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Removing Seasonality Under a Changing Regime:

Filtering New Car Sales

Michael A Thornton∗

School of Economics

University of Reading
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United Kingdom

Abstract

The use of filters for the seasonal adjustment of data generated by the U.K.
new car market is considered. U.K. new car registrations display very strong
seasonality brought about by the system of identifiers in the U.K. registration
plate, which has mutated in response to an increase in the frequency with
which the identifier changes, while it also displays low frequency volatility
that reflects U.K. macroeconomic conditions. Given the periodogram of the
data, it is argued that an effective seasonal adjustment can be performed
using a Butterworth lowpass filter. The results of this are compared with
those based on adjustment using X-12 ARIMA and model-based methods.

Keywords: Seasonal adjustment, Signal Extraction, Frequency Response,
Butterworth Lowpass filter.

1. Introduction

The registration system for new cars in the U.K. has long involved a
component signifying the period in which the vehicle was first registered.
This feature, which means that cars bought and registered at certain points
of the year appear to be newer for longer, has made the pattern of new car
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purchase highly seasonal. To illustrate, August is usually a relatively quiet
month in all industries in the northern hemisphere but, because an annual
identifier incorporated into registrations changed on August 1, it was the
month with the highest number of new car registrations every year in the
U.K. for 28 years.

Such strong seasonality is, in itself, a challenge for modellers and ana-
lysts. A range of techniques have been developed to remove seasonality from
data, including empirical procedures such as X-12 ARIMA, see Findley et al
(1998), and model-based procedures such as the TRAMO-SEATS procedure
of Gomez and Maravall (1996), applied for example in Maravall (2006), or
the structural time series approach, see for example Harvey and Todd (1983)
or Hindrayanto et al (2010). In this instance, the task is complicated by a
seasonal break.

Over time, it became clear that this August effect was dominating the
year. In response, the registration system was modified in 1999 so that the
identifier changed every six months, in September and March. It was hoped
that this would smooth sales to something more like the patterns seen in
continental Europe. In reality the seasonality mutated, over an identifiable
interval and in an identifiable way, but did not disappear: the standard devi-
ation in monthly sales over a calender year has fallen a little as a proportion
of average monthly sales but remains at around 60 percent. That muta-
tion transformed both the amplitude and frequency of the seasonal cycles
while also inducing a modest phase shift: after a period of annual identifiers,
there is one seven month identifier before the new regime of six-monthly
identifiers. This is not the type of problem for which traditional seasonal
adjustment procedures were designed.

As noted in Ghysels and Osborn (2001) there is a long tradition from
model-based seasonal adjustment procedures of treating the removal of sea-
sonality as a signal extraction problem. Given the nature of the mutation
in seasonal pattern and the relatively low power displayed by the series at
non-trend, non-seasonal frequencies, we also make use of a filter that can
be defined in terms of its response to frequencies contained within certain
bands. This is the Butterworth lowpass filter as discussed by Pollock (2000),
Gomez (2001), Harvey and Trimbur (2003), Pollock (2006) and Proietti
(2007). In econometrics it has largely been used for identifying business
cycle activity, but has been used by Pollock (2000) for removing seasonal
components in Swiss unemployment data. The Butterworth filter has two
interpretations. The first, which is fully paramteric, as the optimal signal ex-
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traction filter for an underlying unobserved components model. The second
as a semi-parametric technique to split a series into two parts based on two
non-overlapping frequency ranges. With a semi-parametric interpretation,
it is set up to cope well with mutations in amplitude and phase, enabling
the identification of trend-cycle elements across the full span of the series.
Other techniques, which are designed around a fixed or slowly evolving sea-
sonal pattern, would be forced into treating the data generated by each of
the regimes somewhat differently.

The underlying trends in U.K. new car data are of interest beyond pre-
senting a methodological challenge. The motor industry is widely seen both
as a leading indicator, and as a wider linchpin, of the manufacturing sec-
tor, particularly during the recent economic downturn. Following the lead
in continental Europe, from May 2009 to March 2010, the U.K. ran a car
scrappage incentive scheme, whereby purchasers of new cars received £2,000
toward the cost of a new car if they scrap a vehicle that is more than 10 years
old. In total 400,000 purchases benefited from this additional funding. Such
schemes and their potential to create further cycles in activity have been
analysed from a theoretical viewpoint by, among others, Adda and Cooper
(2000).

The paper is split into 5 sections. Section 2 discusses the nature of sea-
sonality and popular methods of seasonal adjustment, making the case for
the use of a frequency-specific filter as a part of that tool-kit. Section 3
presents the Butterworth lowpass filter. Section 4 explains the changes that
took place in the series and applies the filter to the full sample and to two
sub-samples representing the different regimes, comparing the results with
those using X-12 ARIMA and TRAMO-SEATS, and section 5 concludes.

2. Seasonal Adjustment

Here we follow the definition in Nerlove (1964, pp 264):

In the more general case, then, we may define seasonality as that
characteristic which gives rise to spectral peaks at seasonal fre-
quencies.

Seasonal factors tend to fall into three broad categories, as noted by Hylleberg
(1992): climate; convention (including the timing of religious festivals); and
repetitive practices (such as tax years, accountancy periods and the U.K.
registration plate system). Some of these will remain fixed, some may vary
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but are always predictable, and some may offer departures around a roughly
regular pattern, causing spectral power to concentrate around rather than
appearing directly on the seasonal frequencies.

2.1. Seasonal Adjustment Procedures

Procedures for removing seasonal factors from data fall into two broad
camps: empirical and model-based techniques. Empirical techniques use sta-
tistical smoothing methods without presupposing that the data are generated
by an underlying model. The procedure developed at the U.S. Census Bu-
reau, Variant X-11, see Shishkin et al (1967), is still the major part of adjust-
ment procedures used in most statistical agencies. An excellent treatment of
the way the program is assembled can be found in Hylleberg (1992), Ghysels
and Perron (1993) and Wallis (1982). The more recent X-12 ARIMA, see
Findley et al (1998), builds on X-11, improving diagnostics, the treatment
of outliers and enabling the use of ARIMA-generated out of sample values
in the smoothing. Such techniques, however, have a number of drawbacks
for econometric work. Firstly, the use of moving averages with long lags
and leads means that a definitive figure for the adjusted series will not be
available for a number of years. Secondly, the procedure provides no insight
into what seasonality might be and no framework in which we can examine
its relationship with the trend component. Thirdly, these procedures smooth
data in connection with the rest of the sample leaving a series of data-points
which are no longer independent realisations. The number of degrees of free-
dom lost will depend on a number of issues including the choice of procedure
for smoothing outliers and trading day effects.

Model-based procedures, on the other hand, suppose that the series to
be treated can be decomposed into unobserved components, perhaps after
taking logarithms. A typical form splits a series (Xt) into trend-cycle (TCt),
seasonal (St) and irregular (It) components,

Xt = TCt + St + It,

TCt =
γ(L)

δ(L)
ǫt,

St =
ψ(L)

s(L)
υt

It =
β(L)

α(L)
νt, (1)
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where L is the lag operator, LXt ≡ Xt−1, νt, υt and ǫt are mutually in-
dependent white noise processes. The autoregressive filters are of the form
δ(z) = (1− z)d and s(z) = 1+ z+ z2+ . . .+ zs−1, where is s is the number of
data periods per seasonal cycle, while α(z) is of order a and has no roots on
or inside the unit circle. The moving average filters, γ(z), ψ(z) and β(z) have
roots outside the unit circle and are of order less than d, s− 1 and a respec-
tively. Estimating these components becomes a problem of signal extraction
following the work of Wiener and Kolmogoroff and can be implemented by
the TRAMO-SEATS programme of Gomez and Maravall (1996) or through
the STAMP programme of Koopman et al (2007).

As the individual components cannot be observed, however, the above is
not sufficient sufficient to identify a unique model. The empirical methods
discussed above develop their procedures for seasonal adjustment on differ-
ing additional assumptions. Burridge and Wallis (1988) investigate some
unobserved component models for which X-11 provides linear least square
estimates of the seasonal component. The approach taken in a formative ar-
ticle by Hillmer and Tiao (1982) and developed in papers by Bell and Hillmer
(1984) and Maravall (1987) is to make additional assumptions about the na-
ture of the variances as well as the lag polynomials. Their so-called ‘canonical
decomposition’ comes from choosing the form of equation (1) that maximises
the variance of the process driving the irregular, νt, given the assumed forms
of the lag polynomials and the constraint that the spectral density of each
component is non-zero in the region [0, π]. In other words, as much of the
‘jerkiness’ in the series as possible is allocated to the irregular.

In contrast the structural time series model of Harvey and Todd (1983),
sets about identifying the model by making additional assumptions about the
processes in equation (1), including that ψ(z) = 1 and the irregular compo-
nent is white noise (α(z) = β(z) = 1). This has the disadvantage of consign-
ing any spectral peaks outside the seasonal frequencies to the trend/cycle,
but it is easily translated into state-space and estimated using the Kalman
filter.

Each of these techniques relies upon assumptions about the relationship
between the three components of the series. It should be noted, however,
that these techniques are not the only way to achieve the aim of removing
spectral power at seasonal frequencies. Indeed if we are faced with a series
with relatively little spectral power away from the trend/cycle and seasonal
frequencies, so that the irregular is a relatively minor component, then a
lowpass filter defined to exclude the seasonal frequency and its harmonics is
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an attractive method of adjustment and it is to these we turn in the next
section.

3. The Butterworth Lowpass Filter

A lowpass filter, ψ(ω;ωc) : [0, π]× [0, π] → [0, 1], is one intended to allow
through frequencies below ωc and to exclude those above it. The ideal filter
would have the properties:

A) ψ(ω;ωc) = 1, ω < ωc; and,
B) ψ(ω;ωc) = 0, ω > ωc.
A promising candidate, given the properties of the tangent function over

the range [0, π], is

ψ(ω;ωc) =
1

1 +
[

tan(ω/2)
tan(ωc/2)

] ,

which has
A’) ψ(ω;ωc) >

1
2
, ω < ωc; and,

B’) ψ(ω;ωc) <
1
2
, ω > ωc,

but only attains A) when ω = 0 and B) when ω = π. It is possible to
sharpen the transition between stopband and passband, however. Since the
term [.] < 1 when ω < ωc and > 1 when ω > ωc, an effective way is by taking
powers of that term in denominator

ψ(ω;ωc) =
1

1 +
[

tan(ω/2)
tan(ωc/2)

]2n . (2)

Moreover, if ωc ∈ (0, π/2), as is highly likely in econometric applications,
lowering the cut-off frequency also improves the sharpness of the filter. Con-
sider the frequency response some θ radians after the cut-off frequency,
ψ(ωc + θ;ωc). Using the identities tan(a) = sin(a)/ cos(a), 2 sin(a) cos(b) =
sin(a+ b) + sin(a− b) and sin(−a) = − sin(a), it can be shown that,

tan(ωc/2 + θ/2)

tan(ωc/2)
=

sin (ωc + θ/2) + sin (θ/2)

sin (ωc + θ/2)− sin (θ/2)
,

which is a decreasing function in ωc ∈ (0, π/2). It then follows that ψ(ωc +
θ;ωc) is increasing in ωc.
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Now consider the time domain representation of this filter. Denoting
λ = [tan(ωc/2)]

−2n and remembering that tan(ω/2) = i e
−iω/2

−eiω/2

e−iω/2+eiω/2 , where

i =
√
−1, then equation (2) can be written equivalently as

ψ(ω;ωc) =
1

1 + λ (1−e−iω)n(1−eiω)n

(1+e−iω)n(1+eiω)n

=
(1 + e−iω)n(1 + eiω)n

(1 + e−iω)n(1 + eiω)n + λ(1− e−iω)n(1− eiω)n
,

which is the frequency response function of a bi-directional filter, φ(L;λ) of
the form

φ(L;λ) =
(1 + L)n(1 + L−1)n

(1 + L)n(1 + L−1)n + λ(1− L)n(1− L−1)n
. (3)

Such a filter can be recognised as one of the Butterworth family of filters,
discussed by Pollock (2000), Gomez (2001) and Harvey and Trimbur (2003).
As noted by Pollock (2000), there is a trade-off between the sharpness of
the filter and the stability of its output, which should be borne in mind
when choosing values for the parameters. The parameter λ determines the
sharpness of the filter, increasing as ωc approaches 0 or as n becomes large.
As λ becomes large, however, the filter increasingly resembles a bi-directional
integrating filter, which is highly sensitive to initial conditions and numerical
rounding. This is equivalent to the poles of the filter heading toward the unit
circle at an angle of ±ωc to the real line (see appendix), causing the filter
to amplify the cycle at ωc, leading to numerical instability unit modulus and
violating the bounded input bounded output (BIBO) conditions in the limit.

Another member of the family, replaces the tangent with the sine function.
This filter will, in the case that ωc ∈ (0, π/2), be further from the ideal of
A) and B). This can easily be seen by writing tan(x) = sin(x)/ cos(x) in
equation (2) and noting that cos(ω) > cos(ωc) ∀ω ∈ (0, ωc) and cos(ω) <
cos(ωc) ∀ω ∈ (ωc, π/2).

These filters can be interpreted as examples of the model-based methods
discussed in the previous section, albeit in the absence of seasonal factors.
As noted by Gomez (2001), the Butterworth sine filter is the minimum mean
square error linear filter for removing a white noise component from a random
walk of order n, where now λ is the ratio of the variances of the processes
driving the random walk and the noise. In these circumstances the filter
will deliver the structural decomposition. The tangent filter, meanwhile, is
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the equivalent for an integrated moving average (n, n) process, where the
moving average takes the form γ(z) = (1 + z)n. In these fully parametric
interpretations, n reflects the degree of integration of the series. Unlike the
sine filter, the tangent filter has ψ(π;ωc) = 0, making its approach generally
canonical in the sense that it would not be possible to remove a larger white
noise term from the series, although it does not accomplish the canonical
decomposition in the general case.

4. Data and Modelling

4.1. The Identifier

The registration system for new cars in the U.K. is unusual in featuring
a component signifying the period in which the vehicle was first registered.
Starting in January 1963, this component was a letter, changed annually,
progressing through the alphabet (omitting letters I, Q, U and Z on grounds
of identification). Recognising the impact of such a system, the motoring
authorities responded to a call to liven up summer sales and in 1967 the day
of the annual letter change was moved to August 1.

As the sales-boom in August, with over one fifth of annual registrations,
became the dominant feature of the market, policy makers became increas-
ingly aware of the costs it imposed on the U.K. motor industry. Since most
U.K. production was aimed at the domestic market, firms were required to
hold large inventory stocks in order to meet the surge in demand, prevent-
ing them from taking advantage of more efficient, just in time, production
techniques. In contrast most overseas manufacturers find that August is
very quiet in their domestic markets and are delighted to tailor their output
toward the U.K.. Further costs are incurred during the vehicle’s lifetime,
as a high proportion of vehicles require annual services and road-worthiness
tests at the same time of year, testing the capacity of the car maintenance
industry.

In order to counter this the system was modified to one which changed
every six months. The final annual identifier, the letter ‘R’ at the beginning
of the registration plate, ran from the start of August 1997 to the end of July
1998. The next identifier, ‘S’, ran from August 1998 to the end of February
1999 (7 months), and from then on the identifier has changed at the start of
every March and September. In case the public started to loose track of the
implied vintages, from September 2001, the alphabet exhausted, relatively
oblique letters were supplanted by more brazen numbering: 02 for March
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2002 and 52 for September 2002. The data, obtained with kind permission
from the Society of Motor Manufacturers and Traders, are for monthly new
car registrations in the U.K. from January 1970 until December 2010, giv-
ing 492 observations. Starting the sample 3 years after the annual August
identifier was introduced, allows the seasonal pattern underpinned by that
system some time to bed in as fleet buyers adjust the timing of their replace-
ments in line with having the most up-to-date number plates. In fact 1970 is
the only year in the sample in which the month with the highest number of
registrations does not coincide with a change in the identifier. The figure for
registrations, rather than actual sales, is used to capture the phenomenon of
the ‘nearly new’ car whereby manufacturers, under the pretext of delivery
mileage, are able to impose their excess production on the new car market.
These cars have only the slightest distinction from new and so are treated as
new throughout the data set.

The data, plotted in figure 1, show a high degree of seasonality, which
evolves over the sample. There is also a very clear mutation in the seasonal
pattern a little under three-quarters of the way through the sample, between
August 1998 and March 1999. At first sight, the data also appear to show
a trend which may be linked to the business cycle/ economic conditions.
For example, total sales were 1,661,624 in 1973 but only 1,194,088 in 1975;
total sales reached 2,300,934 in 1989 but fell sharply to 1,592,326 in 1991.
Of particular interest is a dramatic fall in sales, following a long period of
growth, from May 2008 and the apparent recovery toward the end of the
sample.

The periodogram of the data after taking logarithms, in figure 2, shows
power in the trend/cycle frequencies, particularly close to the origin with
a further smaller spike at a business cycle frequency around π/30. Away
from these lower frequencies ,the periodogram shows a striking concentration
around the seasonal frequencies of π/6, π/3, π/2, 2π/3, 5π/6 and π, with
relatively little power in between the clusters.

The significance of this can be tested using a basic analysis of variations
technique, see Brockwell and Davies (1991). Under the null of no periodicity
at a given Fourier frequency, ωj 6= π, the test statistic in a sample of length
T is

Z =
(T − 3)I(ωj)

(SSD − 2I(ωj))
∼ F2,T−3,

where SSD is the sum of squared deviations about the mean and I(ωj) =
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2
n
|∑T−1

t=0 xte
iωjt|2 is the sample periodogram. A similar statistic can be con-

structed when ωj = π, with only one degree of freedom in the numerator.
Table 1 reports the p-value of this statistic for trend, business cycle and
seasonal frequencies.

Table 1. Power at Trend/Cycle and Seasonal Frequencies
Frequency π/246 4π/123 π/6 π/3 π/2 2π/3 5π/6 π
Period 492 61.5 12 6 4 3 2.4 2
Z 2.641 0.388 0.507 4.919 1.408 1.173 6.508 0.368
p-value 0.07 0.68 0.60 0.01 0.25 0.31 0.00 0.54

The statistic is in the bottom decile of the distribution for all frequencies
outside the trend and seasonal regions, becoming larger at and around all
of the seasonal frequencies and highly significant at π/3 and 5π/6. The
relatively low values for some of the larger seasonal frequencies reflect the
fact that the peak of the density is not exactly on the harmonic. The peak
around frequencies 2π/3 and π actually occur the ordinate before, with values
of 3.2313 (p value 0.04) and 2.6519 (0.07) respectively. As figure 2 would
suggest, the regions around π/2 and π/6 are the only seasonal regions not to
have an ordinate that is significant at the 10 per cent level.

4.2. Filtering the Data

We now compare the results of filtering the full sample by X-12 ARIMA,
TRAMO-SEATS and using the Butterworth Lowpass filter. A log-additive
model is chosen under all of the likelihood tests in X-12 ARIMA and is also
chosen by the automatic model selection criteria implemented in TRAMO.
Figure 3a shows the adjustment of the data by X-12 ARIMA, including
trading day adjustments, while figure 3b shows the irregular.

The irregular is heavily influenced by the change in regime. Including
this in the seasonally adjusted series causes it to mimic the new seasonal
pattern for a period starting in the late 1990’s. There is also some evidence
of struggling to adapt to the evolving seasonality in the mid-1970’s with a
particularly large values positive value in September 1975 being followed by
a a particularly large values negative value 12 months later, itself followed
by large positive values in November and December.

Following pre-adjustment by TRAMO, SEATS selects a seasonal ARIMA
(3,1,1)(0,1,1). Figure 3c shows the adjustment of the data by TRAMO-
SEATS while figure 3d shows the irregular. The change in seasonal regime is
heavily reflected in both irregulars, but X-12 ARIMA also appears to capture
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some of the seasonal pattern at other times, suggesting it is imposing a
more slowly evolving seasonal component. Not surprisingly, this is picked up
in X-12 ARIMA’s monitoring and quality assessment statistics, with three
statistics falling in the failing 1–3 region, those for: the amount of month
to month change in the irregular component as compared to the amount
of month to month change in the trend/cycle (M3), with a value of 1.570;
the amount of autocorrelation in the irregular as described by the average
duration of run (M4), with a value of 1.095; and, the test for the number
of months it takes the change in the trend/cycle to surpass the amount of
change in the irregular (M5), with a value of 2.169.

We now turn to the Butterworth lowpass Filter. We must first decide
the order and cut-off of the filter. Both may be informed by an underlying
model, with n being the degree of integration and ωc depending on that and
the ratio of the variances of the trend and white noise irregular, but here our
treatment is semi-parametric. The order of n = 5 gives a reasonably quick
transition between stop and pass bands, as seen in figure 4a. Since there is
relatively little power in the region between the business cycle frequencies
and π/6, we can choose a cut-off frequency a little below π/6, at π/12, 15
degrees, without paying a significant cost in excluding trend frequencies.
This delivers a filter that is ‘stiffer’ in terms of excluding seasonal elements,
without the increased instability that a greater n would bring. As a check
on stability, the poles and zeros of this filter are drawn in figure 4b.
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Figure 5: Butterworth Filter with n = 5 and ωc = π/12. applied to U.K
New Car Registrations 1970-2010.

To aid comparison with the log-additive models, the filter is applied to
the data after taking logarithms before converting the estimates of the com-
ponents back for comparison with the original series.

In comparing figure 5a with figure 3a and 3c it is clear that, in this
application, the Butterworth filter does not allow short-run effects from the
change in regime to dominate the seasonally adjusted series. In both X-
12 ARIMA and TRAMO-SEATS, the change to the new seasonal pattern
is captured by the irregular, which then feeds into the seasonally adjusted
series. A better comparison is between the Butterworth and the trend/cycle
components estimated by X-12 ARIMA, shown in figure 6a and by TRAMO-
SEATS, shown in figure 6b. The performance of the filters in isolating trends
is broadly similar, despite the simpler nature of the Butterworth filter. Its
tendency to isolate low frequencies, however, causes it to understate the
impact on registrations of the financial crisis from the end of 2007, prior to
the introduction of the scrappage scheme, compared to both X-12 ARIMA
and TRAMO-SEATS. Moreover, the Butterworth filter ends on an upward
trend, perhaps buoyed by memory of the scrappage scheme, while the other
filters end with a downward trend.

4.3. Splitting the Sample

The poor performance against X-12 ARIMA’s quality assessment statis-
tics and the increase in volatility in the irregular as the regime changes,
suggests that investigation of the two periods separately may be worthwhile.
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Figure 6: Trend/Cycle Components of U.K New Car Registrations 1970-
2010.

The series has a very clear break somewhere between August 1998 and March
1999. As the change in regime was widely anticipated it is possible that it
began to influence the pattern prior to its implementation. This can be seen
in the data where anticipation of the first March identifier depresses the num-
ber of registrations in January and February 1999 to 78 per cent and 47 per
cent respectively of those in the previous year. Here we regard January 1999
as the break-point. In reality, the transition between regimes will have been
smoother, with the prospect of a new regime exerting a growing influence
in the months running up to March 2000, but allocating four of the seven
months between identifier changes to the old regime is not unreasonable. The
periodogram corresponding to the annual regime is in figure 7a, while that
corresponding to the six month regime is in figure 7b.

The new regime has a noticeably different pattern, while still displaying
a high level of seasonality. The six month cycle is reflected in greatly di-
minished power at 5π/6 and at other harmonics of π/6 that are not also
harmonics of π/3. Power remains concentrated on the seasonal frequencies
under each regime as over the combined period, reinforcing the assertion that
a lowpass filter will perform a passable seasonal adjustment.

Figure 8 shows the results of applying X-12 ARIMA, TRAMO-SEATS
and the Butterworth lowpass filter over the two sub-samples separately and
splicing the results together.

Again log-additive models were chosen by both methods. Splitting the
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Figure 7: Sub-sample Periodograms of Log U.K New Car Registrations.

sample improves the performance against X-12 ARIMA’s monitoring and
quality assessment statistics markedly. All statistics are met over the first
period, although M3 and M5 remain close to 1. Over the second period, the
procedure fails M5 very marginally, with a value of 1.034, and comes close on
M3, with a value of 0.912. This suggests discomfort with the volatility of the
irregular, which is perhaps not surprising given the sudden slump in regis-
trations following the financial crisis, reflected in figure 8b. TRAMO-SEATS
choses a simpler ARIMA(0,1,1)(0,1,1) ‘Airline’ model for both regimes, which
are estimated as unobserved components models as in 1 with d = 2 and
α(z) = β(z) = 1. The chosen parameters are similar, but not identical,
across the regimes with moving average roots for the seasonally adjusted se-
ries of 0.676 and 0.926 over the first regime and 0.712 and 0.900 over the
second. Not surprisingly, there is no longer a jump in volatility of the irreg-
ular around the time of the regime shift.

All three filters provide reasonably similar de-seasonalised estimates. X-
12 ARIMA calculates a large downward irregular for December 1999, which
the other methods ignore. TRAMO-SEATS identifies a large negative irregu-
lar late in 2007, and so produces larger estimates of the effect of the financial
crisis than the other two.

5. Summary and Conclusions

The adjustment of data on U.K. new car registrations, a series charac-
terised both by the strength of seasonal pattern and its mutation part way
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(b) X-12 ARIMA: Irregular
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(c) TRAMO-SEATS: Seasonally Adjusted
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(d) TRAMO-SEATS: Irregular
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(f) Butterworth Highpass

Figure 8: Seasonal adjustment of U.K New Car Registrations 1970-98, 99-
2010.
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through the sample, has been considered. A semi-parametric method of
seasonal adjustment based on the Butterworth filter was elaborated. This
method can be interpreted parametrically as a special case of the canonical
decomposition. Taking a less parametric view, however, this filter enables a
series with a relatively small irregular error to be split into two components
in an intuitive way. The filter was applied to the data, as a whole and after
splitting into two sub-samples, and the results were compared with those
given by X-12 ARIMA and TRAMO-SEATS.

All filters picked out the main macroeconomic trends underpinning the
series, although there was some divergence over particular events, such as
the size of the effect of the recent financial downturn and the direction of
the trend. Further investigation of the relationship between the series and
macroeconomic variables would be interesting. X-12 ARIMA and TRAMO-
SEATS tended to attribute the shift in seasonal regime to the irregular
and performed far better once the sample was split. Splitting the sam-
ple, of course, entails a loss of information on trend/cycle components that
run across the break. Model-based procedures designed to maintain the
trend/cycle while the seasonal changes are worthy of investigation with this
series.
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Appendix A. The poles and zeros of the Butterworth filter

The zeros of the filter, which can be identified from equation (3), all lie
on the unit circle at the point −1, as would be expected from condition C).

The poles of the filter are the solutions to the expression

(1 + z)n(1 + z−1)n + λ(1− z)n(1− z−1)n

= 1 + λ

(

i
1− z

1 + z

)2n

= 0. (A.1)

Defining s(z) =
(

i1−z
1+z

)

, it is clear that z̃ is pole if an only if s(z̃) is one of
the 2n roots of −1/λ. This leads to 2n values of s equally spaced around the
circle of radius λ−1/2n = tan (ωc/2). Denoting this radius as τ , we have the
poles of s at

s(z) = τ exp

{

iπj

2n

}

, j = 1, 3, 5, . . . , 2n− 1, 2n+ 1, . . . , 4n− 1.

Inverting the function s = s(z) gives

z =
i− s

i+ s
=

(i− s)(i+ s)∗

(i+ s)(i+ s)∗
=

1 + i(s+ s∗)− ss∗

1− i(s− s∗) + ss∗
,

where the symbol ∗ denotes the complex conjugate. Using the Euler equations
it follows that at the 2n poles

s+ s∗ = τ

[

exp

{

iπj

2n

}

+ exp

{

− iπj
2n

}]

= 2τ cos

{

πj

2n

}

,

s− s∗ = τ

[

exp

{

iπj

2n

}

− exp

{

− iπj
2n

}]

= 2iτ sin

{

πj

2n

}

,

ss∗ = τ 2
[

exp

{

iπj

2n

}

exp

{

− iπj
2n

}]

= τ 2.

Hence the 2n poles are given by

z =
1 + 2i cos

{

πj
2n

}

τ − τ

1 + 2 sin
{

πj
2n

}

τ + τ 2
, j = 1, 3, 5, . . . , 4n− 1. (A.2)

The filter is BIBO stable provided the values of z satisfying equation
(A.1), which correspond to the first n roots of s(z) (that is for j = 1, 3, 5, . . . , 2n−
1) lie within the unit circle; correspondingly those of z−1 lie outside. From
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now on we concentrate on the first set of poles. It follows from (A.2) that
when these are expressed in polar form, as ρj exp(iθj), then

ρj =

√

(1− τ 2)2 + (2τ cos
{

πj
2n

}

)2

1 + τ 2 + 2τ sin
{

πj
2n

} ,

and

θj = arctan

{

2τ cos
{

πj
2n

}

1− τ 2

}

, j = 1, 3, 5, . . . , 2n− 1.

The two poles that have the largest modulus are those when j = 1 and
j = 2n − 1, which are reflections of one another in the real line. As n
becomes large their respective values for cos

{

πj
2n

}

head toward 1 and −1,

and for sin
{

πj
2n

}

head toward zero. This results in these poles having unit
modulus at angles of ωc and −ωc with the real line, following application of
the tangent half-angle formula. As ωc and hence τ approaches zero these,
and all other, poles converge to a common point on the unit circle at +1.
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