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Signal Detection for Orthogonal Space-Time Block Coding Over Time-Selective
Fading Channels: A PIC Approach for the i Systems

F. -C. Zheng and A. G. Burr

Abstract—One major assumption in all orthogonal space-time

block coding (O-STBC) schemes is that the channel remains static

over the entire length of the codeword. However, time selective

fading channels do exist, and in such case the conventional O-STBC

detectors can suffer from a large error floor in the high signal-to-

noise ratio (SNR) cases. This paper addresses such an issue by in-

troducing a parallel interference cancellation (PIC) based detector

for the coded systems ( = 3 and 4).

Index Terms—Orthogonal space-time block coding (O-STBC),
parallel interference cancellation (PIC), time selective fading chan-
nels, wireless communications.

I. INTRODUCTION

O
RTHOGONAL space-time block coding (O-STBC)

technology has attracted enormous interest due to its

high diversity order and low decoding complexity [2], [3].

The low decoding complexity of O-STBC is directly due to

the linear maximum-likelihood (ML) decoder at the receiver.

The linear ML decoder, however, relies on the so-called

“quasi-static channel” assumption: the channel remains static

over the length of the entire codeword: for the two transmit

antenna (2-Tx) STBC (i.e., – the Alamouti code [1]),

for the systems, and for the systems ( for

3-Tx, for 4-Tx, where is the symbol period. For the

definition of and , see [3]). While such an assumption is

reasonable in most cases, time selective or fast fading channels

do exist in practice, even for the 2-Tx case (see [4]–[6] and the

references therein). In these scenarios, the channel state varies

from symbol to symbol. Clearly, the 3- and 4-Tx O-STBC

cases (especially the systems) are much more vulnerable to

channel variation than the 2-Tx case due to the much longer

STBC codeword.

The above channel variation will destroy the orthogonality of

the channel matrix and therefore, cause inter element interfer-

ence (IEI). The end effect of all this is an irreducible error floor

in the bit error rate (BER) curves in the high signal-to-noise ratio

(SNR) region. To suppress such an error floor in the 2-Tx case,
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an elegant decoder was presented in [4] and [5]. Since the de-

coder structure in [4] and [5] cannot be used for the 3- or 4-Tx

case, a simple zero forcing (ZF) scheme for the and sys-

tems was proposed in [7] while a more effective version of the

ZF scheme was derived in [8].

This paper proposes an alternative approach to the ZF

detector in [7] and [8]. Based on the principle of parallel

interference cancellation (PIC), the new detector (termed “PIC

detector”) offers an even better performance than the ZF de-

tector. The computational complexity of the PIC detector is

higher than that of the conventional and the ZF detector, but

is still very affordable. Only the coded systems are consid-

ered in this paper (the coded systems was addressed in [16]

and [17]).

II. MODEL FOR THE SYSTEM

Consider a typical encoded 4-Tx O-STBC system with

4 transmit (4-Tx) and 1 receive (1-Rx) antennas. A group of

four complex symbols, , , , and , are passed through a

encoder before transmitted over . The encoder output is

therefore, a 8 4 matrix , where is , or

(conjugate of ), and is transmitted by Tx at time . Also, by

letting the channel gain from Tx to the Rx at time be ,

the received signal at time is

(1)

where is a complex additive white Gaussian noise

(AWGN) with zero mean and a variance of (there-

fore, per dimension). Also, is subject to

Rayleigh fading but is normalized, i.e., , or ,

.

The “quasi-static channel” assumption in all O-STBC

schemes requires that constant over the entire

codeword length. This, in the case of and systems,

means that the channel remains static over . It has been

shown in [7], [8], [14] that even under normal vehicle speeds,

the assumption of “quasi-static channel” may not hold for the

4-Tx STBC (e.g., and ) systems. As such, this paper

assumes that the channel is static over only and from one

to the next, it is time variant. Clearly, this is a much more

general and realistic model with the quasi--static channel now

becoming a special case. Perfect channel state information

(CSI) is assumed in this paper. For the estimation of CSI, see

[6] and [9]–[12].

0090-6778/$20.00 © 2005 IEEE
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III. CONVENTIONAL O-STBC DETECTOR

FOR THE SYSTEM

For symbol group , the code matrix for

is [2], [3]

(2)

From (1), the “manipulated received signal vector”

can then be written as

(3)

where the channel matrix

(4)

,

, , 3, 5, 7, and

.

At the receiver end, the conventional O-STBC detector as-

sumes that the channel is time invariant over the entire pe-

riod. Regardless of any channel variation, the following expres-

sion is effectively employed:

(5)

where is the estimated channel matrix for the “quasi-static

channel”:

(6)

with , , and .

It can be proved that the “linear maximum-likelihood (ML)”

detector in [3] is equivalent to the following two-step proce-

dure [7], [8]:

[Step C1] Apply linear transform to the received signal

:

(7)

[Step C2] Carry out the “linear ML” detection:

(8)

Here, , is the symbol alphabet, the th element

of , and (i.e., the th element of diagonal

).

In reality, however, the true physical process in Step C1 is

(9)

Note that in general in (9) is nondiagonal

(10)

The conventional 2-step linear detection procedure is truly ML

if and only if the channel is truly static over , in which case

and thus for , and .

For a time selective fading channel, however, and

thus for . Physically, this leads to inter element in-

terference (IEI). The value of the nondiagonal depends upon

the time-selectivity of the channel. When using the above con-

ventional detector (thus the decoder in [3]) for a time selec-

tive fading channel, these nonzero ’s are effectively ignored,

resulting in extra detection errors in addition to those caused

by the AWGN. These extra errors will form an irreducible error

floor in the BER curves in the high SNR region.

IV. PIC DETECTOR FOR THE SYSTEM

Although (for ) in (10), it is also true that

normally . This is because under normal vehicle

speeds or Doppler spread, the channel variation over still

tends to be relatively small. As an example, let us consider

the following popular AR(1) model for time-selective channels

[4]–[11]:

(11)

where is another i.i.d. complex Gaussian random vari-

able having zero mean and variance and being statistically

independent of . Also,

, where is the Doppler frequency and

is the 0th order Bessel function of the first kind. If the fading

paths originate sufficiently far away from the receiver, can

be assumed to be the same for all the transmitter antennas. To

illustrate the dominance of , similarly to [14], we introduce

the following “nondiagonal index”:

(12)

where denotes the Frobenius norm of , and matrix

comprises the nondiagonal elements of : .

Clearly, the above index reflects the ratio of the squared mag-

nitude of the nondiagonal elements to the squared magnitude of

the diagonal elements in , and its value is dependent upon the

Doppler spread of the channel. The relation between the non-

diagonal index and is demonstrated in Fig. 1, which is

obtained using 40 000 and realizations. It is easy to see

that for the normal range of Doppler spreads we always have

.

Based on the above observation, we can now apply the prin-

ciple of parallel interference cancellation (PIC) to (9). As is well
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known, PIC (although suboptimum) is an effective yet simple

approach in multiuser detection of CDMA (there is a rich lit-

erature on PIC for CDMA. See e.g., [15] and all the references

therein).

A. Algorithm

[Step P1] Initialization: Set iteration number , and

obtain from the conventional O-STBC decoder via (7) and

(8): .
[Step P2] Iteration: For iteration number ,

(13)

The symbol detection for the current iteration can then be
achieved via a simple least square approach

(14)

where is the symbol alphabet, and is the th element

of . Also, .
As in a CDMA PIC detector, the above procedure comprises

two components: tentative symbol estimation (TSE) and ten-
tative interference subtraction (TIS). With the iterations pro-
gressing, the TSE will contain fewer and fewer errors, making
the TIS more and more accurate. Once the IEI related errors
have been eliminated, (14) becomes a linear ML procedure.
This explains why the PIC detector potentially offers a much
better performance than the corresponding ZF detector. As to
the number of iterations, our simulations have shown that
iterations normally deliver most of the gain.

B. Algorithm Discussion

1) Quasi-Static Channels and Algorithm Evolution: When
the channel is indeed static over the entire period (i.e.,

), the Initialization step (i.e., the conventional O-STBC
detector) will give the optimum solution. In such a special sit-
uation, as and , the iterations in (13) and
(14) will not alter the already optimum initial solution. To this
extent, the PIC detection algorithm represents an evolution of
the conventional O-STBC detector.

2) Algorithm Complexity: Compared with the conventional
decoder, the main computation increase for the PIC detector

is from the calculation of matrix and the extra iterations in
(13) and (14). It is easy to show that the total increase involves
[ ] complex number (CN) multiplications
and [ ] CN additions per symbol, where is the
modulation level and is the number of iterations. This means,
for and , 105 CN multiplications and 53 CN ad-
ditions per symbol. On the other hand, the complexity increase
of the ZF scheme in [8] is 34 CN multiplications and 25 CN
additions (regardless of ). Therefore, the computational com-
plexity of the PIC detector is higher than that of both the con-
ventional and the ZF decoders [7], [8] (the surprisingly lower
complexity of the ZF schemes is due to the special matrix al-
gorithms in [7] and [8], which only involves the inversion of
2 2 matrices). As is normally small ( ), however, the
extra computation in the PIC detector is still moderate (com-
pared with the full ML search over all 4 symbols, whose com-
plexity is ), and can well be justified by the enormous
performance improvement.

Fig. 1. Value of nondiagonal index � with respect to f T .

Fig. 2. BER performance of the PIC G detector with respect to the number
of iterations (I).

3) Encoded Systems: By setting in (1) and all
the other related equations, the above PIC detector can directly
be used in the encoded systems.

V. SIMULATIONS

The system under 16-QAM (Gray encoded) modulation

and the time selective fading channel in (11) are employed. The

signal to noise ratio (SNR) at the receiver is defined as

(since ), where is the

Tx power at each antenna, and (for the system).

Also, the UMTS symbol rates are considered:

with GHz, where SF is the spreading factor

(in UMTS) but in our simulations is simply a parameter for

adjustment.

Five vehicle speeds are simulated: (quasi-static

channels), 70, 100, 130, and 160 km/h (leading to different

values) for (or equivalently , 35, 50, 65,

and 80 km/h for ). These correspond to the

values of 0, 0.0043, 0.0062, 0.0080, and 0.0099 (see Fig. 1

for the corresponding values of the nondiagonal index ). For
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Fig. 3. BER performance of the PIC G detector for I = 3.

Fig. 4. BER performance of the conventional G detector (i.e., I = 0).

the case of , the BER details of the PIC for

(i.e., the conventional decoder), 1, 2, and 3 are shown

in Fig. 2. Clearly, two or three iterations deliver most of the

performance gain even for such a case of relatively high speed.

For all the other speeds, only the BER results for are

plotted in Fig. 3. For comparison, the results of the conven-

tional detector are shown in Fig. 4. It is easy to see that the

PIC detector exhibits no error floor while the conventional

detector does. Most importantly, the BER degradation of the

PIC caused by channel variation is very small indeed within

the considered range. The penalty, however, is a relatively

higher computational complexity.

Our simulations (not shown here) have also indicated that the

above PIC detector works well right up to around 240 km/h (150

miles/h) for (i.e., ). For the even

higher speeds (or values), however, it may incur more than

3 iterations or even a residual error floor. This obviously is not

an issue for the ZF schemes in [7] and [8]. All the above

observations also apply to the coded 3-Tx systems.

VI. CONCLUSIONS

This paper has presented a PIC based detector structure for

the O-STBC systems over time-selective fading channels.

While the conventional detectors under such conditions tend

to suffer from a considerable irreducible error floor in the high

SNR cases, the PIC detector shows no error floor at all for the

normal speed range. The PIC’s relatively higher computational

cost can be justified by its enormous performance gain.
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