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Abstract. The Fast Ignition Program in the United States has enjoyed increased funding in various
forms from the Office of Fusion Energy Sciences of the Department of Energy. The program encompasses
experiments on large laser facilities at various world-wide locations, and benefits enormously from
collaborations with many international scientists. The program includes exploratory work in cone-target
design and implosion dynamics, high electron current transport measurements in normal density materials,
development of diagnostics for heating measurements, generation of protons from shaped targets, theoretical
work on high gain target designs, and extensive modeling development using PIC and hybrid codes.

1. INTRODUCTION

The fast ignition concept is attractive to the Inertial Fusion Community for a simple but fundamental

reason: it in principle requires less total energy input to achieve ignition [1].

Current US programs and projects are developing new capabilities for Short Pulse HED Science and

Fast Ignition: There are currently 3 funded projects from the Office of Fusion Energy Sciences in the US

Department of Energy: (1) FI Concept Exploration (LLNL, GA, UCD, OSU); (2) Fusion Science Center

for Extreme States of Matter and FI (LLE, OSU, UCSD, UR, UT, MIT, LLNL); and (3) FI Advanced

Concept Exploration (LLNL, GA, LLE, OSU, UCSD, UR). There are, in addition, substantial resources

derived from LLNL’s Short Pulse S&T Initiative. The major US facilities to support FI research that

currently are in use, or will be on line within the next 5 years, are LLNL’s Jupiter facility, Sandia’s Z and

ZPW, Rochester’s Omega and Omega EP, and ultimately LLNL’s NIF.

This presentation was in the last Plenary Session of IFSA-2005, and served largely as a summary of

oral and poster presentations from many US scientists at IFSA-2005. This paper makes reference to those

presentations to guide the reader to the papers where the technical work is presented in detail. There are 6
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sections: (1) Concept; (2) Relativistic electron transport and isochoric heating; (3) Modeling; (4) Proton

isochoric heating and possible role in FI; (5) Fuel Compression-hydro design and experiments; and (6)

Future Prospects.

2. TECHNICAL WORK

2.1 Concept

Figure 1 shows the three essential elements of fast ignition [2].

Figure 1. Three essential elements of Fast Ignition.

The targets are imploded to an isochoric density as much as several hundred times normal density, a

high energy, short pulse laser is guided near to the core of the imploded shell where the energy is converted

into high energy electrons, and these electrons must traverse an extreme density gradient through the

plasma surrounding the core, and then deposit their energy in the core. The targets will likely require

a cone insert to enable the laser to get close enough to the core before converting its energy into fast

electrons such that there can be a reasonable chance that fast electrons will remain collimated enough.

The scale of the currents involved and the complex path the fast electrons must travel are indicated

on Figure 2 [2].

2.2 Relativistic Electron Transport and Isochoric Heating

Initial studies have investigated large current flows in normal density materials induced by high energy,

short pulse lasers. Diagnostics have been developed to record 2-D image K� radiation from Cu and XUV

radiation at 68 eV and 270 eV; and single-hit CCD spectrometers have been used to record the spectra of

the K� radiation as well as determine the absolute intensities. Observations have been made of electron

transport through slabs of normal density metals and through wires and cones. In general, we find (a)

that the fast electrons generated by the laser spread in slabs with an opening angle of nearly 40 degrees,

independent of the intensity of the laser; (b) that the electrons appear to have a stopping length determined
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Figure 2. Ignition conditions and fast electron path in an FI target.

Figure 3. Extreme heating observed in initial layer of slab targets.

largely by potentials due to resistance experienced by the return current; (c) that there is a thin (∼1�m)

layer on the front of the targets that reaches considerably higher temperatures than the bulk material;

(d) that many of the presumably lower energy electrons spread rapidly on the surface of the target; and

finally (e) there is no indication in any of these experiments of magnetic collimation, or self-pinching of

the fast electrons.

The anomalous thin layer heating on the front surface is suppressed by application of a ∼1�m over

coating of another material, as shown in Figure 3 [2].

The origin of this anomalous heating layer is not completely understood, but may be related to

Weibel-like instabilities: this phenomenon is a subject of current investigation.

2.3 Modeling

Modeling is at three main levels [3]:

1. 2D and 3D Radiation/hydrodynamic modeling to define the initial conditions for the short pulse

interaction and also the post short pulse hydrodynamics

2. 2D and 3D explicit particle in cell modeling at densities <50 NC to model the laser plasma

interaction and the electron beam generation

3. 2D and 3D hybrid PIC modeling of the electron transport in dense plasma and the isochoric heating
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Integration of these three modeling modes is under development in order to develop a full ab initio code

for a design of a full Proof-of-Principle FI experiment. As part of the thrust to develop reliable predictive

codes, we have begun to benchmark a well known hybrid-PIC code, LSP, against our experiments.

2.4 Proton Isochoric Heating and Possible Role in FI [4]

Since the discovery of protons accelerated from the back surface of a relatively thin target struck by a

ultra-intense laser pulse by Snavely et al. in 2000 [PRL, 85, 2954], there has been an ever increasing

interest in this phenomenon, and IFSA-2005 had many papers representing investigations into its uses.

We have studied the generation of protons from shaped targets in an attempt to focus the proton beam,

and to efficiently heat targets with these focused protons. This experimental effort has met with some

real success, with clear indications of improved isochoric heating using protons compared to electrons.

Further, it appears possible to focus the protons with considerable accuracy. Figure 4 shows some results

of these types of measurements, and there have been theoretical analyses that suggest that the electron

to proton conversion efficiency may be increased dramatically by correctly preparing the back surface

of the laser target. This work has led to serious suggestions of making targets for FI which actually use

the fast electrons, which appear to be difficult to spatially control, to generate focused proton beams to

carry the laser energy through the surrounding plasma into the core [11].

Figure 4. Focusing of protons accelerated from a shaped surface and the resulting heating.

2.5 Fuel Compression-Hydro Design and Experiments [2, 5, 12]

The design requirements for a FI target are complex [2, 5] We are experimentally validating our

compression design codes with experiments on Omega, with gratifying results as shown in Figure 5 [10].

The significance of these results is that direct drive at Omega gives well simulated results with no

significant ablated/entrainedAu near tip of cone, suggesting that these re-entrant cone designs are useable.

Another topic of research is the design of high gain targets for FI: it is possible to design thick wetted-

foam, low adiabat, low velocity targets with high �, high �R and small hot spot. Such targets concepts

are essential for any proposed Proof-of-Principle (PoP) experimental demonstration of FI fusion [5].



IFSA-2005 99

Figure 5. Simulation and experimental results of compression of FI target.

3. FUTURE PROSPECTS

The future research in FI in the US is dependent upon the completion of facilities capable of compression

of targets to high enough density, with energetic enough short pulse lasers. The current plan calls for

sub-PoP experiments to be carried out on the Omega EP facility, now under construction at LLE, and

due for completion in 2007. Assuming that there is success with the sub-PoP experiments, the proposed

plan calls for a full demonstration on the NIF sometime after the 2010-12 time frame, with a possible

alternative being the Z-pinch facility at Sandia. In the medium term, the program will wok concentrate

on “Integrated Experiments”; that is, combining as many of the aspects of the FI concept together in one

experiment, and to continue to advance our modeling capabilities with a goal towards a full ab-initio FI

code. Figure 6 shows the main components of planned integrated experiments, all aimed at the sub-PoP

demonstration on Omega EP. In the shorter term, the program continues to work on an ever increasing

complex set of diagnostics in anticipation of the more aggressive experimental program [1, 8].

Figure 6. The physical concepts to be examined in preparation for the sub-PoP experiments.
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4. SUMMARY

The US Fast Ignition program is composed of a collection of University efforts, combined with support

from NNSA facilities in LLE, LLNL, and Sandia. Its mission is to understand the fundamental physics

issues confronting FI, and to develop the codes and diagnostics necessary to field a sub-PoP FI integrated

experiment on Omega EP in the 2007-2008 time-frame. Assuming success at Omega EP, the program

plan calls for a full PoP experiment on the NIF [7] or perhaps Z-R [9] in the 2010-2012 time frame.
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