specify various protocols (Needham and
Schroeder Private Key Protocol, Denning and Sacco Private Key Protocol,
and the Otway and Rees Private Key Protocol).

The ideas expressed in this paper are useful but the particulars seem a little
light at the moment.

[120] Paul C van Oorschot. An Alternate Explanation of two BAN Logic
’failures’. In Tor Helleseth, editor, Eurocrypt ’93, number 765 in
LNCS, pages 443–447. Springer Verlag, 1993.

This paper provides a retort to Boyd and Mao’s paper at the same confer-

ence discussing limitations of BAN logic approaches [23]. Oorschot main-

tains (with justification) that BAN passes the first protocol simply because

the formal assumption of trust in the authentication server is not actually

true. The second example protocol is passed by BAN because the idealisa-

tion is simply wrong.
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