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Atomistic molecular dynamics simulations of shock compressed quartz

M. R. Farrowa) and M. I. J. Probert
Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom

(Received 18 April 2011; accepted 1 July 2011; published online 27 July 2011)

Atomistic non-equilibrium molecular dynamics simulations of shock wave compression of quartz
have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer, and van
Santen [Phys. Rev. B 43, 5068 (1991)] to construct the Hugoniot of quartz. Our scheme mimics the
real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first
shock wave simulation that uses a geometry optimised system of a polar slab in a three-dimensional
system employing periodic boundary conditions. Our scheme also includes the relaxation of the sur-
face dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The orig-
inal BKS potential is unsuited to shock wave calculations and so we propose a simple modification.
With this modification, we find that our calculated Hugoniot is in good agreement with experimental
shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our
modified BKS potential is suitable for quartz under representative pressure conditions of the Earth
core, but unsuitable for high-pressure shock wave simulations. We also find that the BKS potential
incorrectly prefers the β-quartz phase over the α-quartz phase at zero-temperature, and that there is
a β → α phase-transition at 6 GPa. © 2011 American Institute of Physics. [doi:10.1063/1.3615526]

I. INTRODUCTION

Silicates are abundant in the Earth’s interior where they
experience high pressures of up to 136 GPa; therefore, their
behaviour at high pressure is of great interest to researchers
in many areas including physics, astrophysics, and geo-
sciences. A well-known silicate, quartz, or silicon dioxide
(SiO2) is found in the α-quartz phase at standard tempera-
ture and pressure with each silicon atom being 4-fold coor-
dinated with the oxygen atoms and has a crystal structure
made up of SiO4 tetrahedra building blocks. Quartz has many
high-pressure, high-temperature polymorphs; β-quartz (a
high-temperature polymorph), coesite (a high-pressure poly-
morph), and stishovite (a high-temperature, high-pressure
polymorph). Many of these polymorphs are thermodynami-
cally close in energy to each other.

Unsurprisingly, quartz and its polymorphs have been
subject to extensive theoretical and experimental studies2–4

though there is still some discussion as to the phase changes
that quartz undergoes with pressure, such as the recent work
by Atkins and Ahrens who used early shock wave data along
with recent discoveries of post-stishovite phases of SiO2 to
reassign the phase transition regions along the Hugoniot of
quartz.5 However, theoretical shock wave studies have been
limited.6, 7 Static pressure, diamond anvil cell experimental x-
ray diffraction data for quartz have been gathered by Hem-
ley et al.3 They found that their samples showed the onset of
amorphisation between 25 and 35 GPa (at 300 K). This amor-
phisation has also been shown in molecular dynamics (MD)
simulations.7

The simulation technique and choice of empirical poten-
tial is essential, and for silicates, many researchers choose the

a)Author to whom correspondence should be addressed. Electronic mail:
matthew.farrow@ed.ac.uk.

well-known semi-empirical potential of van Beest, Kramer,
and van Santen; the so-called BKS potential.1 This poten-
tial is predominantly used for equilibrium simulations,4, 8 and
includes point charges and a Buckingham-type pair poten-
tial which becomes unphysical (infinitely attractive) at small
interatomic separations. This is catastrophic for the high-
pressures achieved during shock wave simulations, and so re-
searchers have corrected for this unphysical response, such as
Barmes et al.6 who have used a second-order polynomial fit,
whereas Guissani and Guillot9 have added a Lennard-Jones
type potential.

There are a number of alternative simulation methods
available to obtain the Hugoniot; Brennan and Rice10 have
adapted the methodology of Erpenbeck11 in which a point
on the Hugoniot curve is calculated from single simulations
(MD or Monte-Carlo) that each calculate an equation of state
point. Maillet et al. have created the so-called uniaxial Hugo-
niostat method12 which is an equilibrium molecular dynam-
ics method that uses perturbed equations of motion that obey
the Rankine-Hugoniot relations. In this way, the equilibrium
MD simulations result in the long-time relaxed structure after
shock compression. A modified Hugoniostat has been used
with some success by Ravelo et al.13 and Barmes et al.6

In this study we have developed atomistic non-
equilibrium molecular dynamics (NEMD) techniques to sim-
ulate the non-equilibrium state experienced during shock
compression for materials that contain point charges, such
as in the BKS potential. We use atomistic NEMD simula-
tions to give direct information on the mechanisms at play
at the atomic scale, and the underlying mechanisms of the
phase transformations. We believe that this is the first com-
plete shock wave simulation study that uses a geometry op-
timised system of a polar slab along with an impactor to
generate the shock wave in a three-dimensional (3D) system
employing periodic boundary conditions (PBCs). Within the
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three-dimensional PBC the computationally efficient Ewald
summation scheme was used to correctly handle the long-
range Coulomb interactions. We demonstrate our simulation
technique by computing the Hugoniot of quartz up to pres-
sures of 400 GPa. Such pressures are extremely high, and
do not correspond to equilibrium Earth mantle conditions at
which quartz is naturally occurring, but they are in the range
found for meteorite impacts.14

The paper is structured as follows: First, we discuss
the details of the simulations; the initial optimisation of the
atomic structure to form a semi-infinite slab model, followed
by the subsequent relaxation of the dipole moment of the po-
lar surface. We then apply the scheme to perform shock wave
simulations on quartz, and discuss the results and implications
for our choice of semi-empirical potential.

II. SIMULATION DETAILS

All the simulations were performed using molecular dy-
namics in the micro-canonical ensemble (NVE) with PBC and
used a velocity-Verlet integrator. The interatomic potential
used was the so-called BKS potential of van Beest, Kramer,
and van Santen:1

UBKS(r) =

∑

i>j

qαi
qβj

rαiβj

−

∑

i>j

[

Aαiβj
exp(−bαiβj

rαiβj
) −

Cαiβj

r6
αiβj

]

, (1)

where α and β are atomic species and the first term describes
the long-ranged electrostatic interaction between atoms i and
j which is determined by the species-dependent effective
charges qα and qβ . The second term is the short-ranged in-
teractions in a Buckingham-type form, where Aαβ , bαβ , and
Cαβ are constants derived from the fitting to Hartree-Fock
ab-initio calculations on aluminophosphates and selected em-
pirical measurements. These force-field parameters have been
shown to be reasonably successful in describing the dy-
namic and structural properties of quartz and some of its
polymorphs.4, 8 The parameters used by van Beest et al. are
reproduced in Table I. A cut-off radius of 6.0 Å was used for
both the silicon–oxygen bonds and oxygen–oxygen bonds, re-
spectively. The problem of long-range Coulomb forces with
PBCs was handled by using an Ewald summation.

The second term in the BKS potential has an unphysi-
cal maximum at small bond lengths. The large compressions
that can occur during shock wave simulations cause the BKS
potential to fail (become infinitely attractive), so it is wise to
correct for this unphysical response. We have replaced this
part of the BKS potential at the point of inflection with the

TABLE I. Reproduction of the fit parameters of van Beest et al. for the BKS
potential. (See Ref. 1.)

αiβj Aαiβj
(eV) bαiβj

(Å−1) Cαiβj
(eV Å6) q

Si–O 18003.7572 4.87318 133.5381 qSi = 2.40
O–O 1388.77300 2.76000 175.0000 qO = −1.2

TABLE II. Numerical values of the parameters used for correcting the BKS
pair potential at small bond lengths.

αiβj Dαβ (eV Å2) Eαβ (eV Å6) Fαβ (eV)

Si–O 24.1700 23.8086 −3.5872
O–O 12.3435 18.9662 −6.9426

following polynomial form:

Uext (r) =

∑

i>j

Dαiβj

r2
αiβj

+
Eαiβj

r6
αiβj

+ Fαiβj
, (2)

where Dαβ , Eαβ , and Fαβ are calculated analytically to match
the BKS pair potential and its first and second derivatives,
at the point of inflection. Table II gives numerical values of
these parameters. This 2–6 form was chosen as it provided a
Lennard-Jones-like repulsion at short distances whilst having
a numerically convenient form and matches smoothly onto
the original BKS Buckingham term. Figure 1 shows the form
of the Buckingham term in the BKS potential and shows the
smooth transition region from BKS to our extension. There-
fore, our modified short-ranged interaction potential has the
following form:

U (r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Uext (r), r ≤ rinf

Ubks(r), r > rinf ≤ rcut

0, r > rcut

, (3)

where rinf is the point of inflection. For the Si–O and O–
O parts of the BKS potential, rinf was 1.35 Å and 1.98 Å,
respectively.

The systems studied contained 1584 and 3600 atoms of
α-quartz (4 × 4 × 11 and 4 × 4 × 25 unit cells, respectively).
The systems were equilibrated to 300 K using a Berendsen
weak-coupling thermostat and were then further equilibrated
for 2 ps using standard NVE dynamics before the shock wave
was initiated. Initially, we generated a shock wave in the sys-
tem by giving all of the atoms in the system a “piston veloc-
ity” of −up towards a so-called momentum mirror.15 This cre-
ated a shock wave that propagated in the positive z-direction
at velocity us . The momentum mirror technique essentially
places a perfectly reflecting surface at the origin that reverses
the position and velocity of an atom that passes through it dur-
ing a molecular dynamics time-step. Our momentum mirror
was located at the z = 0 plane. However, this technique was
found to yield compressions that were unphysical and resulted
in extreme deformations of the system. It also resulted in pre-
dominantly using our extension to the BKS potential and so
this was the first evidence that the BKS potential was unsuit-
able for shock wave simulations. We replaced the infinitely
stiff surface of the momentum mirror with a small block of
quartz, very much like the flyer-plate used in shock wave ex-
periments; for this reason it is referred to as the flyer-plate.
The flyer-plate interacts with the incoming atoms through the
same empirical pair potential and therefore was much “softer”
than the momentum mirror. By Galilean invariance, this sim-
ulation set up mimics the incoming flyer-plate impactor in
real world experiments. In order for the flyer-plate to remain
intact, and to create a shock wave in the more numerous
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FIG. 1. Plot of the interatomic potential used in this work. Dashed lines show the unphysical behaviour of the original BKS potential at small interatomic
distances.

“sample” atoms (i.e., those atoms in the system that were not
the flyer-plate), each atom in the flyer-plate was given a large
mass of 100 times its usual mass. The piston velocities were
in multiples of the sound velocity, c0, and the simulations ran
until the system reached the shocked state. A schematic of the
system can be seen in Fig. 2. As can be seen in the schematic,
a vacuum gap between the end of the sample atoms and the
start of the flyer-plate atoms is essential to ensure that no in-
teractions via PBC affected the simulations. We set our gap to
be larger than the cut-off radius of the BKS potential (6 Å);
however, long-range Coulomb forces were still present which
created a large dipole moment in this polar system.

This was accounted for by performing a geometry opti-
misation on the system and correcting the Ewald summation
to that of the aperiodic 3D limit. This correction, proposed by
Yeh and Berkowitz,16 is more computationally efficient than
using a 2D Ewald summation alone. The method, denoted
here as EW3DC simply applied as an additive correction to

FIG. 2. Schematic of a shock wave system. Sample atoms are given an initial
velocity, up , towards the stationary flyer-plate. Periodic boundary conditions
are used; therefore, a vacuum region removes unwanted interactions between
the end surfaces.

the 3D Ewald summation energy and forces; the energy cor-
rection, J(M,P) is dependent on the total dipole moment M

and the shape (P). Our system had the geometry of a rectan-
gular plate (P = R) and hence our energy correction term is
given by

J (M, R) =
2π

V
M2

z , (4)

and M is given by

M =

N
∑

i=1

qiri . (5)

A correction is also applied to the force calculation, obtained
by differentiation of the energy term. Figure 3 shows the con-
vergence to the aperiodic long-range limit of the 3D Ewald
summation using EW3DC. It was clear that a small vacuum
gap (but greater than the cut-off of the Buckingham term of
the BKS potential) would be acceptable.

A. Geometry optimisation and static compression

Before starting any MD simulations, it is essential to have
a relaxed and stable system. Making a quartz slab by cleav-
ing bulk quartz creates a large and unphysical dipole moment,
which strongly effects the energetics of the system. Hence, the
systems were first relaxed using a quasi-Newtonian optimi-
sation algorithm along with the EW3DC which removed the
dipole moment that was initially present. Figure 4 shows how
the optimisation removed the dipole moment of the system
after 50 steps and from there continued to relax the system to
its final state. The final relaxed structure had negligible dipole
moment across the slab.

Figure 5 shows the radial distribution function (RDF) of
the relaxed system prior to shock wave simulation initiation.
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FIG. 3. The energy of Ewald 3D with correction (EW3DC) converges to the
aperiodic long-range limit of the 3D Ewald summation technique.

The structure that was found was that of β-quartz, a high-
temperature polymorph of quartz. To investigate why this
polymorph was observed a series of static pressure calcula-
tions were performed, isotropically compressing bulk quartz.
Figure 6 shows the pressure-volume curve of the static
compression simulations and Fig. 7 shows the c/a ratio of the
relaxed structure as a function of pressure. It can be seen that
at 6 GPa the system undergoes a phase change. Analysis of
the structure of the system prior to this phase change showed
that the low-pressure phase is β-quartz and the high-pressure
phase is α-quartz. van Beest et al.1 also noted that their BKS
potential gave β-quartz as the zero pressure low temperature
phase. In this regard, it is worth noting that there are other
potentials available. Using the so-called Tsuneyuki, Tsukada,
Aoki, and Matsui (TTAM) potential17 that has a similar form
to BKS (although a little more computationally expensive),
researchers have found that the temperature of the α-β
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FIG. 4. Dipole moment with geometry optimisation steps. The dipole mo-
ment of the system is negligible after 50 steps.
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FIG. 5. Radial distribution function of quartz after geometry optimisation.
As can be seen from the RDF of β-quartz (inset) the system is in the β-quartz
phase prior to shock compression.

phase transition is reproduced accurately.18 The Tangey and
Scandolo (TS) potential19 has also been shown to give good
agreement with the experimental c/a ratio and the α-β phase
transition in quartz. All of the potentials have their good and
bad points, and interested readers are referred to the study
by Herzbach et al.18 for a comparison between the popular
silicate potentials.

The two structures of quartz are shown in Fig. 8. This un-
physical transition means that at low temperatures a pressure
of 6 GPa or greater is required to maintain α-quartz in this
phase when using the BKS potential. We saw no evidence for
the onset of amorphisation between 20 and 30 GPa which has
been reported previously.7, 20

III. RESULTS

Figure 9 shows the piston (up) and shock (us) velocity
Hugoniot. As can be seen from the figure, the piston and cor-
responding shock velocities are large but are easily achieved
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FIG. 6. Pressure-specific-volume plot for static compression of quartz.
Structure is initially in the β-quartz phase and transforms to α-quartz at 6
GPa.
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FIG. 7. c/a ratio during static compression. The discontinuity at 6 GPa cor-
responds to the phase transformation from β → α quartz.

in the laboratory. Such shock conditions also occur naturally,
for instance, at the site of a meteorite impact—which is how
the high pressure polymorph stishovite was first discovered.
Meteorites have a mean impact velocity14 of between 17 and
20 km/s but can be as low as 10 km/s—hence, this is an in-
teresting regime to explore by simulation. A linear depen-
dance of piston (up) to shock (us) velocity can clearly be seen.
The calculations are repeated for both 1584 and 3600 atom
systems and there is no evidence of finite size effects. The
corresponding pressure-volume Hugoniot for the shock wave
compression calculations are shown along with experimental
data from Wackerle2 and Los Alamos Scientific Laboratory
(LASL) data of Marsh21 in Fig. 10. Our Hugoniot gives rea-
sonable agreement to the experimental data at low pressures
(small piston velocities) up to 25 GPa, but at higher pressures
it deviates significantly. Whilst there is some evidence of a
finite-size effect in this figure, it is unlikely that this is suf-
ficient to explain the discrepancy at high pressures. Instead,
this deviation is most likely due to the high-pressure polyno-
mial fit to the BKS potential; as at these pressures this part
of the pair-potential term is sampled frequently and thus we
can conclude that the fit yields a response that is too stiff. As
this polynomial fit does not have any physical justification,
it could be possible to “tune” the fitting parameters to yield a
much better agreement with the experimental Hugoniot. How-
ever, this would be effectively making a high-pressure poten-
tial due to the frequency of it being sampled during the simu-
lations and the form may not be transferable to other silicates
or polymorphs of quartz. Therefore, it is safer to conclude

FIG. 8. Quartz structures: left, α-quartz and right, β-quartz. The higher sym-
metry of β-quartz can be seen.
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FIG. 9. up-us Hugoniot of quartz for 1584 and 3600 sample atom systems.
A linear dependence of shock wave velocity with piston velocity is clear, with
no evidence for any finite-size effects.

that at such high-pressures, that are far from equilibrium, the
BKS potential breaks down and should not be considered a
useful potential for these conditions. It is possible that a re-
parameterisation of the potential at these high-pressure con-
ditions incorporating this sort of empirical shock-wave data
may yield a better potential for shock wave simulations.22 As
it stands, our results appear to be reliable up to 25 GPa, which
is sufficient for modelling the terrestrial geothermal states of
quartz, but progressively deteriorate at higher pressures. The
rapid increase in temperature along the Hugoniot of quartz
(1584 atoms) can be seen in Fig. 11. At such high temper-
atures it is unsurprising that the resultant structure is amor-
phous as the temperature is vastly greater than the melting
point of any of the quartz polymorphs.

At maximum shock compression the system was in an
amorphous state as can be seen from the RDF in Fig. 12. This
was generated from a shock wave that was initiated by a 3
km/s piston velocity (corresponding to half the speed of sound
in α-quartz). This shocked structure does not correspond to
stishovite, although it is possible that if it was allowed to
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FIG. 10. P-V Hugoniot of α-quartz. Experimental data from Wackerle
(Ref. 2) and Marsh (Ref. 21).
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FIG. 11. Temperature variation along the Hugoniot of quartz (1584 atoms).

equilibrate over a long period of time with slow cooling, that
stishovite might form. However, such long time scales are not
achievable in this type of molecular dynamics. We can, how-
ever, derive some knowledge about the adiabatic response of
the system after the shocked state has been generated by cal-
culating the decompression isentrope.

The calculated Hugoniot is well represented by the fol-
lowing equation:

P = Aexp (Bv) , (6)

where A = 11 112 GPa, B = −8.1245, and v is the specific
volume (V/V0). This form was used to calculate the release
isentropes from various release points, v+, using the follow-
ing relation between the Hugoniot and an isentrope:23

P γ (v) = χc(v)

[

p+
+

∫ v

v+

κc(v′)

χc(v′)
dv′

]

, (7)

FIG. 12. Radial distribution function of α-quartz at maximum shock com-
pression using a 3 km/s piston velocity. The amorphous structure can be
clearly seen.

where

κc(v) =
1

2

γr

vr

P H (v) +

[

1 −
1

2

γr

vr

(vr − v)

]

dP H (v)

dv
(8)

and

χc(v) = exp

[

γr

vr

(v+
− v)

]

. (9)

P γ (v) is the isentropic pressure, P H (v) is the Hugoniot pres-
sure, p+ is the Hugoniot pressure at specific volume v+ at
release, centered on specific volume vr . γ (v) is the Gruneisen
parameter; taken to be 0.659 from Quareni et al.24 Figure 13
shows our calculated isentropes from the fit to the Hugoniot.
There is little deviation from the Hugoniot at small compres-
sions, up to v+ = 0.80, corresponding to an initial Hugoniot
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FIG. 13. Fit to 3600 atom quartz Hugoniot along with calculated isentropes from various specific volume at release points, v+. Inset: The decompression
response over the geophysically relevant region for quartz.
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pressure of 20 GPa. However, at larger compressions (and
higher pressures) the deviation grows considerably.

IV. CONCLUSION

We have performed atomistic non-equilibrium molecular
dynamics simulations of shock wave compression on quartz.
We chose the widely used BKS interatomic potential. How-
ever, in order to avoid complications with the unphysical be-
haviour at high pressures in the pair-interaction part of the
BKS potential, we created a simple (2, 6) polynomial expres-
sion with an analytically determined fit to the BKS potential
at the point of inflection and its derivatives. Our systems were
periodic in three-dimensions but had a vacuum gap between
the end of the sample atoms and the start of the flyer-plate
atoms as a means of preventing unwanted interactions due to
periodic boundary conditions. We used the Ewald summation
correction for 3D systems as proposed by Yeh and Berkowitz
as a means of allowing a geometry optimisation to be suc-
cessfully performed, in order to eliminate the dipole moment
caused by cleaving a slab from bulk quartz. The optimised
structure was found to be that of the high-temperature poly-
morph β-quartz and not α-quartz. We found a phase change
from β → α quartz at 6 GPa by performing static compres-
sion calculations. Our analysis of the radial distribution func-
tions showed that the shock compression of quartz formed an
amorphous phase.

The calculated Hugoniot of quartz gave a reasonable
agreement to experimental data for modest shock velocities,
up to a pressure of 25 GPa. For the terrestrial geotherm, this
corresponds to a depth of ∼700 km which is beyond the re-
gion in which quartz is believed to be found. The agreement
significantly deviated at higher pressures and larger shock ve-
locities. This was reasoned as due to a breakdown of the BKS
potential and due to the polynomial fit (for high-pressures)
that gave a response that was too stiff. Using an alternative po-
tential (such as TTAM or TS) may avoid this problem; how-
ever, they should first be investigated for their suitability. A
re-parameterisation of the BKS potential for high-pressures

would be expected to provide a suitable potential for shock
wave simulations.

We conclude that the BKS potential, in the modified form
we propose, is suitable for quartz under representative pres-
sure conditions of the Earth core, but is unsuitable for high-
pressure shock wave simulations.
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