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A hot, 2 to 3 keV electron temperature surface plasma was observed in the interaction of a 0.7 ps

petawatt laser beam with solid copper-foil targets at intensities �1020 W/cm2. Copper K-shell

spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray

charged-coupled-device camera. In addition to K� and K� inner-shell lines, the emission contained

the Cu He� and Ly� lines, allowing the temperature to be inferred. These lines have not been

observed previously with ultrafast laser pulses. For intensities less than 3�1018 W/cm2, only the

K� and K� inner-shell emissions are detected. Measurements of the absolute K� yield as a function

of the laser intensity are in general agreement with a model that includes refluxing and confinement

of the suprathermal electrons in the target volume. © 2006 American Institute of Physics.

�DOI: 10.1063/1.2188912�

I. INTRODUCTION

There is much interest in both experimental and theoret-

ical studies of laser-solid target interactions with picosecond

laser beams at relativistic intensities because of their rel-

evance to fast ignition in laser fusion
1

and backlighter

development.
2,3

High-intensity, ultrashort laser pulses im-

pinging onto solid or gaseous targets produce large quantities

of suprathermal electrons ranging from �100 keV up to sev-

eral MeV, with conversion efficiencies of several 10% of

incident laser energy into electron energy.
4,2–7

A precise

physical understanding of the MeV electron production and

transport in dense plasma is crucial for the success of the

fast-ignition concept. This has triggered a vigorous research

effort in both experimental
8–12

and theoretical studies.
13–16

Strong laser self-generated magnetic and electric fields

influence the transport of relativistic electrons in high-

energy-density plasmas.
12,15,17

Inhibited heat flux in insula-

tors due to strong longitudinal electrical fields has recently

been predicted at subrelativistic intensities with a one-

dimensional Monte Carlo collisional particle-in-cell �PIC�
code.

18
Depending on the experimental conditions, the fields

might collimate the electron beam or compromise the effec-

tiveness of electron penetration because of flux

inhibition.
17,19,20

The guiding of electrons with MeV energy

in a plasma fiber over a distance of �1 mm is attributed to

strong laser-generated fields.
21

Many plasma processes influ-

ence the heating of solid matter by laser-generated relativis-

tic electrons and their return currents. One example is an

observed annular heating pattern that is attributed to a strong

Weibel instability growth because of sharp transverse gradi-

ents in the input electron-beam current.
11

Hard x-ray bremsstrahlung and characteristic inner-shell

line emissions, predominantly from the K shell, are produced

when energetic electrons propagate into the bulk of a solid

target. The measurement of inner-shell emission lines is a

valuable diagnostic to characterize the suprathermal electron

distribution.
4,6,7,22–24

Measurements of electron temperatures

and temperature gradients provide important guidance for

simulations to study energy transport in relativistic laser-

solid density plasmas. The standard method to infer electron

density and temperature in laser-produced plasmas is x-ray

line spectroscopy;
25

this method has been applied to petawatt

laser-plasma experiments, e.g., Koch et al., using aluminum

K-shell spectra.
11

The dense and hot plasma environment

shifts and broadens the spectral lines because of the interac-

tions of the charged-particle plasma constituents. The com-

parison of measured line shapes and line ratios to calcula-

tions allows the plasma parameters to be inferred.

In this work, measurements of the surface electron tem-

peratures of petawatt-laser-produced copper plasmas are pre-

sented. Measurements of the scaling of the Cu K-shell emis-

sion with laser intensity and target thickness are shown and

analyzed. The following three sections will present the ex-

perimental setup �Sec. II�, experimental results �Sec. III�, and

analysis and discussion �Sec. IV�. The fourth section con-

tains two subsections: resonance line emission from hot plas-
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mas �Sec. IV A� and inner-shell emission �Sec. IV B� that

compares the measured K� laser-intensity scaling to a model

calculation. The summary and conclusions are presented in

Sec. V.

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig.

1. Laser pulses from either the Rutherford Appleton Labora-

tory Petawatt �PW�26
or the 100 TW

27
facilities were focused

with f /3 off-axis parabolas to a spot size of the order of

�10 �m in diameter.
28

The fraction of the nominal laser

energy transported onto the target through the compressor

and subsequent optics of the PW and the 100 TW laser sys-

tems is 75% and 66%, respectively. About half this energy is

contained in the main focal spot while the remainder is dis-

tributed over a larger area.
28,29

The laser energy was mea-

sured for each shot before the beam entered the compressor.

The maximum achievable intensities on the target were

4�±2��1020 W/cm2 and 4�±2��1019 W/cm2 with the PW

and the 100 TW lasers, respectively. The relatively large un-

certainty in intensity on target is mainly due to shot-to-shot

changes in the focal-spot pattern.

Preplasma formation was measured side-on with a

frequency-doubled, 1 ps probe beam and a Wollaston prism

interferometer that showed that the plasma surface with an

electron density of 1019 cm−3 expands at most by 40 �m

from the original target surface at 100 ps prior to the main

pulse interaction. Higher electron densities are not accessible

by this diagnostic because of probe-light refraction out of the

f number of the collecting lens in the probe line. Prepulse

measurements show an amplified spontaneous emission

�ASE� pulse starting at 1.5 ns ahead of the main pulse with

an intensity of 5�10−8 of the main pulse intensity. The over-

all intensity contrast is better than 105 in a time window

between 10 ns and 50 ps before the main pulse. The

p-polarized light was focused at a 30° angle of incidence

onto thin ��30 �m� copper foil targets with an area of

�2000�2000 �m2. The targets were mounted as flags on

carbon fibers of 6 �m diameter.

A single-photon-counting, x-ray back-illuminated,

charge-coupled-device �CCD� camera �SI 800-145, Spectral

Instruments-Photonics, Tucson, AZ� measured the plasma

emission from the laser irradiation side �“target front side”�
at a viewing angle of 16° with respect to the target normal.

Radiation shielding of the CCD camera with a lead housing

and lead collimators was crucial in obtaining good signal-to-

noise spectra by suppressing the hard x-ray background gen-

erated by the petawatt laser.
30

In addition, a 150 �m-thick

Cu foil filter in front of the CCD was used to adjust the

signal level of the K-shell emission and to improve the

signal-to-noise ratio. When an x-ray photon is absorbed in

the material of the CCD, a certain number of free-charge

carriers proportional to the x-ray photon energy are created,

corresponding to 4.56 eV per count for this CCD. The inte-

gral fractional number of exposed pixels with energies

�5 keV is in the range of 1%–3% and the integrated Cu

K-shell emission typically is measured in �0.3% of the pix-

els. The percentage of all pixels that register an energy depo-

sition is 25%–50% at 3�1020 W/cm2 and 15%–40% at

lower intensities, primarily due to events below 5 keV.

These low energy hits might be generated by a fractional

deposition from high energy x rays and fluorescence radia-

tion from the inside of the CCD chamber walls. Within this

low level of Cu K-shell emission pixel exposure, the CCD is

operating in a single-photon-counting mode.
31

The experi-

mental setup with the 100 TW facility was similar to that

described previously. The CCD detector was located closer

to the plasma source in that case, 1.4 m instead of 3.8 m,

leading to an increased solid angle by a factor of �7.

A significant number of x-ray events are split between

adjacent pixels. Adding the value of the pixels surrounding

the event centroid might be used to reconstruct the total

charge collected from an event. This is useful at very low

photon fluxes, especially in astronomical applications. The

single pixel analysis used here ignores the spread of the ab-

sorbed x-ray energy over several pixels and typically takes

only �20% of the absorbed 8 to 9 keV photons into

account.
31

Single pixel analysis has a slightly higher spectral

resolution than summed pixel analysis.
31,32

It is also less sen-

sitive to the higher background observed in PW laser-plasma

interaction experiments. A CCD quantum efficiency of

�10% with a single pixel analysis is reported in the

8 to 9 keV range for an x-ray imaging spectrometer used in

the x-ray astronomical satellite Astro-E.
31

A quantum-

efficiency measurement of an SI-800 camera at 8 keV re-

vealed a value of �5% with single-pixel analysis.
33

The

same kind of chip �CCD42-40 chip, e2v technologies,

Chelmsford UK� was used in the two SI cameras: one for

calibration and one in this experiment. The quantum effi-

ciency is a factor of 2 lower compared to the Astro-E CCD,

which is probably due to the smaller pixel size and a thinner

depletion layer of the SI-800 chip.

FIG. 1. Experimental setup. The petawatt laser is focused onto a thin copper

foil target. A single-hit charged-coupled-device �CCD� camera measures the

x-ray emission from the target’s front side. Lead collimators and lead shield-

ing provide the necessary suppression of unwanted background radiation. A

150 �m copper foil provides bandpass filtering of the Cu K-shell emission

while suppressing the background radiation. The inset shows qualitatively

the foil transmission versus photon energy and the position of the K� line.
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III. EXPERIMENTAL RESULTS

Figure 2 shows a copper K-shell spectrum from the tar-

get’s front side for laser shot 0 311 271. A laser pulse with

energy of 447 J and a pulse duration �0.7 ps was focused to

an intensity of �3�1020 W/cm2 onto a 20 �m-thick Cu foil

target. The continuum x-ray background is subtracted while

the filter transmission of the 150 �m Cu foil has not yet been

taken into account. The measured spectrum �gray curve� con-

sists of four overlapping lines. The other curves denote a fit

of Gaussian line shapes to the measurement, indicating a

full-width at half-maximum �FWHM� of �220 eV for each

line. The four peaks are identified as the lines of the Cu K�

�8.05 keV�, He� �8.35 keV�, Ly� �8.69 keV�, and K�

�8.91 keV� transitions.
34,35

The He� line dominates the spec-

trum. The observation of He� and Ly� is distinctly different

from Cu K-shell spectra observed previously with ultrashort

laser pulses at lower laser intensities.
24

The appearance and

intensity of the He� and Ly� lines depend strongly on the

laser intensity, as shown in Fig. 3. The K-shell emission was

measured with 0.7 ps pulses for various laser intensities be-

tween �2�1018 W/cm2 and �3�1020 W/cm2 by varying

the spot size within 10 to 100 �m and the beam energy in

the range from �200 to �500 J. The Ly� line of hydrogen-

like copper disappears below 3�1020 W/cm20, while He� is

observed down to 1�1019 W/cm2, and only K� and K� are

measured at 2.5�1018 W/cm2. No measurements with

0.7 ps pulses are available between 2.5�1018 W/cm2 and

1�1019 W/cm2. Additional measurements in this intensity

range with longer pulses �5 to 14 ps� show the He� signal

down to �6�1017 W/cm2. For 0.7 ps pulses, the noise level

prevents the detection of He� below 3�1018 W/cm2, while

for higher intensities it is always measured and steadily in-

creases with laser intensity. In contrast, K� and K� stay about

constant between 2�1018 W/cm2 and 1�1020 W/cm2 and

slightly decrease for intensities above 1020 W/cm2.

The absolute number of x-ray photons in each line nor-

malized to the laser energy contained in the central laser spot

was calculated by integrating the number of hits and by tak-

ing the solid angle, filter transmission, and quantum effi-

ciency of the CCD in single-pixel analysis mode into ac-

count. An isotropic emission into a 4� steradians solid angle

is assumed. Reabsorption of the radiation inside the foil tar-

get has not been taken into account. The total amount of

CCD image exposure influences the calculation of the line

yield since pixels that absorb, e.g., a K� photon and a low

energy photon will be upshifted in the histogram. This con-

tribution merges in the background and is subtracted from

the spectrum. All photon numbers were corrected for this

effect by determining the fractional chip exposure x for each

CCD image. The line emission yields were then multiplied

by a factor of f =1+x / �1−x�, which is on average �1.5. This

is justified since the histogram below 5 keV contributed to

more than 97% of all exposed pixels. The relative error bars

are estimated to be �40%, based on the standard deviation

of several measurements at the same intensity, and the error

of f . The absolute uncertainty is estimated to be a factor of

2.4 based on an estimated uncertainty in the CCD quantum

efficiency for single-pixel analysis and the relative measure-

ment error.

The Cu K-shell spectrum was studied as a function of

the foil thickness with the 100 TW laser facility for low-

mass, small-area targets. Figure 4 shows the measured K�,

He�, and K� lines for Cu foils of various thicknesses. Laser

pulses with 14 ps �a� and 10 ps ��b�–�d�� durations and beam

energies of �100 J were focused to an �10 �m spot size,

providing an intensity of �3 � 1018 W/cm2. The thickness

is indicated in each figure. The foil area was 500

�500 �m2 in �a� while it was 100�100 �m2 in �b�, �c�, and

�d�. The ratio of K� to He� emission changes with thickness,

and the relative helium-like emission, becomes larger with

thinner foils for the smaller areas. Only a limited number of

spectra were sampled, however, and shot-to-shot fluctuations

FIG. 2. Copper K-shell spectrum from the target’s front side for a laser

intensity of 3�1020 W/cm2 and a pulse duration of 0.7 ps and EL=447 J.

The gray curve denotes the measurement while the other curves are Gauss-

ian fits to the various emission lines. The He� resonance line of helium-like

copper ion dominates the spectrum.

FIG. 3. Integral x-ray photon number normalized to the laser energy con-

tained in the central laser spot as a function of the laser intensity for Cu K�

�open squares�, He� �solid dots�, K� �open triangles�, and Ly� �solid tri-

angles�. Square Cu foils with thicknesses of 20 �m and 30 �m and areas

ranging from 500�500 �m2 through 2000�2000 �m2 were used. The in-

tensity was varied by the focal spot �10 to 100 �m� and the beam energy

��200 to�500 J� while keeping the pulse duration constant at 0.7 ps. The

apparent threshold of Ly� is 3�1020 W/cm2, while only K� and K� are

observed at 2.5�1018 W/cm2. A representative error bar of the laser inten-

sity is shown for one K� data point.
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particularly influence the He� signal. The resulting x-ray

photon number per laser energy is plotted semilogarithmi-

cally as a function of the foil thickness in Fig. 5. The cold

inner-shell emission that is created mainly by suprathermal

electrons traversing the foil behaves differently than the ionic

line emission. The K� signal is relatively independent of foil

thickness. A significant decrease is observed only below

3 �m, which might be due to several effects: �1� an in-

creased volumetric heating might lead to a depletion of cold

material, and �2� an increased transfer of hot-electron energy

into channels other than K� emission for very low volume

targets, notably ion acceleration,
36,37

might quench the inner-

shell signal. The K� intensity drops by a factor of �5 from

30 to 20 �m, and then stays about constant with smaller

thicknesses and decreases again below 3 �m. The strong de-

crease from 30 to 20 �m is probably due to the larger foil

area, which is further discussed in Sec. IV A. While the

inner-shell x-ray photon number decreases with thinner foils,

the ionic line emission seems to show an opposite trend for

large thicknesses. The He� signal first increases with dimin-

ishing thickness, peaks at 5 �m, and then decreases to its

initial value at 1 �m. The relatively large scattering of the

values is probably due to shot-to-shot fluctuations in the laser

conditions and the focus position on the small target.

Evidence that the ionic emission originates from front-

surface plasmas was obtained from measurements of Cu-foil

targets covered with a thin layer of a different material.

Figures 6�a�–6�c� show spectra at an intensity of 1.5

�1020 W/cm2 on copper-foil targets without a cover layer

�Fig. 6�a��, with a 1 �m-thick aluminum layer �Fig. 6�b��,
and with a 0.5 �m-thick tantalum layer �Fig. 6�c��. The com-

parison of Figs. 6�a� and 6�b� shows that the He� emission is

reduced by a factor of �5, while K� and K� are diminished

by a factor of �2. The data suggest that, with the Al coating,

the hot plasma is created mainly in the aluminum with rela-

tively little heating of the copper. The reduction in K� and

K� may indicate the stopping of hot electrons in the Al layer.

The Ly� is not observed at this laser intensity. An additional

experiment, Fig. 6�c�, at the same intensity with a 0.5�m Ta

overcoat on 20 �m Cu foil gives further evidence that the Cu

He� line emission originates from a thin layer on the target’s

front side. Besides the Cu K� and a strong L-shell emission

from tantalum peaking at 8.75 keV, no Cu He� line at

8.35 keV is measured. The mass densities of solid tantalum

and aluminum are 16.7 g/cm3 and 2.7 g/cm3, respectively.

The factor of 6 higher mass density explains why Ta is more

efficient in blocking energy transport through the surface de-

spite half of the film thickness, leading to plasma tempera-

FIG. 4. K-shell spectra showing the K�, He�, and K� lines for various Cu

foil thicknesses, as is indicated in each figure. The foil areas were 500

�500 �m2 �a� and 100�100 �m2 for the measurements in �b�–�d�. The

laser energies in �a�–�d� were 102 J, 118 J, 116 J, and 97 J, respectively.

Laser pulses with 14 ps �a� and 10 ps �b�–�d� durations were focused to an

�10 �m spot, providing intensities of �3�1018 W/cm2.

FIG. 5. X-ray photon number per laser energy in the central laser spot

versus foil thickness determined from the measured cold K�, K�, and the hot

He� emission. The experimental conditions are the same as in Fig. 4. The

foil volume diminished from 30 to 20 �m by a factor of �40 because of the

smaller area. An increased volume heating probably depletes the copper

M-shell population, yielding a decreased K� signal while the K� is not

significantly affected.

043102-4 Theobald et al. Phys. Plasmas 13, 043102 �2006�

Downloaded 25 Jan 2007 to 128.54.44.116. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



ture at the Ta-Cu boundary that is not sufficient to generate

He-like Cu ions.

It is interesting to compare the result from copper

�Z=29� to the K-shell emission of a target material with a

much higher atomic number. Figure 7 shows the result of an

experiment with a 50 �m-thick silver foil target �Z=47� at

�2�1020 W/cm2. Only the inner-shell emission �but no

He� and Ly� lines� is observed for the higher-Z target. This

indicates that the temperature is not high enough to create

He- and H-like silver ions, which require estimated electron

temperatures above �50 keV.
38

IV. ANALYSIS AND DISCUSSION

Two emission processes occur in these experiments:

inner-shell emission and ionic resonance-line emission. The

K� and K� lines are emitted by inner-shell transitions when

an L- or M-shell electron fills a vacancy in the K shell, and

the corresponding excess energy is radiated away by a pho-

ton in competition with Auger decay. X rays and energetic

electrons may both produce inner-shell vacancies, assuming

that the radiation has sufficient energy to excite above the K

edge �for Cu h��9 keV�. Indirect inner-shell emission due

to the absorption of continuous x-ray radiation that is pro-

duced while suprathermal electrons decelerate in the target

is, however, relatively negligible for elements with an atomic

number �30.
39

Energetic electrons are the main contribution

to K� and K� production in a high-intensity, ultrashort, laser-

solid interaction with low- and mid-Z materials.
22,24

In con-

trast, the He� and Ly� lines are electronic transitions from

the first excited to the ground level in the helium-like and

hydrogen-like ions. Sufficient thermal plasma temperatures

are required to generate these highly stripped ions. While the

inner-shell radiation originates from the cold bulk material,

the ionic lines are produced in hot plasmas on the laser target

sides, as shown in a schematic in Fig. 8.

A. Resonance-line emission from hot plasmas

Calculations with the commercially available Prism-

SPECT program
40

were performed to estimate the plasma

conditions that lead to the ionic resonance-line emission

from the hot plasma. PrismSPECT is a collisional-radiative

code that takes the details of the excitation and deexcitation

paths, opacity, and atomic physics into account. The plasmas

are assumed to be in steady state, non local thermodynamic

equilibrium conditions in slab geometry with a specified

thickness, and have a homogeneous density and electron

temperature. Time-dependent collisional-radiative calcula-

tions of the ionization dynamics of solid-density aluminum

plasmas at electron temperature Te=1 keV show that steady-

state conditions are established within �0.5 ps.
41

Similar

FIG. 6. Copper K-shell spectra with the target’s front side covered with a

thin layer of different materials that leads to a suppression of the ionic line

emission. �a� is without a cover layer, while �b� and �c� denote the results

with a 1 �m-thick aluminum and with a 0.5 �m-thick tantalum layer, re-

spectively. The He� line emission is strongly reduced �b� and even absent �c�
compared to the no cover layer �a�, indicating that the hot plasma is gener-

ated in a thin layer on the target’s front side. The laser energies, pulse

duration, and intensity were 254 J �a�, 227 J �b�, 227 J �c�, 0.7 ps, and

�1.5�1020 W/cm2.

FIG. 7. Measurement of the silver K-shell emission from a 50 �m-thick

Ag-foil target. The laser energy, pulse duration, and intensity were 275 J,

0.7 ps, and �2�1020 W/cm2, respectively. Only K� and K� inner-shell

emission lines are measured, but no ionic line emission.
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time-dependent calculations performed for Te=1 keV and

ne=1023 cm−3 show that Cu plasmas are reaching steady

state within �1 ps.
42

Steady state is therefore a reasonable

assumption for near-solid-density plasmas in our experiment.

Suprathermal electrons were not included in the calculation.

This assumption is supported by calculations of the charge-

state distribution of a 1 keV, 1023 cm−3 Cu plasma, including

the ionization effect of a hot-electron component. The

charge-state distribution is essentially given by the thermal

plasma, and up to a fraction of 10% of hot electrons with an

average energy of 3 MeV has no significant influence.
42

The

overcoat measurements �Fig. 6� show that the hot plasma is

formed from a layer that has initially t�1 �m thickness at

solid density. Figure 9�a� shows a comparison for the experi-

mentally measured ionic K-shell emission for shot 0 311 271

�solid square symbols� to calculations for an electron density

of ne=2.3�1024 cm−3, t=1 �m, and various electron tem-

peratures between 1 and 3 keV. The electron density corre-

sponds to a solid density of nion=8.5�1022 cm−3 and an av-

erage degree of ionization of 27. The K� and K� lines are

suppressed to allow a better comparison of the resonance-

line emission to the calculations. The filter transmission of

the 150-�m Cu foil was taken into account, and the calcu-

lated spectra were convolved with an instrumental resolution

of 200 eV. The PrismSPECT calculation reveals that the

measured He� peak is a complicated array of lines, including

the He� line, the intercombination line, dipole forbidden

lines, and lithium-like ion satellite lines that merge together.

The effective linewidth of this feature is �90 eV at solid

density and explains the slightly larger measured spectral

FWHM of �220 eV for He�. The ratio of He� and Ly� is

sensitive to the temperature and a good agreement is ob-

tained for Te=1.8 keV.

The ASE laser pulse pedestal causes some ablation of

the front layer before the main laser pulse impinges on the

target. The main pulse then interacts with less than solid

density plasma and an increased density scale length. The

density profile depends on the laser contrast, pulse profile,

and hydrodynamic expansion of the preplasma. To model the

density profile generated by the ASE pulse, a two-

dimensional hydrodynamic simulation of the expansion and

structure of the preplasma was performed using the Eulerian

code POLLUX.
43

A 2.5�1013 W/cm2 Gaussian temporal

pulse shape with a 1.5 ns pulse duration was assumed. In the

radial direction, a Gaussian-shaped intensity profile with a

FWHM of 7 �m was used for the simulation. Figure 10

shows a lineout of the calculated electron-density profile

FIG. 8. Schematic representation of the ionic line and inner-shell emission

generation process. The ionic lines stem from a hot surface layer while fast

electrons produce the inner-shell emission.

FIG. 9. A comparison of the experimentally measured ionic resonance line

emission �solid square symbols� to calculations with the computer program

PrismSPECT
40

for �a� solid-density �ne�2.3�1024 cm−3� 1 �m thick plasma

slab and various electron temperatures between 1 keV and 3 keV. �b� shows

a comparison for an electron density of 2.3�1023 cm−3, plasma slab thick-

ness of 1 �m, and various electron temperatures between 2.6 keV and

5 keV.

FIG. 10. Calculated electron density profile along the target normal that is

generated by an ASE prepulse; see the text for details. The 2-D Eulerian

code POLLUX
43

was used for the simulation.
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along the target normal at the peak of the interaction pulse.

The critical density has expanded �2 �m from the original

surface. The interaction of the main pulse with relativistic

intensities and the corresponding electron mass increase

leads to a higher critical density than in the nonrelativistic

case. A distance of �1 �m is then calculated for the relativ-

istic corrected critical density. The distance from the original

target surface to the 1019 cm−3 contour is �45 �m, which

agrees well with the shadowgraph measurements. Preplasma

formation on the Vulcan 100-TW laser has been previously

experimentally and theoretically investigated.
37,44

Density

scale lengths of �3 �m and �10 �m were determined at

the critical density and at one-tenth of the critical density,

respectively.

The density profile shows that the ablated mass below

critical density is a factor of �10 smaller compared to the

1 �m layer from critical density up to solid density. Accord-

ingly, the number of ionic line emitters in the ablation plume

is negligible compared to the emitter number above the criti-

cal density, where most of the absorbed laser energy is de-

posited. The thermal energy transport distance into the target

is estimated to be several microns at close to solid density

based on the overcoating experiments. Figure 9�b� shows a

comparison of measured and calculated spectra for ne=2.3

�1023 cm−3, t=1 �m, and various temperatures, with the

best agreement at Te=3.4 keV. Not shown is the comparison

for ne=2.3�1023 cm−3 and t=10 �m, yielding Te=2.6 keV,

which has roughly the same emitter number as the solid den-

sity, t=1 �m calculation. Opacity effects in the blowoff

plasma are negligible because of the low concentration of

He- and H-like ions. The electron temperature is thus esti-

mated to be in the range of 2 to 3 keV for a close to solid

density plasma and a slab thickness between 1 and 10 �m.

The number is in agreement with highly resolved Cu K-shell

spectral measurements performed at similar experimental

conditions, yielding a front side electron temperature of

�2 keV.
45

Two-dimensional opacity effects and heating of the un-

derdense plasma by the short interaction pulse were not con-

sidered. Optical-field-ionized He- and H-like ion generation

in the underdense plasma along the laser channel is negli-

gible. Using a simple over-the-barrier suppression calcula-

tion for electric field ionization,
46

estimated saturation inten-

sities of 2�1020 W/cm2 and 7�1022 W/cm2 are required to

produce helium- and hydrogen-like copper ions with an ion-

ization probability close to unity. The creation of He-like Cu

ions by field ionization is therefore possible only at the high-

est accessible laser intensity. Ponderomotively accelerated

electrons and ions in a radial direction
37

that might modify

the charge-state distribution of the plasma as well as the

velocity gradients because of the tight-focusing condition

and the resulting spherical expansion geometry that might

affect the opacity
47

were not included in the analysis.

A precise comparison between the measured absolute

He� and Ly� photon numbers and the predicted numbers by

PrismSPECT are not straightforward and out of the scope of

this paper. A detailed knowledge of the angular emission

characteristic, source area, and temporal emission character-

istic is required. Laser plasmas are highly transient with

strong spatial gradients in density and temperature, and a

comparison to the measurement requires detailed multidi-

mensional hydrodynamic simulations coupled to a multidi-

mensional, time-dependent radiation transport model. An es-

timate of the source area may be obtained from

measurements of Cu K� images, typically yielding an area of

50 to 100 �m FWHM in diameter,
12,24

and from Ni Ly� im-

aging measurements with �30 �m spots that were obtained

under similar experimental conditions.
45

Town et al., re-

cently reported on simulations to calculate K� images for

comparable experimental conditions and obtained good

agreement with measured K� spot sizes.
48

Assuming an iso-

tropic He� and Ly� emission and neglecting multidimen-

sional and time-dependent opacity effects, the comparison of

measured photon numbers and steady-state calculations for a

solid-density, t=1 �m surface layer plasma suggests average

emission times of several picoseconds.

The increase in He� emission with laser intensity above

1018 W/cm2 �Fig. 3� shows an increasing temperature with

intensity in the solid-density plasma where electron-ion col-

lisions create the ions in the hot-plasma environment. This

might be due to the increasing energy deposition per unit

area with higher laser intensities or due to an enhanced en-

ergy transport into the solid resulting in higher temperatures

and a larger fraction of He-and H-like Cu ions. The absorp-

tion of the laser energy takes place in the density range close

to the critical density and is dominated by collisionless ab-

sorption mechanisms that produce electrons with quasi-

Maxwellian energy spectra and temperatures from hundreds

of keV to several MeV for the intensities discussed here.
49

The angular distribution is generally into the target. The elec-

tron source parameters vary with the local intensity and

therefore also have a spatial pattern related to the laser focal-

spot intensity pattern. Energy transport by these electrons is

highly complicated and not fully understood. Their binary

collision range is generally much greater than the thin layer,

which is strongly heated. Several processes may contribute

to localizing energy deposition in a surface layer. An Ohmic

potential due to the cold electron return current can limit

electron penetration, as discussed by Bell et al.
19

Electrons

can be trapped at the surface by their small Larmor radius in

the surface region azimuthal thermoelectric B field generated

by the axial increase of density and radial decrease of tem-

perature �dB /dt scaling as �N��T�, with the axial ambipo-

lar electric field in the blowoff plasma causing a rapid radial

drift �scaling as E�B�. This effect, well known from nano-

second experiments, particularly with CO2 lasers, has been

discussed in connection with petawatt-class, short-pulse ex-

periments by Stephens et al.
12

and modeled recently by

Mason et al.
50

Three-dimensional PIC simulations by

Sentoku et al.,
16

have shown that there can be very strong

collisionless energy deposition in a thin surface layer attrib-

utable to the “Ohmic” heating effect of the return current due

to anomalous resistivity induced by the scattering of the re-

turn current electrons on microscopic clumps of the B field

generated by collisionless Weibel and two-stream instability.

The energy required to create a significant amount of

He-like and H-like Cu ions is estimated by assuming the

mass of the hot layer to be equivalent to a �1 �m-thick
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layer at solid density, as determined from the overcoat ex-

periments. For example, an energy of �3.5 J is needed to

heat a mass of solid copper contained in a disk with a 50 �m

diam and 1 �m thickness to �3 keV and the resulting aver-

age charge state of 27. This is small compared to laser ener-

gies of the order of 100 J.

It should be noted that the spectral measurements indi-

cate that K� and He� are two distinctive lines with no sig-

nificant continuum merged between them. This is supported

by highly resolved measurements with a crystal spectrograph

under similar experimental conditions.
51

The upshift of K�

emission from partially ionized Cu ions has been discussed

by Gregori et al.
51

There is a small spectral shift as M-shell

electrons are removed because of the heating of the bulk of

the target by binary collisions of hot electrons and Ohmic

heating by the return current. It is indistinguishable in our

low-resolution K� spectra. The removal of L-shell electrons

at higher temperatures gives larger shifts as the hot layer is

heated and emission occurs at each stage of ionization. The

He-like ion is, however, present over a wide temperature

range and, in particular, during the emission occurring after

the initial heating, leading to a dominant He� spectral feature

in our spectra. This heating partially ionizes the bulk, result-

ing in a K� emission shifted to higher energies.

Measurements of the K-shell emission as a function of

foil thickness between 30 and 1 �m for a constant laser in-

tensity of �3�1018 W/cm2 show that the K� emission re-

mains about constant, with diminishing foil thicknesses

down to 3 �m. This is expected if no other hot-electron

energy-loss mechanisms become significant; the electron

temperature of the foil is so low that ionization does not

significantly affect the L shell, and the majority of the elec-

trons are refluxing from an electrostatic sheath field. The

decreasing yield for targets thinner than 3 �m may imply

that a significant amount of cold material is depleted. An-

other possible explanation is that for very small volume tar-

gets, additional energy dissipation channels draining hot-

electron energy may become important and influence the K�

signal. A possible channel is energy transfer into accelerated

ions that is enhanced in very thin targets.
36

The K� yield is

expected to be more sensitive to a temperature increase of

the bulk of the target since K� is eliminated when the M

shell is ionized, which might explain the decrease by factor

of �5 from 30 to 20 �m while no change is measured for

K�. The target volume changed by a factor of �40 because a

500�500 �m2 foil area was used at 30 �m thickness while

100�100 �m2 was applied for the thinner targets. Recently,

similar observations were reported and it was discussed how

the laser heating of very small target volumes affects the

inner-shell emission.
52

The resonance-line emission from the

1 �m top layer is not expected to be significantly affected by

the foil thickness. Nevertheless, a varying He� emission is

observed with a peak at 5 �m thickness. This variability may

be due to slight changes in the laser conditions from shot to

shot. As shown in the measurement in Fig. 3, the He� signal

is more sensitive to the applied laser intensity than the inner-

shell emission.

B. Inner-shell emission

The measured K� photon numbers, per unit laser energy,

are in general agreement with other experiments.
20,24

In Ref.

20, 2�1011 / J K� photons were reported for 8 �m-thick Cu

foil targets irradiated with 528 nm laser pulses at intensities

of �1019 W/cm2. Similar numbers were reported in Ref. 24,

however, those experiments used thick targets where the re-

absorption of the K� photons was strong, and the controlling

mechanism was the interplay between the electron-

penetration depth relative to the K� photon-attenuation

length. With the targets considered here, reabsorption gives a

modest correction; e.g., for solid copper, the transmission

fraction f trans is estimated to be 0.91, 0.69, and 0.58 for foil

thicknesses of d=5, 20, and 30 �m, respectively.

The expected number of photons generated, Nk, can be

computed by integrating along the path of electrons whose

initial energies are described by an energy distribution f�E0�
as long as the electron stays within the material; its energy

loss is accurately described with a continuous slowing down

formula �dE /ds�, and that cold cross sections 	k for K-shell

ionization are appropriate �note that for copper, only direct

K-shell ionization is significant
39�. The yield Nk is then given

by

Nk = Ne�
0




dE0 f�E0��
E0

0

dE �knCu	k�dE

ds
	−1

, �1�

=Ne�
0




dE0 f�E0��
0

s�E0�

ds �knCu	k, �2�

where Ne is the total number of hot electrons, �k=0.425 is

the fluorescence yield, and nCu is the number density of cop-

per atoms in the target. From this model the electron-to-K�

photon-generation efficiency �e→k can be determined. This

efficiency is defined as Ek=�e→kEe, where the energy in the

electrons is given by Ee=Ne
Ef�E�dE and in K� photons by

Ek=
kNk with 
k being the fluorescence energy �8.05 keV for

copper K��. This simple model accounts only for the colli-

sional energy loss and neglects other energy loss effects like,

e.g., Ohmic effects and fast ions.

A direct comparison between the experimental produc-

tion efficiency �yield/laser energy� and the calculated genera-

tion efficiency is not straightforward. The experimentally ob-

servable quantity is the measured total number of K�

photons, Nk,obs, from which the efficiency may be computed

as

�e→k =

k�Nk,obs/f trans�

EL

1

�L→e

�3�

only if the transmission fraction and the hot-electron produc-

tion efficiency �L→e=Ee /EL are known. Here, EL is the en-

ergy in the laser pulse. The transmission fraction can be eas-

ily computed, but the electron-production efficiency is

uncertain. Assuming that the hot-electron density within the

foil is uniform, the K� photon transmission fraction is esti-

mated by f trans= �La /d��1−exp�−d /La�� with the attenuation

length La=25 �m for K�. The predicted efficiency, obtained
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using Eq. �1�, further requires specification of the hot-

electron spectrum f�E�.
The predicted total K� energy of the model divided by

the laser energy, together with experimental data, are shown

in Fig. 11 for different �L→e assuming exponentially distrib-

uted electron energies, f�E�dE= �1/T�exp�−E /T�dE, and us-

ing slowing down and cross section data from the ITS

code.
53

The total K-shell ionization cross section is from Ref.

54 and, unlike the cross section in Ref. 39, it is valid for

relativistic electron energies. For highly relativistic electrons,

the cross section increases with particle energy. In Ref. 55,

an increased K� yield was measured with laser intensities

above 1019 W/cm2 and attributed to the growing K-shell ion-

ization cross section with electron energy for relativistic

electrons. In contrast to this work, an increase in the K� yield

with the laser intensity is not observed. Calculations have

also been performed with a three-dimensional �3-D� relativ-

istic distribution function, leading to slightly higher pre-

dicted K� conversion efficiencies, but with no change to our

overall conclusions. Although different intensity temperature

scaling appears in the literature,
29,56

in Fig. 11 we have cho-

sen the ponderomotive scaling of Wilks,
13,57

TMeV=0.511

��1+ I18��m
2 /1.37�1/2−1�, to connect the laser intensity to the

hot-electron temperature. No spatial-laser intensity distribu-

tion was taken into account in this calculation.

In Fig. 11, the experimental data is almost independent

of laser intensity, except at the highest laser intensity,

I= �3�1020 W/cm2. This independence of efficiency on

hot-electron temperature, over the experimental range of in-

tensities, is a consequence of Eq. �1�, as displayed by the

solid model curves. The efficiency is determined by the rela-

tive importance of energy loss due to nonionizing collisions

and the cross section for K-shell ionization. The latter is

quite flat for energies above 100 keV,
58

while the collisional

cross section drops with increasing energy. The electron

range is not restricted by the target thickness for the solid

curve in order to mimic the effect of electron refluxing. The

net result is that the number of photons produced per unit

electron energy is only a weakly increasing function of in-

tensity. The dashed curves illustrate the effect of truncating

the electron path length s in the integral, Eq. �2�, whenever it

exceeds the target thickness s�E0�→min�s�E0� ,d�.
10 keV to 1 MeV electrons have ranges from �1 to

�700 �m in Cu.
53

Only a small fraction of the fastest elec-

trons can escape the foil, resulting in quickly charging up the

target and confining the rest of the electrons that are reflected

back from surface sheath fields. Refluxing has previously

been discussed in the context of proton generation, showing

the importance of the recirculation of the MeV electrons on

the electrostatic fields that accelerate protons to multi-MeV

energies.
36

As expected, ignoring refluxing in the model

shows disagreement with the experimental data by an order

of magnitude or more. Physically, the solid curves corre-

spond to the case where hot electrons are confined within the

target due to reflection or “refluxing” from surface sheath

fields until it is stopped, whereas the dashed curves corre-

spond to the case where the electron and its energy are lost as

soon as its path length equals the target thickness.

The solid curves can be made to agree quantitatively

with the experimental data if a �10% laser to hot-electron

coupling efficiency is assumed. This is lower than the

�L→e��20% to 40% � usually quoted in the literature for

these intensities, e.g., in Refs. 4–8 �upper solid curve�. Con-

version efficiencies were measured at the NOVA laser facil-

ity, yielding 5%–10% for 20 ps, 200 J, 2�1018 W/cm2,

10%–15% for 5 ps, 300 J, 1�1019 W/cm2, and up to 50%

for 0.5 ps, 400 J, 3�1020 W/cm2.
6,8

There is a trend of in-

creasing efficiency with laser intensity while our data would

indicate a constant coupling efficiency. Possible explanations

might be �1� differences in the details of the density profile.

The NOVA experiments were performed with an intensity

contrast of 5�103–5�104 while 105–107 is reported in

these experiments. Hydrodynamic effects are probably not

negligible at 20 ps pulse duration. �2� A coupling efficiency

that increases with laser intensity might be compensated for

thin foil targets �NOVA used several 100 �m thick layers� by

a growing number of hot electrons leaving the target and

making refluxing less efficient. The simple model that was

used here and the relative large uncertainty of the experimen-

tal points allow only an estimate of the coupling efficiency,

while more precise measurements require a careful CCD

calibration and elaborate modeling, as it was done in Refs. 6

and 8.

V. SUMMARY AND CONCLUSIONS

For the first time, He� and Ly� lines in the K-shell emis-

sion of solid Cu targets irradiated with a 0.7 ps petawatt laser

beam were observed at intensities �1020 W/cm2. This is at-

tributed to the formation of a �2 to 3 keV near-solid-density

hot plasma on the laser irradiation target side. A suppression

of the ionic line emission is observed when the Cu targets are

FIG. 11. Total energy in K� photons normalized to laser energy in the

central laser spot as a function of laser intensity. The solid triangles are the

experimental data points. The solid curves correspond to the model de-

scribed in Sec. IV B with perfect confinement of the hot electrons �reflux-

ing� and with a hot electron conversion efficiency of 40%, 10%, and 1%.

The dashed curves correspond to the case �40% and 1%� with no refluxing,

as described in the text. A representative error bar shows the estimated

efficiency uncertainty of the measurement.
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coated with either a 1 �m thin layer of aluminum or with a

0.5 �m tantalum layer, indicating that the strongest heating

is confined to a thin layer.

Measurements of the K-shell emission as a function of

foil thickness between 30 �m and 1 �m for a constant laser

intensity of �3�1018 W/cm2 and �10 ps pulses show that

the He� emission varies by a factor of �4 with a peak at

5 �m thickness, while the K� yield stays about constant. A

decreased K� yield measured for targets thinner than 3 �m

may be explained by a stronger heating of the small target

volume and an increased hot-electron energy transfer into

ions. Changing laser conditions especially affecting the sur-

face layer could cause the variation of the He� emission. The

current data set is limited by its small sample size, and more

shots are necessary to investigate this observation.

The K-shell emission of solid Cu foil targets was studied

as a function of laser intensity between 2�1018 W/cm2 up

to 3�1020 W/cm2 in low-area ��0.5�0.5 to 2�2 mm2�
thin foils ��20 to 30 �m� and 0.7-ps pulses. The yield of

the ionic lines strongly increases with laser intensity such

that, at the maximum intensity, the spectrum is dominated by

the He� emission. An approximately constant yield of

�2�1011 photons/J and �2�1010 photons/J were mea-

sured for the K� and K� inner-shell emission, respectively,

between intensities of 2�1018 W/cm2 and 1�1020 W/cm2.

Above 1�1020 W/cm2, the inner-shell emission yield

slightly drops. A comparison of the measured intensity scal-

ing of the K� yield with a model shows that refluxing of

suprathermal electrons and their confinement in the target

volume is crucial to explain these results. Calculations that

ignore refluxing show a strongly decreasing K� yield with

laser intensity and disagree with the experimental data by

more than an order of magnitude.
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