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Iterative Carrier Phase Recovery Suited to
Turbo-Coded Systems

Li Zhang and Alister G. Burr

Abstract—This paper examines the problem of carrier phase
recovery in turbo-coded systems. We introduce a new concept of
“a priori probability aided phase estimation”, where the extrinsic
information (log-likelihood ratio) obtained from turbo decoder is
used to aid an iterative phase estimation process, which is based
on a maximum-likelihood strategy. The phase estimator operates
jointly with the turbo decoding rather than separately prior to
the decoder as in traditional approaches. This technique provides
reliable phase estimation with variance of estimation errors
approaching the Cramer–Rao bound at very low signal-to-noise
ratio and allows robust decoding with a wide range of phase
errors. This paper addresses its application in turbo-coded binary
phase-shift keying and quaternary phase-shift keying systems
over the additive white Gaussian noise channel. The bit-error-rate
performance is investigated and shows that the performance of
this technique is very close to the optimally synchronised system
and significantly outperforms the traditional non-data-aided
method without using additional pilot symbols.

Index Terms—A priori information, Cramer–Rao bound (CRB),
extrinsic information, iterative decoding, log-likelihood function
(LLF), MAP, maximum-likelihood (ML) estimation, turbo codes.

I. INTRODUCTION

F
UTURE communication systems will be increasingly

called upon to provide higher data rates and higher power

efficiency. These requirements create the necessity of using

powerful error control coding schemes, such as turbo codes

[1], which are well known for their impressive near-Shannon

limit error correcting performance. A communication system

can be made highly robust by the use of turbo codes in a hostile

environment. However, the application of turbo codes tends

to exacerbate the synchronization problem because its very

effectiveness leads to a low operating signal-to-noise ratio

(SNR) (such as 1–2 dB). At this level, a data-aided (DA) or

decision-directed (DD) synchronization is preferred to non-

data-aided (NDA) methods. These two methods, however,

require either long preambles, which increase redundancy, or
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access to decoding decisions, which are generally not available

until synchronization has been performed. Furthermore, turbo

codes are rather sensitive against phase mismatch, an even

moderate offset may cause severe degradation of system per-

formance. Therefore, a proper technique is needed to preserve

the remarkable performance of turbo codes in presence of

imperfect synchronization.

A number of previous publications have looked into this,

particularly for parallel concatenated convolutional codes

(PCCCs). Risley et al. [2] and Wiberg [3] increased the ro-

bustness of the system against phase errors by taking into

account the design of the encoder. Risley et al. [2] presents

design methods for turbo trellis-coded modulation (TCM) over

fading channels, which can achieve significant coding gain on

channels with phase distortion. In [3], the turbo decoding is

made robust against phase uncertainty by using nonsystem-

atic, rotationally invariant component codes. Mielczarek and

Svensson [4] improved phase estimation in turbo-coded system

using an enhanced turbo decoder by including the signs of the

phase offset as additional states and accordingly modifying

the turbo decoder. However, this leads to greater complexity.

Similarly, [5] forms a finite-state Markov model for the fading

channel phase. The estimation of channel phase and data is

done jointly, on the supertrellis, which merges the trellises of

the code and phase model, or on the separate trellises, via the

Forward–Backward algorithm. Publications [6]–[9] present

methods using soft output generated by the turbo decoder to aid

the phase recovery. Morlet et al. [6] presents a tentative decision

directed carrier phase estimation technique, where tentative

symbol decisions calculated by the Viterbi decoder are used

to replace the data decision in the DD method. The approach

proposed in [7] is specifically geared for turbo coding. It uses

tentative decisions of the first soft in, soft out (SISO) decoder

during the decoding process in the phase recovery system as

the symbol reference. A joint turbo decoding and carrier phase

recovery algorithm is presented in [8]. It exploits the power of

the extrinsic information generated in the iterative maximum

a posteriori (MAP) decoder as metrics to perform the carrier

phase acquisition and tracking. These works have demonstrated

how the use of tentative decisions improve the carrier phase

recovery and obviously outperform techniques using hard

decisions when a turbo code is employed. But they do not make

full use of the special properties of the iterative turbo decoding

algorithm. A more recent paper [9] improves this. The authors

propose an iterative soft-decision directed (ISDD) carrier phase

estimation algorithm based on the maximum-likelihood (ML)

strategy suited for coherent detection of turbo-coded quadrature

amplitude modulation (QAM) modulation. The soft decisions

1536-1276/04$20.00 © 2004 IEEE
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provided by the SISO decoders are utilized in the ML phase

estimation. However, the approximation of the log-likelihood

function (LLF) made in the process of attaining the estimate

may lead to degradation to the estimation accuracy. One of their

results will be used to compare with ours.

This paper presents a new concept, which we will call “a

priori probability aided (APPA) phase estimation”, which fits

particularly well with the iterative turbo decoder, although it

would also be applicable with other types of code. It can be

understood as a generalization of DA and NDA synchroniza-

tion, since it reduces to the former when perfect data knowledge

is available, and to the latter when there is no a priori knowl-

edge of the data. In place of hard data decisions, as in the DD

case, it uses soft information obtained from the SISO decoder,

such as the MAP decoder used for turbo codes. The algorithm

is implemented based on the ML strategy and makes use of the

extrinsic information log-likelihood ratio (LLR) produced iter-

atively by a MAP decoder within the decoding loop. The phase

estimator and the turbo decoder operate simultaneously once

per decoding iteration. The new phase estimate and extrinsic

information are then employed in the next iteration. Applied

iteratively, this technique allows successive refinement of the

carrier phase estimate, until the joint decoder/synchroniser con-

verges on the correct data and phase estimate. The estimate is

worked out directly from the LLF using a complexity-reduced

algorithm to avoid introducing excessive delay to the system.

This approach does not change the structure of the codes or the

decoding algorithm, unlike [3] and [4]. It nevertheless improves

the synchronization by making full use of the existing resource

(the extrinsic information), without adding extra complexity to

the system.

We address phase estimation in turbo-coded binary phase-

shift keying (BPSK) and quaternary phase-shift keying (QPSK)

systems in this paper and initially assume a perfectly known

symbol timing (set as 0). The outline of this paper is as follows.

The first section briefly introduces the turbo codes, particularly

the iterative turbo decoder and the extrinsic information. In the

second section, we derive the modified LLF and the simplified

algorithm to attain the ML estimate for BPSK and QPSK sys-

tems. The third section evaluates the performance in terms of

bit error rate BER, mean phase estimate, and the mean square

estimation error (MSEE). Finally, the last section summarizes

the paper.

II. BRIEF INTRODUCTION TO TURBO CODES

The scope of this paper is restricted to the PCCCs. However,

the proposed technique can be straightforwardly extended to

other coding schemes, such as serial concatenation of convolu-

tional codes, turbo-product codes, and low-density parity check

(LDPC) codes, etc.

The turbo encoder is built using a parallel concatenation of

two identical recursive systematic convolutional (RSC) codes

with generators linked together by an interleaver

with size , where and are the polynomials of the

feedback and output connectivities of the RSC encoders. Both

RSC encoders inputs use the same information data bits but

according to a different sequence due to the presence of

the interleaver. The parity bits out of the two encoders are

properly punctured to achieve the desired coding rate. The

turbo decoder based on iterative decoding consists of two

SISO component decoders corresponding to the two component

encoders. The concept behind turbo decoding is to pass soft

decisions from the output of one decoder to the input of the

other, and to iterate this process to produce better decisions.

The most widely known decoding algorithm is the BCJR-MAP

algorithm [10]. A variant of this algorithm, the Log-MAP

algorithm [11], which operates in the logarithmic domain, is

also a good choice considering its simpler implementation

and performance equivalent to true MAP. The decoder (either

MAP or Log-MAP) computes the soft bits using the logarithm

of a posteriori probability ratio (LAPPR) associated with each

data bit , defined as

(1)

where is the received sequence, and , , 1

is the a posteriori probability (APP) of data bit . The decoder

decides if , i.e.

, and otherwise.

From Bayes’ rule [12], the LAPPR (1) can be written as

(2)

with the second term representing extrinsic information, de-

noted as . This LLR value, or generally the estimation for

each data bit is passed to the other component decoder and

serves as a priori information in the next decoding step. In this

way, each decoder takes advantage of the extrinsic information

produced by the other decoder at the previous step. The abso-

lute magnitude of is the measure of the reliability of the

estimation; the larger, the higher the probability of the data bit

being 1, when it is positive, or 0, when it is negative. As iterative

decoding proceeds, the reliability improves, until the decoding

converges to the correct decision after some iterations.

Such a decoding scheme suggests a new means of synchro-

nization by making use, in the phase estimation process as in

the decoding, of this iteratively improved extrinsic information

which is inherent in the decoding process, with no additional

computation.

III. APPA CARRIER PHASE ESTIMATION

The algorithm of phase estimation using the a priori infor-

mation provided by the iterative turbo decoder is derived from

ML estimation considerations. The algorithm is described in

two steps: first, we derive the LLF for the carrier phase estima-

tion through which we integrate the a priori information into the

ML estimation, and second, we approximate the LLF in order

to attain the ML phase estimate with low complexity.

A. Log-Likelihood Function

Express the th received symbol as , where

denotes its amplitude and represents the argument; both

vary due to the existence of the carrier phase error and the noise.
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According to [13], assuming an additive white Gaussian noise

(AWGN) channel with a noise power of , the likelihood func-

tion for the estimation of carrier phase based on the observa-

tion of received signals is

(3)

where is the th transmitted signal, which is a function

of the carrier phase . Here we consider to be unknown but

constant over one block. For -PSK modulation, the symbol

values are

(4)

where is the size of the constellation.

We average the likelihood function over all data values using

statistics of the signal. Typically, a uniform distribution is used

in conventional NDA method, when no a priori knowledge is

available. However, in the turbo-coded system, the extrinsic in-

formation is available after the first decoding iteration, from

which we can obtain the probabilities of each possible trans-

mitted symbol given the received signal, represented as ,

meaning the probability that the th transmitted signal is the

th constellation point. Averaging the likelihood function over

the constellation using these probabilities, we get the likelihood

function for the proposed method,

(5)

Take the logarithm of (5), then the LLF turns out to be

(6)

where is defined as LLF for each individual symbol

(7)

and the overall LLF (6) can be looked upon as the summation

of over symbols.

In the following, we derive the LLF in binary phase-shift

keying (BPSK) and quaternary phase-shift keying (QPSK) mod-

ulation separately.

As given in (2), the extrinsic information is a LLR de-

fined as

(8)

In binary transmission, , and hence,

we can compute the a priori probabilities [14] from by

(9)

1) BPSK: In BPSK, there are two possible transmitted

symbol values

(10)

Hence, can be obtained straightforwardly from (9) with

(11)

Substituting (10) and (11) into (7), after some algebra, we get

the LLF of the th symbol for BPSK system

(12)

2) QPSK: In the case of QPSK, there are four possible

signal states rather than two, thus, every QPSK symbol trans-

mits two bits. The QPSK signal values are expressed as

(13)

with a constant (generally equal to ).

Because of the interleaver, it is reasonable to assume that the

two bits of the th QPSK symbol, which are designated as ( ,

), are independent. And each bit takes the value of 0 or 1

according to the mapping rule.

We correspondingly signify the extrinsic information for

these two bits as and . Given and ,

and can be easily obtained using (9). As the

two bits are independent of each other, for QPSK is

(14)

Inserting (13) and (14) into (7), after simplification, the LLF

for the th symbol of QPSK is

(15)

where we define for convenience.
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Observing the LLF formula for BPSK (12) and QPSK (15),

we found that the the extrinsic information in BPSK, or

and in QPSK, have been embedded into the LLF

for the phase estimation. As mentioned before, the absolute

value of the extrinsic information represents a sort of reliability

metrics of the data estimation: the larger, the higher the prob-

ability of the data bit being 1, when it is positive; or 0, when

it is negative. For example, for , the probability of

the data bit being 1, i.e., is 98.2%. That is, the de-

coder is very certain about the decision, and the APPA estimator

resembles the DA method. On the other hand, at the first de-

coding iteration, when the extrinsic information is equal to 0,

, which is exactly the same as

in the NDA estimation. Although, strictly speaking, these values

are not a priori information for the whole receiver, since they

are not known before the symbol is received, we stick to this

term because of its well-established use in turbo decoding and

because the information is a priori as far as the synchroniser

is concerned. Hence, also we use the term “a priori probability

aided (APPA) estimation” for our new approach to carrier esti-

mation.

B. Low-Complexity Maximum-Likelihood Estimation (MLE)

The ML estimate is the value of that maximizes the

overall LLF (6). The necessary condition for a maximum is

(16)

From the previous section, substituting (12) and (15) into (6), the

overall LLF for both modulation methods turns out to be highly

nonlinear and complicated. It involves too much calculation and

would introduce processing delay if we were to compute the

exact estimate directly from its derivative satisfying condition

(16). To resolve this problem, we expand the LLF as a Fourier

series

(17)

with Fourier coefficients defined as

(18)

and are Fourier coefficients for th symbol as the overall

LLF is the summation of the LLF of individual symbols. This

allows us to calculate the Fourier coefficients for every symbol

separately.

In practice, we find that the higher harmonics are negligible

in amplitude. For the purpose of maximization the constant

can also be ignored. Thus we approximate the LLF by ignoring

the constant and higher harmonic terms.

1) BPSK: For BPSK, the Fourier series has only cosine

items because its LLF (12) is periodic and even. Moreover, the

Fig. 1. Approximation of the LLF function using two harmonics Fourier
series.

harmonics above the second are very small, so that the LLF is

approximated as

(19)

where and are Fourier coefficients for the first and second

harmonics of th received symbol. This gives a reasonable ap-

proximation to the actual LLF, as shown in Fig. 1 for a typical

case with .

Ignore the constant term , then we express the complete

LLF as

(20)

where and , the final magnitude of two harmonics, and

and , the final arguments, are obtained by phasor addition

over the components, such that

(21)

We then find the ML estimate by setting the derivative of the

LLF (20) equal to zero according to (16), giving

(22)
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Fig. 2. Lookup table for Fourier coefficients a , a for BPSK. (a) First harmonic. (b) Second harmonic.

Normally, as approaches the desired phase estimate ,

and are very small and, hence, (22) can be ap-

proximated using

(23)

The ML estimate can then be easily attained by

(24)

This maximization is particularly simple if one of the harmonics

is very large compared to the other.

However, the approximation only partially resolves the com-

putation complexity problem. Since the Fourier coefficients,

, vary for each symbol with the integration operation

inherent in the calculation, there is still a heavy computation

burden. Our solution is to construct lookup tables for the values

of as functions of and . We found that the first

harmonic coefficient is odd symmetrical to , while is

even symmetrical. This allows us to only consider positive .

Fortunately, the lookup tables are very simple as illustrated by

the solid lines in Fig. 2. For further simplification, without sig-

nificant loss of accuracy, they are replaced by segments (dotted

lines in Fig. 2). Thus, only the gradients and crossing points of

the linear sections need be stored. In addition, these gradients

and crossing points can be obtained from linear equations

depending on and . In consequence, the lookup table

only needs to store 4 data to establish the linear equations.

In this way, can be worked out simply by

linear and lookup operations. The complete LLF is the phasor

summation over one block. As a result, all nonlinear calculation

is avoided and the computation required is greatly reduced.

The phase estimate is computed directly from the LLF without

acquisition procedure. Therefore, no excessive complexity or

delay is introduced to the system.

2) QPSK: In a QPSK system, the situation is more complex

than in BPSK because two bits are transmitted per symbol. As

expected, there are more harmonics, including ,

in the Fourier series which cannot be ignored. Hence, the Fourier

series can be written as

(25)

where is significant only when there is no a priori infor-

mation available. In this case, both and are equal to

0, and the Fourier series reduces to

(26)

Note that this is equivalent to the NDA method and only

depends on , i.e., the amplitude of the th received signal by

two linear functions. These two linear functions are stored in a

lookup table, from which can be easily computed given the

received signal.

The other three harmonics are determined by

, , as well as . Although more effort is inevitable

to discover the relationships between them, the lookup tables

turn out to be linear and simple and only small amount of data

needs to be stored as desired.

Define parameter as

(27)

We obtain parameter for the first harmonic coefficients and

for the second harmonic in relation to as plotted in Fig. 3.

The parallel curves result from different values of . The first

harmonic Fourier coefficients can be easily obtained

from by simple operations like parallel shift and rotation (if

needed) while the coefficient is similarly obtained from .

We will not explore the details due to the limitation of space.

Employing these lookup tables, nonlinear computation is to-

tally replaced by linear and lookup operations. The ML estimate
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Fig. 3. Lookup table for Fourier coefficients a , b , b for QPSK. (a) First harmonic. (b) Second harmonic.

Fig. 4. Structure of iterative joint carrier phase recovery and turbo decoding.

is then obtainable directly from the complete LLF, which has

been simplified as

(28)

for the first iteration, when no a priori information is available,

or

(29)

in other iterations, where , , , and , , are obtained

from the phasor addition over one block.

C. Diagram

Summarizing the above description, we illustrate this ap-

proach in Fig. 4. The APPA phase estimation is a block based

iterative synchroniser combined with the turbo decoding. These

two procedures operate as follows: the th received block,

expressed as , is fed to the phase estimator and the phase

corrector (phase rotator ) simultaneously, and the corrector

corrects the input sequence using the phase estimate produced

by the estimator in last iteration ( denotes current iteration

number), which is initialized as 0 in the first iteration of every

block. The corrected sequence is sent to the

turbo decoder for the th decoding iteration. Meanwhile, the

phase estimator calculates a phase estimate for the current th

estimation iteration using and (note

is also initialized as 0 in the first iteration, equivalent to the

NDA method). The received block will be kept unchanged for

iterations using a data buffer, but the a priori information

, the phase estimate as well as the data fed into

the decoder are updated every iteration. Operated iteratively,

the decoding improves the phase estimation by providing more

reliable , while the phase estimation improves the

decoding by generating more accurate estimates, until the

synchronization/decoding converges after enough iterations

(i.e., the number of iterations that the receiver needs for the

synchronization and decoding to converge, in our cases, six

iterations).
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IV. SIMULATION RESULTS

The APPA technique has been tested using a classical rate

half-turbo-code which consists of a parallel concatenation of

two identical 16-state RSC constituent codes with genera-

tors , linked by a length -bit

S-random interleaver, with regular, alternate puncturing of the

parity streams. Interleaver sizes of , , and

, with S-parameters of , , and ,

respectively are considered. The turbo-decoder is based on the

Log-MAP algorithm [11]. The channel is modeled as AWGN.

Initially, we assume that the carrier phase error is unknown

but constant over one block. It is worth mentioning here that

the algorithm has been tested and found to be able to tolerate

a frequency offset less than ( is the symbol period).

This value could be increased by partitioning the code block

into shorter estimation windows (sub-blocks), over which our

estimation algorithm is applied. This can also be used to combat

slow fading, where the phase error is varying within a block. It

is reasonable to assume the phase error is constant over shorter

estimation windows on slow fading channels. However, this

method is not robust for large frequency offsets and fast fading

channels.

Conventional methods, based on the squaring loop [13] and

the fourth-power law method [15] were also developed to com-

pare with the APPA method. The received signal is squared (or

taken to the fourth power) to remove the effect of the data modu-

lation. The average phase of the result is divided by two (or four)

to remove the effect of the squaring (or fourth-power). This is

done over one block to estimate the phase error. The symbol is

then corrected using this phase estimate before being fed into

the decoder.

The performance of this technique is evaluated individually

for BPSK and QPSK systems in terms of mean phase estimate,

MSEE, overall BER versus phase error, and BER versus energy

per bit to noise spectral density ratio . The BER per-

formance is evaluated in comparison with the traditional NDA

method and the performance of the optimally synchronised

system. We also measure the accuracy of the estimator by

comparing the mean-square estimation error (MSEE) with the

Cramer-Rao bound (CRB) and the result of recent similar work

[9].

A. BPSK

The BER performance for BPSK with phase errors in the re-

gion of is shown in Fig. 5. The three curves in

this figure correspond to three different block sizes: ,

, and . The two flat regions on each curve

are obvious: the lower one demonstrates that the system pro-

vide reliable performance with any phase error in this region;

we call it the normal operating region. It is shown that this tech-

nique ensures that the decoding is robust against a remarkably

wide range of phase errors. The largest phase error from which

the system can recover for size is . The system

fails quickly, however, when the phase error increases beyond

this operating region. The upper flat region appears when the

phase error , where we note that the BER approaches

Fig. 5. BER performance against phase errors for BPSK system, E =N =

1:5 dB, 4 iterations.

1. This can be interpreted by considering that for BPSK modula-

tion, the ML phase estimator has two ambiguity estimates 180

apart. With a phase error , the opposite constellation

position is chosen in error. In BPSK, this inverts the transmitted

data bits. As a result, the final decoding decision may not con-

verge, or may converge to a code word in which all data bits in-

verted, after several iterations of the joint synchronization and

decoding. Clearly, for a longer block size, the normal operating

area is wider, as well as giving a better decoding performance

(lower BER level). However, a longer block size will also intro-

duce more delay. Hence, there is a tradeoff between extra delay

and better performance. In the following, all the other simu-

lation results are obtained using a turbo code with block size

.

Some researchers, such as Wiberg [3], have investigated

the use of rotationally invariant turbo codes to make the de-

coding robust against phase uncertainty. We have found that

turbo-coded BPSK, using the above particular turbo codes,

does not have the rotational invariance property. In fact, no

codeword is obtained by a rotation of another codeword. This

allows us to employ a different approach to deal with phase

errors larger than 90 ; we use two identical joint phase esti-

mation and decoding units operating with phase references

apart. The decoding with the higher metric (mean square

LLR over a block) is selected as the final decision. Similar

techniques were also developed for the QPSK system using

four identical joint phase estimation and decoding units

apart. The resulting system can then provide reliable phase

estimation and robust decoding against nearly any phase errors,

at the price of implementation complexity. The results have

been reported in [16] and [17] respectively, but space does not

allow their exploration here.

Fig. 6 depicts the BER- performance of the APPA

technique in comparison with the squaring loop and the opti-

mally synchronized system. BER curves obtained from four it-

erations at three phase error values 15 , 40 , 85 are plotted.

Note that for phase error 85 , the BER is very sensitive, and
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Fig. 6. BER-E =N performance for BPSK system in comparison with the
squaring loop at phase offsets 15 , 40 , 85 , four iterations.

therefore, random variations appear on the corresponding trace,

which is less smooth than the others. It is clear, however, that this

does not affect our conclusions which follow. The BER perfor-

mance of APPA is very close to the ideal when the phase error

is less than 82 , and greatly outperforms the squaring loop. We

also find that the improvement is larger at larger phase error.

This can be interpreted with reference to the flat region in Fig. 5,

which shows that the BER performance of the APPA method is

constant for all phase errors less than 82 . This, however, is not

the case for the squaring loop, the BER for which increases with

larger phase errors. This is because of the increased probability

that the phase estimator selects the wrong point (180 relative to

the desired phase estimate) due to the two fold phase ambiguity

in the presence of the increased noise power resulting from the

squaring operation. Thus, the improvement increases at larger

phase errors.

This method is also superior to a most recently proposed joint

decoding and carrier phase recovery algorithm for turbo-coded

BPSK system [8]. Unlike our technique, the steady-state BER

performance of this algorithm did not match that with perfect

phase estimation, but has a 0.1-dB SNR loss at BER .

Cramer–Rao bounds (CRBs) [18] give the theoretical lower

limits to the variance of any unbiased parameter estimator. It is

used to measure the accuracy of the estimation. We compared

the MSEE, i.e., , of the APPA and the squaring

loop phase estimators with the CRB for any unbiased estimator

[19]

(30)

Fig. 7 plots the curves. The APPA method achieves the bound

at merely after six iterations, showing that

the technique provides a performance as reliable as the ideal

Fig. 7. Mean-square estimation error (MSEE) for turbo-coded BPSK with a
phase error of 20 .

when the is higher than 1.5 dB. From the comparison

in this figure, the APPA method also demonstrates a significant

improvement over the squaring loop method in terms of the ac-

curacy of estimation. The curve labeled “APPA2” is obtained by

a modified APPA method which makes use of the sum of the ex-

trinsic information obtained from both decoders. Clearly, extra

extrinsic information explicitly reduced the MSEE for

. However, it does not significantly affect the BER and

mean of the phase estimate. Therefore, because of practical con-

siderations, it was not adopted here.

B. QPSK

The same length 1024-bit turbo codes are used for QPSK

system. Bits are mapped a pair at a time onto the QPSK con-

stellation using Gray mapping. Since the rate half-turbo-code is

obtained by regular, alternate puncturing the parity streams, one

of each pair of bits is a data bit, the other is a parity bit. Thus,

extrinsic information for parity bits is also required in QPSK.

We calculate it directly within the MAP decoder, in the same

way as that of the data bits.

QPSK modulation provides higher spectrum efficiency than

BPSK, however, more points in the constellation also reduce the

decision region, hence, QPSK is more sensitive to phase errors.

Therefore, as we expected, the BER performance versus phase

errors appears the same shape as in the BPSK system with a

much narrower normal operating region, between , as

illustrated in Fig. 8. Note that the BER level is half when

rather than 1 as for BPSK (refer to Fig. 5). The explanation

is similar to that for BPSK; considering that a rate half-turbo-

code was used, only one bit of the QPSK symbol is a data bit,
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Fig. 8. BER against phase offsets for QPSK system in comparison with
fourth-power law method at E =N = 1:5 dB, 8 iterations.

Fig. 9. Mean phase estimate against phase offsets for QPSK system in
comparison with fourth-power law method at E =N = 1:5 dB, 8 iterations.

and thus, only half of the phase rotations larger than 45 invert

the data bit, and hence, the BER is approximately half.

For the purpose of comparison, in the same figure, we also il-

lustrate the BER performance of the fourth-power law carrier re-

covery method, which is obviously much worse than the APPA

method. This result is demonstrated by the mean phase estimate

curves of these two methods shown in Fig. 9. The curve of the

APPA method appears as a straight line with gradient very close

to 1 between , which means that the phase estimator

produces an accurate estimate in this range. However, out of

this range the phase estimation is completely inaccurate which

causes the failure of the system. In contrast, the fourth-power

law method has poor estimation even for small phase errors.

Fig. 10 depicts the accuracy of the APPA phase estimator for

QPSK by comparing with the CRB and similar work from the

literature. As mentioned in the introduction, a recent paper of

Lottici et al. [9] proposes a joint phase estimation and turbo

decoding scheme, called ISDD, where a rate half-turbo-code

with generators and , via a pseudo-

Fig. 10. Root Mean Square Estimation Error (RMSEE) for turbo-coded QPSK
system.

random interleaver with length of 1500 is used. To compare with

his work, we convert the MSEE to root-mean-square estimation

error (RMSEE) in degrees. The CRB is then written as [18]

RMSEE (31)

Both systems approach the CRB at very low SNRs, but the

APPA has 0.5 dB improvement over the ISDD. Both methods

compute the phase estimate directly from the LLF without an

acquisition procedure. In ISDD, this is implemented through ap-

proximating the log and exp functions into linear functions. This

allows an approximation to the phase of the fundamental of the

LLF to be calculated, but does not accurately model the LLF. In

addition, the technique cannot operate with no a priori informa-

tion, and hence, cannot operate in the first iteration, for which

a separate NDA estimator is required. In the APPA, Fourier ex-

pansion is used, which takes into account all the significant co-

efficients using lookup tables to avoid heavy computation while

causing negligible degradation to the performance. Although

the space prohibits the inclusion of the BER performance here,

it is worth mentioning that the simulation results showed that

the overall BER performance of the turbo-coded QPSK system

with APPA phase recovery matches that with ideal synchroniza-

tion, whereas the BER of the turbo-coded 4-QAM with ISDD

phase recovery after ten iterations is about 0.2 dB away from

the ideal at a BER of .

V. CONCLUSION

In this paper, we present an alternative iterative carrier phase

estimation concept suited to turbo-coded systems. It exploits the
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extrinsic or so-called “a priori” information generated at each

iteration of the turbo decoder, and hence, we have named it a

priori probability aided (APPA) phase estimation. The extrinsic

information, which is usually used as the a priori information to

improve the decoding, is utilized in the phase estimation algo-

rithm through a joint log-likelihood function. The phase estima-

tion and the turbo decoding operate jointly and iteratively. In this

way, this technique allows a successive refinement of the carrier

phase estimate until the joint decoder/synchroniser converges

on the (hopefully) correct data and phase estimate. No exces-

sive complexity is added to this system since the complexity of

this method is significantly reduced by expanding the LLF as

a Fourier series whose coefficients are precalculated and stored

in lookup tables. Hence, the phase estimate can be computed di-

rectly from the LLF without an acquisition procedure.

It has been shown that this technique ensures robust decoding

against a wide range of phase errors and reliable estimation

in which the MSEE attains the CRB at very low SNR values

(1.5 dB), meaning that the estimator is as accurate as possible,

even at low SNRs. It is also demonstrated that the APPA phase

estimation greatly outperforms the traditional NDA methods

and achieves the performance of ideal synchronization without

introducing the additional redundancy of a synchronization pre-

amble.

The technique presented can be straightforwardly extended

to other similar processes, such as symbol timing recovery,

frequency estimation, multiuser detection, and channel esti-

mation, etc. The application with higher order modulation and

time varying channels will be subject of future research.
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