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Radix-2x 2 x 2 Algorithm for the 3-D Discrete
Hartley Transform

Said Boussaktaviember, |IEEE, Osama Hamoud Alshibam&udent Member, |EEE, and
Mohammed Yunis AzizSudent Member, |EEE

Abstract—The discrete Hartley transform (DHT) has proved
to be a valuable tool in digital signal/image processing and
communications and has also attracted research interestsin many
multidimensional applications. Although many fast algorithms
have been developed for the calculation of one- and two-dimen-
sional (1-D and 2-D) DHT, the development of multidimensional
algorithms in three and more dimensions is still unexplored and
has not been given similar attention; hence, the multidimensional
Hartley transform is usually calculated through the row-column
approach. However, proper multidimensional algorithms can be
mor e efficient than the row-column method and need to be devel-
oped. Therefore, it istheaim of thispaper to introduce the concept
and derivation of the three-dimensional (3-D) radix-2 x 2 x 2
algorithm for fast calculation of the 3-D discrete Hartley trans-
form. The proposed algorithm is based on the principles of the
divide-and-conquer approach applied directly in 3-D. It has a
simple butterfly structure and has been found to offer significant
savings in arithmetic operations compared with the row-column
approach based on similar algorithms.

Index Terms—3-D filtering, 3-D Hartley transform, 3-D image
processing, 3-D radix-2 x 2 x 2, 3-D spectrum analysis.

. INTRODUCTION

HE discrete Hartley transform (DHT) [1]-[13] has bee

used in many applications in signal/image processi
and communications. These applications include filtering [1
adaptive digital filters [15], spectrum analysis [16], error contro
coding [17], multicarrier-based modulation [18], geophysical
applications [19], fast interpolation [20], and power qualit
assessment [21]. These applications have been increase

[22], image processing [23], multidimensional filtering [24],
multidimensional spectrum analysis and dose calculation

radionuclide therapy [25], etc.
The multidimensional discrete Hartley transform-D

DHT) is closely related to the multidimensional discret
Fourier transform -D DFT) and has been proposed as an
alternative tool suitable for real data [13]. The three-dime

e

sional (3-D) DHT has the main properties of the 3-D DFT.
The advantages of the-D DHT over them-D DFT are that

it is a real-to-real transform and that the forward and inverse
transforms are similar. Therefore, the-D DHT is more
suitable for 3-D image and multidimensional signal processing
applications with real input data.

Although several algorithms have been developed for the
one-dimensional (1-D) [1], [2], [4], [8], [9] and two-dimen-
sional (2-D) [9]-[12] Hartley transforms, these algorithms
cannot be applied directly to the calculation of theD DHT
in a row-column approach because theD DHT is not
separable [12], [13]. Hao and Bracewell have proposed the
computation of the 3-D discrete Hartley transform using 1-D
algorithms applied over each dimension to give an intermediate
transform; the 3-D Hartley transform is then calculated from
the intermediate transform at the expense of more additions
and multiplications [13]. Boussakta and Holt proposed the
calculation ofm-D DHT using an index mapping scheme and
the multiplication-free 1-D Fermat number transforms FNTs
[26]. Meheret al. [28] proposed another algorithm involving
the calculation of both 1-D DHT and 1-D DFT combined with
rime factor and Winograd algorithms. Bortfield proposed the
Iculation of them-D DHT using the 1-D complex Fourier
ansform [29].

However, all those papers reorder the input and map the 3-D
problem into 1-D and then use other 1-D transforms for the cal-

81tion of the multidimensional Hartley transform. Thus, the

u
o . . . ée{/elopment of fast Hartley transform algorithms in 3-D and
cover multidimensional applications such as motion analysis

more dimensions is still unexplored and has not been given the
eI\;c]tention that has been given to the 1-D and 2-D transforms.
Itis the aim of this paper to introduce the concept and deriva-
tion of the 3-D radix-2x 2 x 2 algorithm for fast calculation of
the 3-D DHT. The proposed algorithm has a simple butterfly
Structure and can be implemented in place. Compared with the

commonly used row-column approach based on similar algo-

n-

rithms, the radix-2Z 2 x 2 is found to offer significant savings
in the number of arithmetic operations. An example is given
showing the validity of this algorithm.
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A. Transform Definition
The 3-D DHT of the 3-D input data(n;,n2,n3) of size
N1 x Ny x Njis defined as [1]

Ni—1Nz—1Ng—

1
X(klvk2ak3): Z Z Z 35(”177127”3)

n1=0 no=0 ng=0

X cas 2m k+27r Ic+27r k
Nlm 1 N2712 2 N3713 3
k,=0,1,...,N;—1; i=1,2,3 (1)

where ca&x) = cos(@) + sin(a), anda = (27 /Ny)niks +
(27T/N2)7’LQ/€2 + (27T/N3)7’Lg/€3.
The inverse transform is

Ni—1N;—1Ns—1

.’L’(?’Ll,HQ,ng) = m Z Z Z X(k17k27k3)

k1 =0 ko=0 k3=0

n n n
7‘7 11 7‘7 2/2 7\73 33
nZ E717"'7‘2i 1; i 17273' ()

The factorl /(N1 N2 N3) can be split between the forward and

inverse transforms to make them exactly the same.

B. Some Properties of the 3-D Hartley Transform
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H.q(-,-,-) refer to even and odd parts &(-, -, -), respectively
and are given by

Ho (k1 ko, k3) = [H(k1, ka2, k3)
+ H(Ny — k1, No — ko, N3 — k3)]/2
(4)
Hoa(ky, ko, ks) = [H(ky, k2, k3)
— H(Ny — k1, No — ko, N3 — k3)]/2.
(5)

An application of the 3-D convolution in medical image
processing for the dose calculation in radionuclide therapy is
demonstrated in [25]. The 3-D convolution is carried out using
the 3-D DHT. The 3-D DHT is calculated via the row-column
approach using the 1-D radix-2 FHT.

2) Relationship Between 3-D DHT and 3-D DFT: The 3-D
DHT is closely related to the 3-D DFT, where the real and imag-
inary parts of the 3-D DFT are equal to the even part and the
negative of the odd part of the 3-D DHT, respectively.

H(ky, ko ks) + H(—ky, —ka, —k3)
2
H(klv k27 k3) - H(_klv _k27 _k3)
2

F(klv k27 k3) =

(6)

—J

where F'(ky,k2,ks) is the 3-D Fourier transform, and

The 3-D DHT can be applied in 3-D spectrum analysis anﬁ(kl, k2, ks) is the 3-D Hartley transform. Therefore, we can

in many applications in image and multidimensional signal praqjiy calculate the 3-D complex Fourier transform once the
cessing [22]-[25]. It has the main properties of the 3-D DFT, bgt_D Hartley transform is calculated.

it is a real-to-real transform and, hence, is more suitable for 3-D
and multidimensional applications when the input data is real.
1) Calculation of 3-D Convolution: The 3-D discrete
Hartley transform has the 3-D cyclic convolution property
and, hence, can be used to calculate the 3-D convolution/corAlthough many algorithms have been developed for fast cal-
relation and related functions for 3-D applications. Theulation of the 1-D and 2-D DHTs [1], [2], [4], [8]-[13], al-
convolution property defined in [1] and [2] can be extendegorithm development fom-D DHT in three and more dimen-

to 3-D. If we consider that:(ni,n2,n3) and h(ni,ne,n3) SiONs has notbeen given similar attention. HenceytHe DHT

are the 3-D input data and the 3-D impulse filter to hawé usually calculated using the row-column approach. However,
sizes equal taVf; x M, x Ms andL; x L, x Ls, respec- true multidimensional algorithms can be more efficient than the
tively, then their linear convolutiony(ny,no,n3) is of size row-column approach and need to be developed.
N1XNyx N3 = (Mi+L;—1)x (My+Ly—1)x(Ms+L3z—1) In this paper, the development and derivation of a 3-D
with M,, L, and N; being integers and = 1,2,3. The two radix-2x 2x 2 algorithm is introduced, which calculates
input data need to be padded with zerog (o, , 72, ns) sizein the 3-D DHT directly._ The t_ransform size should b_e a
order to avoid wrap around errors. The padded inputs are tHegwer of 2x 2x 2. In this algorithm, the 3-D Hartley of size

used to calculate the 3-D linear convolution as follows: N x N x N-pointis divided into eighfV/2 x N/2 x N/2-point
3-D DHTs. In the next stage of the algorithm, each

N/2 x N/2 x N/2-point 3-D DHT is further divided
into eightN/4 x N/4 x N/4-point 3-D DHTSs, and the process
continues until we get 22x 2 transforms. Hence, this
algorithm is based on divide-and-conquer procedure applied in
three dimensions. For simplicity and without loss of generality,
let Ny = Ny = N3 = N; then, X (kq, k2, k3) can be written as

IIl. FAST ALGORITHM FOR THE 3-D DISCRETEHARTLEY
TRANSFORM

y(ni, na,n3) = x(ny, no, n3)* *x xh(ny, na, n3)
= 3-D Inverse DHR[X (k1, k2, k3)
® @ @ Hey(k1, k2, k3)]
+ [X (N1 — k1, Na — ko, N3 — k3)
@@ Q@ Hoa(N1 — k1, No — ko, N3 — k3)|}
3) X (kv ks, bs)
N-1N—-1N-1

= Z Z Z x(ni,ng,ns)

n1=0n=0n3=0

where:x x x is the symbol for 3-D linear convolution, armg ®
® stands for 3-D point by point multiplicatio..(-, -, -) and
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2
X C&S(Nﬁ(nlkl + noks + 713/%‘3))

> Y Y4y vy

nievenng:ievi ven  njpievenngieven ng:odd

£y Y Y ey Yy
€Il g 1O ng:even
>

>

N1 eve ny:even ng:odd nz:odd

‘Y Y Y ey Y Y
ni:o

+ 2

d noeven ng:even ny:odd nz:even nz:odd

IEDBED VD IDD

ni:oddng:odd nzeven  ni:oddng:odd ng:odd.

Therefore, the general decomposition formula is
X(kla k?a k3)

= Dooo(k1, k2. k3) + [Dom (k1, ko, k3) cos

N N N . 27ks]
+ Door E—Ifbg—kbg—k:&)ﬂn ¥
[ 2rk
+ | Doro(k1, ko, k3) cos e
] N N N 2k ]
+ Doio 5 = k1, o T ko, — 5 /f?,) sin N2

[ 2

+ | Do11(k1, k2, ks) cos N(’w + k3)
] N N N

+ Do11 <5 — ki, — 5 /%27 k‘z)

27
X sin ( 2+ 3):|

27k
+ |:D100(k17k2,k'3)COS 7;\71

N N N
+ Dioo < — k1, — — ko, 5 k?,)

2
27Tk‘1:|

X sin

N
27
+ [D101(/€1, ks, k3) cos N(kl + k3)

N N N
D (2 — ki, > k& =
+ 101<2 ki1, 5 ko, 5 /f?,)

X sm (/ﬁ + Ifg):|

2
+ |:D110(k17 k2, k3) cos Nﬂ(/ﬁ + k)

N N N
D — — ki, — — ko, — -k
+ 110 < 2 1, 2 2, 2 3)
X sm (kl +I€2):|
2

+ |:D111(k17 k2, ks) cos F(kl + ko + k3)

N
— ko, 5 kz)

27
in—(ky +ka+k
x sin — (k1 + k2 + 3)}

N N
D — —ky, —
+ 111<2 Ly

()

8
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where

Dgs(k1, ko, k3)
N/2—1 N/2—1 N/2—1

=2 2 >

n1=0 no=0 mnz=0
27
X Cas<ﬁ(2n1k1 + 2nsoks + 2ﬂ3k3)>
afé = {000, 001, 010, 011, 100, 101, 110, 111} (9)

(2n1 + «, 2ns + 3,2n3 + 6)

and the sums are recognized as eigfv/2) x (N/2) x
(N/2))-point 3-D DHTs. The process is repeated until
only (2x 2 x 2)-point 3-D DHTs remain. A single butterfly
is illustrated in Fig. 1, which simultaneously computes
X(ky, ko, ks), X (ky, ko ks + NJ/2), X (ki ke + N/2,ks),
X(ky, k2 + N/2,ks + N/2), X(ky + N/2, kg, k3), X (k1 +
N/2,/€2,/€3 + N/Q),X(k‘l + N/Q,I{}Q + N/Q,I{Jg), and
X(ky + N/2,ko + N/2, k3 + N/2) as follows:

N
X <k17k27k3 + _>

7T/€3

= Dooo(k1, k2, k3) — [Dom k1, k2, k3) cos

v| 2

N
T2

+ Doo1

P
L > k3> sin ”k:”}

27?/{}2

+ |:D010(]$ 1 kg, ]%3) COS

N N
Y N S
172 272

|2

2k
+ Do - kg) sin 7‘;\72}

2
— DOll(k ,kg,kg) COS N(kg +/$3)
(N N
. _klv_ _k27g
2 2 2

27Tk'1

. 2m
— k‘g) Sin W(kQ + ]Cg):|

+ | D1oo(ky, k2, k3) cos

N N N 27k
——kl,——kg,——kg)Sin 7T1:|
2 2 2

N
2m
— DlOl(k 1, /{}2, /{}3) COS N(/ﬁ + /{}3)

N N N .2
+ Do 5—161,5—/{2,5—/{}3) Slnﬁﬂ(k1+k3):|
+ | D1io(ki, ko2, ka) COS (k1 + k2)
] N N N 2
+ D110 E_Ifl,E—kQ,?—k'g) Slnﬁﬂ(kl+k2):|

2
- |:D111(k y ko, k3) cos Nﬁ(/ﬁ + k2 + k3)
N N N
5 —k27? —/f?,)

X sin N(kl + kg + ]%3):| (10)

N
X </€17/€2 + 57k3>

27T]€3

= Dooo(ky1, k2, ks) + |:D001(k17 k2, k3) cos



3148 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

N N N . 27ks] N N N . 2w
+D001 E—kl,?—kg,g—kg) Sin Ng_ +D110 <E—/€1,?—k2,?—k3> Slllﬁ(k1+k2):|
[ 27k 27
— | Doro(k1, k2, k3) cos 2 + |:D111(k17 k2, ks) cos N(kl + ko + k3)
] N N N ks ] N N N
+D010 5—]%‘1,;—]%‘2,;—]%‘3) Sin N2_ +D111 <5—]€1,5—]€2,5—]€3>
[ 27 . 27
_ DOll k17 ](,'2, ]Cg) CcOSs N(k‘g —+ kg) X sin F(kl =+ k‘g =+ ]Cg):| (12)
] N N N 2 N
+ Donx <5 — ki1, 5 ko, 5 k3> sin N(/@ + kg)} X </€1 + 5 k27k3>
[ 2k 2rk
+ | Dioo(k1, ko, k3) cos Nl = Dooo(k1, k2, k3) + [D001(/€17/€27/€3)COS N3
] N N N 2k N N N ok
+ Do <5—/€175—/€275—/€3> sin Nl} + Doo1 5—16175—16275—/63) sin N3
[ 2n [ 2mks
+ | Dyo1(k1, ko, k3) cos N(kl + k3) + | Doro(k1, ko, k3) cos N
] N N N o 1 ] N N N 20k ]
+ Din 5—161,5—/62,——/63) Slnﬁ(/ﬁ + k3) + Do 5—161,5—/62,——/63) sin NQ_
— | D11o(ka, ko, k3) COS (/ﬁ + k) + | Do11(k1, ko, k3) COS (k'Q + k3)
] N N N o 1 ] N N N o
+ D11o E_kla 5 _k27?_k3> Slnﬁ(lﬁ‘f‘lﬁ)_ + Don <5—/€17?—/€27?—/€3> Slnﬁ(/w-i-/fg)}
[ 27 [ 27k
— Dlll(/{il,/{ig,kg) COS N(/ﬁ +I€2 +I€3) — Dloo(/{il,/{ig,kg) COS Nl
] N N N ] N N N  onky
+ Dig <5 _kb?_k%?_kl&) + D1go <5 —klvz—kbz—k:&)Sln N }
2 [ 2
X sin Fﬂ(kl + kg + ]%3):| (11) — DlOl(kla kg, I%g) COSs N(kl + ]%3)
N N ] N N N o 1
X</%17/%2+57/%3+5> + Doy 5—/%175—/%275—/%3> Slnﬁ(’ﬂ""ﬂ%)_

7T]$‘3
N

[ 2n
— | D11o(ky, k2, ks) cos N(kl +k2)

2
= Dooo(k1, k2, ks3) — |:D001(k17 k2, ks) cos

N N N o 27k ] N N N . 2w
+ Doo1 <5—/€175—/€275—/€3> sin 3_ + Di1g 5—16175—16275—/@3) Sln—(k1+/€2)_
[ 27Tk'2 [
— | Doro(k1, k2, k3) cos N — | D111(kq, k27/€3)COS (/C1+/€2+/€3)
] N N N  27ks] ] N N N
+ Dowo <5—/€175—/€275—/€3> sin NQ_ + Dy <5—/€175—/€275—/€3>
[ 27 .27
+ Dou(/{}l, ko, /{}3) cos N(/{Jg + /{}3) X sin —(/{}1 + ko + /{}3):| (13)
] N N N o N
+ Don <5 —/ﬁ,?—km?—kg) Slnﬁ(/w-i-/fg)} </€1+ ko, kg 4+ )

27k 27k
+ | D1oo(k1, ko, k3) cos e = Dooo(k1, k2, k3) — [Dom k1, ko, k3) cos 2k
] N N N  2nk N N ks
+ Digo 5 ki, o T ko, — 2 /f3> sin Nl} + Doox 0} /ﬁ, — ko, 5 /f?,) sin Ng_
[ 27?/{}2
— DlOl(k /{}2, /{}3) COS (k'l =+ /{}3) =+ DOlO(k /{}2, /{}3) Ccos N
] N N N 2o N N 2k ]
+ Dio1 E—kb?—k%?—kg) Slnﬁ(k1+k3):| + Do E_kla k27?—/€3> sin NQ_
[ 27 27
— | D11o(k1, k2, k3) cos N(kl + k2) - Don(/%'l, k2, ks) cos N(’w +k3)
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N N N
__klv__k27_
2 2 2

27T/$‘1

— | D1oo(k1, k2, ks ) cos

_klv

27k
— kg) sin 7‘;\71}

2
+ | D1o1(ky, k2, k3) cos %(kl + k3)

NN
2

N

] N .27
+ D1 < — k1, 5 ko, 5 k?,) sin ﬁ(kl + k3)

27
— | D11o(ky, k2, k3) cos ﬁ(kl + ko)

N N .27 |
+ Di1o _kb? —k275 —k3> sin ﬁ(kl +/€2)_

[ 2
+ Dlll(kla ko, kg) cos N’N(/ﬂl + ko + /fg)

N N
+ Di1q <— —/ﬁ,? —k2,5—/€3>

2

2

2
X sin Nﬂ(/ﬁ + ko + kg):| (14)

N
_7k3>

= Dooo(k1, k2, k3) + [Dom k1, k2, k3) cos

N
X </€1 + —7162 +
27?/{}3

N N N . 27ks]

+ Doo1 <E—/€17 2 — ko, — —kg) sin N?’_
[ ok
- _D010(/€1,/€2,/€3)C05 7;V2

N N N . 27?/%‘2_

+ Do <5—/®1,5—k2, 5 —kg) sin — |

2
— DOll(k ,kQ,kg)COS N(kg—l—]%g)

N N N . 2w
+ Dou <5 — k1, 5 ko, 5 k?,) sin ﬁ(k‘Q + kg)}
[ 2wk
— | D1oo(ky, k2, k3) cos Gl
] N N N 2k
4+ Dioo <5—k1,5—k2,5—k3>sm N }

2
— DlOl(k ,k‘Q,k‘g)COS N’]r(lﬁ +/€3)

] N N N
5—/{}1,5—/{}2,——/{}3)8111

2
5 Nﬂ(/ﬁ + k3)}

[ 2
+ | D11o(k1, ko, k3) cos Nﬂ(/ﬁ + k2)

_klv_ _k27

N N N
2 2 2

— k‘g) sin 2—7r(]€1 + /{}2):|

+ | D111 (K, /f27/€3)COS

(kl + ko + k3)
N N
klv k?v ? - k3>

27
in—(ki + ks + k
smN( 1+ ko + 3)}

N
+ Di11 <

(15)

. 27 N
— k‘g) sin N(/%Q + /%3):| X </€1 + 5 ko +
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27" g

27T/$‘3
N

= Dooo(ky, k2, ks) — |:D001(k17 k2, k3) cos

N N N . 27T]€3
+ Dooy <5—/®1,5—k2,5—k3> sin — }
27k
- |:D010(k17k2,k3) cos 2112
N N N . 27T]€2
+ Do1o <5—k1,5—k2,5—k3>sm N }

27
+ | Do11(ky, ko, k3) cos ﬁ(k‘Q + k3)

(N N N 2
5 — k‘l, 5 — k‘g, - = k‘g) SN W(kQ —+ ]Cg):|

N N N . 2wk
+ Dioo 5—k1,5—k2,5—k3>sm Nl}
+ | D1o1(k1, ko2, k3) COS (k1 + k3)
] N N N . 27
+ Dot E_Ifl,E—kQ,?—k'g) SIHN(]{E1+/{;3):|

[ 2
+ | D11o(k1, k2, k3) cos Nﬁ(/ﬁ + k2)

N N N
E—kl,——kg,?—k;),)Sin

+ D119 2

2

N(kl + k2)}
2

— |:D111(]ﬂ}1, Iﬂ}g, ]%3) COS N(Iﬂ/l + Iﬂ}g + ]%3)

k27 N k3>

27
XSlllN(1+ 5 + 3):|

N N

D — —k
+ 111<2 Ly T

(16)

To prove the validity of this algorithm, an example of an
8 x 8 x 8 3-D Hartley transform for a random 3-D input and
its inverse calculated using the 3-D radix2 x 2 algorithm is
shown in Fig. 2. A C-program for the 3-D radix22 x 2 algo-
rithm is available upon request from the authors.

IV. ARITHMETIC COMPLEXITY AND COMPARISONWITH
EXISTING ALGORITHMS

In this section, the arithmetic complexity of this algorithm
is analyzed and compared with the most commonly used row-
column approach based on similar algorithms.

A. Arithmetic Complexity of the Radix-2 x 2 x 2

The butterfly shown in Fig. 1 calculates eight points and
needs 14 real multiplications and 31 real additions. The whole
transform needkg, N stages. For aflV x N x N) point 3-D
FHT, the total number of real multiplications needed using one
butterfly and4/2 implementation i§7/4)N?3log, N, and the
total number of real additions i81/8)/N3log, NV, as shown
in Table I. Using different butterflies to remove trivial multi-
plications and additions and reduce the arithmetic operations
further, the total number of real multiplications and additions
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Dok, kyks) \ i Xik, k,k,)
Digy (k) et \\ < //
Qg . Xk, k, k,+N/
Do (/2K N/2-k, N/2 -k, ) S \\“ \ 4’/// B
cos(2rgN) \ oL S /
Paualkifky /“‘ \‘\‘\ /” i "’\

X(k kN2 k)

D, (N/2-k N2k, N2 k,) —mi2mioM) X \\\\0”\0/'/» 7
010 1 2 3 \\g‘» \%:& ?‘i’;‘;‘%/

* “§ N7 NAET
Dy, (K, k,k,) cos(2mlky*kaIN) RS YKELH
e 2tk A\v:é’;“:é é:g;’é:vli\\ X(k, Kk, #N/2 J +N/2)
Dy, (N/2-k, Ni2-k, N2 &,) S22k TS X XY Yol XE—7 ’ ’
on 2k, 2 2) \0"%:“.\\ é‘gg\i“’/
Q'\ £RCTNIHY EX <L
Dok, Kk) o (rie/M) S AL
D2k Nk N k) I TR ol AT X
oo 20 o LT 4 P
D, Ky ko k) osnlly ko) / "'1"4'17%2‘%*‘}“’\
101Ky KoK | ] ,/‘I/'/O\ /O\‘\\A\:
D, g, (V724 NP2k, N2 k) SR N) TRSAECLT 7 ‘\‘

NN

X(k, N2k, k)

- Xk, +N/2 k, K, +N/2)

X(k, #N/2 k,+N/2k,)

f ¥
Dno(N/z'kalz'kz’le'ks) e / ‘ \\\
Dy, Gk, koky) cos(2nlk, *hyt ko) ///\\\
sin(2n(k, +kytk N} N Xk, /2K, 4N/2 k +N/2)

D,,,(N/2-k, N/2-k,N/2k;)

Fig. 1. One butterfly radix-X 2 x 2 algorithm for the 3-D Hartley transform.

can be reduced t67/4)N3log, N — (49/8) N3 + (21/2)N? and(9/2)N3log, N — (9/2)N3 + 6N? + 3N3, respectively.
and (31/8)N3log, N — (21/8)N3 + (7/2)N?2, respectively, Tables I and Il show a comparison between the row-column ap-

as shown in Table II. proach and the 3-D radix-2 2 x 2 algorithm, in terms of num-
bers of multiplications and additions per point, using a single
B. Comparison With Existing Algorithms and multiple butterflies.

) ) ] ) ) ) From Tables | and I, it is clear that great savings in the

In this section, we first compare this algorithm with the mos{,mpber of multiplications and additions can be achieved when
commonly used row-column approach based on 1-D radixgsing the 3-D radix-& 2 x 2 algorithm. In counting the arith-
1-D splitradix usingt /2 implementation, 1-D hybrid DHT/FFT 1 atic operations in this section, we used the so-caljim-
using3/3 implementation, and then with known papers for 3'[13Iementation. Depending on the type of system in use, a cer-
DHT. ) tain number of multiplications can be traded for additions using

1) Comparison Wth the Row-Column Approach Based on  {he so-calleds/3 implementation. This can be done for both
Radix-2 Using 4/2 Implementation: Owing to the difficulty of = 55rithms and saves approximately one multiplication in four
developing fast algorithms in three and more dimensions, gt increases the number of additions by the same amount, and
3-D DHT is usually computed using the row-column approagfnce, we have omitted the tables #g8 in this section.
[12], [13], [25]. The 3-D DHT is not separableagm+n+s) # In general, the number of real multiplications and additions
cagm)cagn)cags)), and hence, the multidimensional Hartleyeqyired for the multidimensional#(-D) Hartley transform
transform, in three and more dimensions, is usually computggling the radix-% 2 x 2 and4/2 implementation are approxi-
by adding a certain number of temporary arrays; these arraysiely
are computed using several 1-D FHTs applied over each dimen- m_1
sion [12], [13], [25]. The multidimensional Hartley transform is Mults; = 2m—_1N"" log, N (17)
then computed from the temporary arrays at the expense of safpg
extra additions and halvings (multiplication by 0.5). Ignoring
the halvings, the number of real multiplications required to cal- Adds, = <m + om
culate anV x N x N 3-D DHT, using the 1-D radix-2 algorithm
na row-cqlgmn f”‘pproacl} wg log, N?’, and'the t.otal number additions form-D FHT using the row-column approach based
of real additions i§9/2) N* log, N +3N?. Using different but- on radix-2 andi/2 implementation are
terflies to remove trivial operations and reduce the arithmetic
complexity further, the total number of real multiplications and Mults, = mN™ log, N 19)
additions can be reduced 3&v?log, N — (21/2)N® + 18N? and

e

) x N™log, N. (18)

On the other hand, the number of real multiplications and
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Fig. 2. Forward and inverse 3-D Hartley transform. (a) Three-dimensional input image. (b) 3-D forward Hartley transform. (c) 3-D inverse Hartley transform.

3
Adds, = §mNm logo N + mN™. (20) and

Therefore, using the 3-D radixs22 x 2 will save approxi- Spadds¥e = 100 x | 1 —
mately

2m — 1
SMults% = 100 x <1 - ) (21)

m2rn—l

2(m—|— 27;,;1) x logy N

3mlog, N + 2m

. (22)

The savings in the number of multiplications and additions in-
creases with the increase of the transform dimensions, as shown
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TABLE |
COMPARISON BETWEEN THE ROW-COLUMN APPROACH AND THE3-D RADIX-2 X 2 X 2 USING ONE-BUTTERFLY AND 4/2 IMPLEMENTATION

Row-column approach
3-D radix-2x2x2 approach

Transform (based on radix-2 algorithm)
Size Mults. Adds.  Mults.+Adds. Mults. Adds. Mults.+Adds.
/point /point /point /point /point /point
2’x2’x2} 9 16.5 25.5 5.25 11.625 16.875
2%%2*x2* 12 21 33 7 15.5 22.5
25x2°%2° 15 25.5 40.5 8.75 19.375 28.125
25x2°%28 18 30 48 10.5 23.25 33.75
2'x27%27 21 34.5 55.5 12.25 27.125 39.375
28x28%28 24 39 63 14 31 45
2°x2°%2° 27 43.5 70.5 15.75 34.875 50.625
219210210 30 48 78 17.5 38.75 56.25
2Mx2thot! 33 52.5 85.5 19.25 42.625 61.875
2'2x212x2" 36 57 93 21 46.5 67.5
TABLE I

COMPARISON BETWEEN THE ROW-COLUMN APPROACH AND THE3-D RADIX-2 X 2 X 2 USING 4 /2 IMPLEMENTATION AFTER REDUCING THE ARITHMETIC
OPERATIONSUSING MULTIPLE BUTTERFLIES

Row-column approach
3-D radix-2x2x2 approach

Transform (based on radix-2 algorithm)
Size Mults. Adds. Mults.+Adds. Mults. Adds. Mults.+Adds.
/point /point /point /point /point /point
2’x2°x2? 0.75 12.75 13.5 0.4375 9.437 9.8755
24224 2.625 16.875 19.5 1.5313 13.094 14.6253
2°x2°x2° 5.0625 21.1875 26.25 2.9531 16.860 19.8121
25%2%x28 7.7813 25.5938 33.3751 4.5391 20.680 25.2191
2"x27x27 10.6406 30.0469 40.6875 6.207 24.527 30.734
28%28x28 13.5703 34.5234 48.0937 7916 28.389 36.305
2°x2°x2° 16.5352 39.0117 55.5469 9.6455 32.257 41.9025
219210210 19.5176 43.5059 63.0235 11.3853 36.128 475133
22! 22.5088 48.0029 70.5117 13.1301 40.0017 53.1318
252101 25.5044 52.5015 78.0059 14.8776 43.8759 58.7535

in Table Ill. However, the complexity of developing multidi-row-column approach based on 1-D split radix with the 3-D split

mensional algorithms increases with the transform dimensicadix Hartley transform algorithm. However, the 3-D split radix

as well, but the result needs to be developed only once, and Heertley transform algorithm has yet to be developed, and hence,

savings achieved make the calculation worthwhile. we will use the radix-Z 2 x 2 results developed in this paper
2) Comparison With the Row-Column Approach Based on as a guide only. The number of arithmetic operations for the

Split Radix Using 4/2 Implementation: The 1-D split radix al- 1-D split radix Hartley transform usingy'2 implementation and

gorithm is known to be one of the best 1-D FHT algorithmmultiple butterflies to remove trivial operations is reported and

for reducing the number of multiplications and additions [2jprogrammed in [2]. The total number of multiplications needed

[14]. However, it has a more complex structure and indexing calculate the 3-D DHT using this algorithm is

scheme than other meth_ods, an_d _hence, the arithmetic advan-o 53 log, N — (19/3)N3 + 9N? + (N2/3)(—1)los: N

tage could not be turned into a similar speed advantage for real . ,

implementations [3], [5]-[7]. Therefore, it is difficult to make2nd the total number of additions is

this comparison, and it would perhaps be better to compare the4N?3log, N — (5/3)N3 +9N? 4 (5N?/3)(—1)le= NV,



BOUSSAKTAEet al.: RADIX-2 x 2 x 2 ALGORITHM 3153

TABLE Il
SAVINGS WHEN USING THE 3-D RADIX-2 X 2 X 2 ALGORITHM OVER THE ROW-COLUMN APPROACH IN PERCENTAGE AS AFUNCTION OF DIMENSIONS

Dimensions 3 4 5 6 7 8 9 10
Smuis% 41.67 53.13 61.25 67.19 71.65 75.1 77.82 80.02
Saaas%

26.19 29.46 31.79 33.48 34.76 35.74 36.52 37.15
N=16
SAdds%

24.02 27.39 29.78 31.53 32.84 33.85 34.65 353
N=32
Sadas%o

" 22.5 25.94 28.38 30.16 31.5 32.53 33.35 34,01

SAdds%

21.38 24.86 27.34 29.14 30.5 31.55 32.38 33.05
N=128
SAdds%

20.51 24.04 26.54 28.37 29.74 30.8 31.64 32.31
N=256

30 4 - 90
——RC-radix-2 (4/2) —— RC-radix-2 (4/2)

- u- RC-split-radix (4/2) 80
25 - |_ o RC-hybrid FHT/FFT (3/3)
--x--Radix-2x2x2 (4/2)

1 |-+~ Radix-2x2x2 (3/3)

- a—~ RC-split-radix (4/2)
701 | -«--RC-hybrid FHT/FFT (3/3)
60 -%- Radix-2x2x2 (4/2 or 3/3)

Number of mults per point
o

Number of mults.+adds. per point

0 +—F= . T . . - " (N)
8 16 32 64 128 256 512 1024 2048 4096

0 : : : : : : . , : ,
N
Transform size (NxNxN) 8 16 a2 64 128 25 512 1024 2048 4095

Transform size (NxNxN)

Fig. 3. Comparison between the 3-D radix2 x 2 algorithm and the

row-column (RC) approach based on radix-2 (RC-radix-2), split-radikig. 5. Comparison between the 3-D radix2 x 2 algorithm and the

(RC-split-radix) usingt/2 implementation and hybrid FHT/FFT (RC-hybrid row-column (RC) approach based on radix-2 (RC-radix-2), split-radix

FHT/FFT) using3/3 implementation in terms of multiplications. (RC-split-radix) usingt/2 implementation and hybrid FHT/FFT (RC-hybrid
FHT/FFT) using3/3 implementation in terms of multiplicatiossadditions.

60

[——RC-radix-2 (4/2)
- = - RC-split-radix (4/2)

50 - 4- RC-hybrid FHT/FFT (3/3)

- »- Radix-2x2x2 (4/2)

-+ - Radix-2x2x2 (3/3)

can be traded for additions using the so-cali¢slimplementa-
tion [4], [9], [14], [30]. This can saves approximately one multi-
plication in four but increases the number of additions by nearly
the same amount. This can be beneficial on systems where mul-
tiplication is much slower than additions. On systems where the
. time required for additions and multiplications is equal, 442
104 =7 implementation is faster than and more preferable t§ fiém-
. ‘ ‘ " plementation [6].
8 16 32 4 128 286 512 1024 2048 4096 The hybrid FHT/FFT is one of the 1-D butterfly-style al-
Transform size (NxNxN) gorithms that achieves a very low arithmetic complexity [14].

Fig. 4. Comparison between the 3-D radix2 x 2 algorithm and the Based on the. hybriq FHT/FF.T and related algori.thms, the total
row-column (RC) approach based on radix-2 (RC-radix-2), splitradRUMmber of arithmetic operations for the calculation of the 3-D

(RC-split-radix) usingt/2 implementation and hybrid FHT/FFT (RC-hybrid DHT using the3/3 implementation is
FHT/FFT) using3/3 implementation in terms of additions.

40

30 4

20

Number of adds per point

(3/2)N3log, N — (9/2)N* 4+ 6 N? multiplications and
As shoyvn in Eigs. 3—5.and Table IV, the radix<2 x 2 involvgs (9/2)N®log, N — (9/2)N® 4 18N? additions
less arithmetic operations than the row-column based split radix
approach. In addition, the total number of multiplications and additions
3) Comparison With the Row-Column Approach Based on for the radix-2x 2 x 2 using the3/3 implementation is given as
Hybrid FHT/FFT Using 3/3 Implementation: Depending on (21/16)N3log, N —(161/32) N3+ (77/8)N? multiplications
the type of system in use, a certain number of multiplicatior@d(69/16) N3 log, N — (119/32) N3 + (35/8) N2 additions.
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TABLE IV
COMPARISON BETWEEN THE ROW-COLUMN APPROACHBASED ON SPLIT-RADIX AND THE 3-D RADIX-2 X 2 X 2 USING 4/2 IMPLEMENTATION AFTER
REDUCING THE ARITHMETIC OPERATIONSUSING MULTIPLE BUTTERFLIES

Row-column approach

3-D radix-2x2x2 approach
Transform (based on split-radix algorithm)

Size Mults. Adds. Mults.+Adds. Mults. Adds. Mults.+Adds.
/point /point /point /point /point /point
2x23x2? 0.75 11.25 12 0.4375 9.437 9.8755
2%x2%x2* 2.25 15 17.25 1.5313 13.094 14.6253
2°x25%2° 3.9375 18.5625 22.5 2.9531 16.860 19.8121
26x2°x2° 5.8125 22.5 28.3125 45391  20.680 252191
2"x27x2’ 7.7344  26.3906 34.125 6.207 24,527 30.734
28x2%2% 9.7031 30.375 40.0781 7916 28.389 36.305
2°x2°x2° 11.6836  34.3477 46.0313 9.6455 32.257 41.9025
2192'9%2"° 13,6758  38.3438 52.0195 11,3853 36.128 47.5133

2% 15,6709 42.3369 58.0078 13.1301  40.0017 53.1318
25222 17.6689  46.3359 64.0049 14.8776  43.8759 58.7535

TABLE V
COMPARISONBETWEEN THE ROW-COLUMN APPROACHBASED ONHYBRID FHT/FFTAND THE 3-D RADIX-2 X 2 X 2 USING 3/3 IMPLEMENTATION AFTER
REDUCING THE ARITHMETIC OPERATIONSUSING MULTIPLE BUTTERFLIES

Row-column approach

3-D radix-2x2x2 approach
(based on hybrid FHT/FFT algorithm)

Transform
Size Mults. Adds. Mults.+Adds. Mults. Adds. Mults.+Adds.
/point /point /point /point /point /point
252323 0.75 11.25 12 0.109 9.766 9.875
2%x2%%2* 1.875 14,625 16.5 0.82 13.805 14.625
2°x2°x2° 3.188  18.563 21.751 1.832 17.98 19.812
20x25x2° 4,594 22781 27.375 2.994 22225 25.219
2'x27x27 6.047  27.141 33.188 4231 26.503 30.734
28x28x28 7.523 31.57 39.093 5.506 30.798 36.304
2°x2°%2° 9.012  36.035 45.047 6.8 35.102 41.902
2'0x2!0x210 10.506  40.518 51.024 8.103 39.411 47.514
212! 12.003  45.009 57.012 9.411 43.721 53.132
22x2124212 13.501  49.504 63.005 10.721  48.032 58.753

As shown in Table V and Figs. 3-5, it is clear that theonvolutions and, hence, to calculate the 3-D DHT. The method
radix-2x 2 x 2 Hartley transform involves fewer multiplica- achieves a very low multiplicative complexity and takes advan-
tions and additions than the row-column approach based tage of the low-cost implementation of the FNT processors [27].
hybrid DHT/FFT algorithm. In addition, unlike the row-columnThis method is useful when FNT processors are available.
approach, radix-Z 2 x 2 does not involve matrix transpose. In [28], the authors proposed a quite complex algorithm
This is very promising because we are comparing a relativeélyr calculating the 2-D and 3-D Hartley transforms. The
new algorithm, which has the potential to be improved with thedgorithm involves the calculation of both 1-D DHT and FFT
row-column approach based on well-optimized 1-D algorithmsansforms. In total2 N2 N-point DFTs andV2N-point DHT

plus 2(N — 2)N? intermediate additions are needed for the

4) Comparison With Known Papersin 3-D DHT: In [26], calculation of 3-D DHT. The 1-D DHTs and 1-D FFTs are
the authors proposed the calculation of the 3-D Hartley transalculated using a combination of prime factors of real series
form using an index scheme to map the 3-D DHT into a seriesafid Winograd algorithms. This is quite complex for practical
1-D, 2-D and 3-D convolutions and then use 1-D multiplicatioomplementation, and it is not economical to implement it in
free FNT processors in a row-column fashion to calculate thesaftware (it requires the implementation of both 1-D DHT
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and 1-D FFT plus a relatively complex indexing scheme&ommunications. The multidimensional Hartley transform in
and is exceedingly difficult to implement in hardware. Théhree and more dimensions is usually calculated using the row-
algorithm reduces the number of multiplications at the expenselumn approach. However, proper 3-D algorithms can be more
of increasing the number of additions. The total number efficient and need development. In this paper, we have intro-
arithmetic operations in this algorithm is more than in the praluced the concept and derivation of the 3-D radix-2 x 2 al-
posed radix-% 2 x 2 algorithm. For example, the total numbegorithm for fast calculation of the 3-D DHT. An example, which
of operations (additionsmultiplications) is 42.19/point for a shows the validity of this algorithm, for forward and inverse 3-D
transform of size 25 252x 252, whereas in our algorithm, Hartley transform, calculated using the 3-D radix-2 x 2, has
the corresponding figure is 36.305/point for a transform size béen given. The arithmetic complexity for this algorithm has
256 x 256x 256. Furthermore, the proposed radix2 x 2 been analyzed and compared with the row-column approach.
algorithm has a simpler indexing scheme and better regulahas been found that the total number of multiplications and
structure and can be implemented using even a single butterigiditions is reduced, as shown in Tables |-V and Figs. 3-5. In
In another paper about the multidimensional Hartley tranaedition, the radix- 2 x 2 is simple to implement and has a
form [29], the authors proposed the calculation of multidimemegular structure, and unlike the row-column approach, it does
sional Hartley transforms using the 1-D complex Fourier transet require matrix transpose. This justifies our work and may
form in a row-column fashion and retrograde indexing. In getead to more development of fast algorithms in three and more

eral, the arithmetic complexity of this approach(i§/2 + 1)
1-D complex Fourier transforms for each dimension ofith®
DHT. For example, if we apply this approach to the calcula-
tion of the 3-D Hartley transform3(N/2 + 1) complex 1-D
FFTs will be needed, plus a special indexing scheme (retroll]
grade indexing) plus a matrix transpose as shown in [29, Fig. 1],7]
Therefore, this approach is less efficient than the row-column
approach, based on 1-D FHT, which we are using for compar—[3]
ison. Similar to the FNT-based approach, this method can be
useful if it is required to use existing 1-D FFT hardware to cal-
culate them-D DHT. 4]
However, all these papers avoided the subject of developing
proper multidimensional Hartley transform algorithms. They
use different index mapping schemes in order to map thel®
3-D problem into 1-D and then use other 1-D transforms for
the calculation of the multidimensional Hartley transform [6]
in row-column fashion. This demonstrates that algorithm
development of the Hartley transform for 3-D and higher [7]
dimensions is still relatively new and unexploited and requires
more development. (8]
In our paper, we proposed the 3-D radix2 x 2 and com-
pared it with the most commonly used row-column approach(9]
and other published work for 3-D DHT. Compared with the
row-column approach based on the same algorithm, in the 1-Roj
case, the radix-& 2 x 2 is found to reduce both the number of
multiplications and additions significantly. Compared with the
row-column approach based on 1-D split-radix and 1-D hybri
DHT/FFT, the radix-2< 2 x 2 still involves fewer arithmetic
operations, has no matrix transpose, and has better structure didl
indexing scheme. In addition, the proposed radix-2x 2 is
more efficient than other published work in 3-D DHT [26]-[29] [13]
and better suited for the calculation of 3-D DHT. This is very en-
couraging because we are comparing a relatively new algorithig)
that may be improved with optimized algorithms, as in the 1-D
case.

11]

[15]

V. CONCLUSION
- . . [16]
The multidimensional Hartley transform is introduced as an

alternative tool to the multidimensional Fourier transform for
o L icatiord”!

real data applications. It has been applied in many applicatio

in digital image and multidimensional signal processing and

dimensions.
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