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Abstract

Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the
development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S)
products. Here, we show that multiple (4x) exposures, prior to the onset of egg laying by adult worms, modulate the skin
immune response and induce CD4+ cell hypo-responsiveness in the draining lymph node, and even modulate the formation
of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x), dermal cells from multiply
infected mice (4x), were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most
abundant in 4x mice were eosinophils (F4/80+MHC-II2), but they did not impact the ability of antigen presenting cells (APC)
to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of
infection appear to have a critical role. The first comprises arginase-1+, Ym-1+ alternatively activated macrophage-like cells,
and the second are functionally compromised MHC-IIhi cells. Through the administration of exogenous IL-12 to multiply
infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most
notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMa-expressing eosinophils. We further illustrate
that the development of these suppressive dermal cells is dependent upon IL-4Ra signalling. The development of immune
hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is
important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the
infective early stages of development.
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Introduction

Schistosomiasis is an important tropical disease caused by the

parasitic helminth Schistosoma and affects 200 million people [1,2]

with a further 779 million at risk of infection [3]. Infection of the

host proceeds via the rapid penetration of exposed areas of skin by

invasive aquatic cercariae, and people living in endemic areas are

likely to repeatedly come into contact with infective cercariae.

However, it is not known whether repeated exposure to cercariae

affects the development of immune responses in the skin, or

responses to later stages of the parasite such as the egg which is the

primary agent of Th2 biased immunopathology [2,4,5].

The mouse model of schistosome infection provides an important

tool with which to examine the early immune response to larval

schistosomes. Studies in this model have almost exclusively

examined responses to a single infection which are associated with

the development of mixed Th1/Th2 responses against normal

larvae, although vaccination with live radiation-attenuated cercar-

iae induces a Th1 biased response [6,7]. Infection elicits an initial

neutrophil influx into the skin [8], followed by MHC-II+

macrophages (MW) and dendritic cells (DC) orchestrated by a

cascade of chemokines and pro-inflammatory cytokines [9]. Both

MW and DC in the dermis take up antigenic excretory/secretory

(E/S) material released by invading larvae and are subsequently

detected in the skin draining lymph nodes (sdLN) [10] where they

have the potential to present parasite antigen to CD4+ cells.

However, invading larvae and their E/S products can also

modulate the dermal immune response [9,11,12,13] and condition

DC towards a ‘modulated’ phenotype [14] which prime CD4+ cells

towards a Th2 phenotype in vitro and in vivo [15,16].

A common feature of chronic exposure to helminth infections is the

modulation of host immune responses which over time leads to a state

of hypo-responsiveness [17,18,19]. However, little is known about

whether immune responsiveness to helminth infections is determined

by the frequency of exposure to infective larvae. In particular it is not

known whether multiple exposures to schistosome larvae, and/or their

E/S products, deviate innate immune events in the skin, or shape the

subsequent development of acquired immune responses [12].

Here, evidence is provided to support the view that multiple

exposures of the host to schistosome cercariae modulate the skin
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immune response and induce hypo-responsiveness of the adaptive

response. Two distinct APC populations at the dermal site of

infection appear to have a critical role. The first population

comprises arginase-1+ (Arg-1) Ym-1+ AAMW-like cells, and the

second are functionally compromised MHC-IIhi cells. These

suppressive myeloid cell phenotypes form as a consequence of

events in the skin, most notably an enrichment of IL-4 and IL-13

co-incident with an influx of RELMa-expressing eosinophils. We

further show that the development of these suppressive dermal

cells is dependent upon IL-4Ra signalling. The importance of

immune down-regulation caused by multiple exposures to larvae

extends beyond the immediate infection site to distant lymphoid

tissues and even modulates the formation of hepatic granulomas

elicited by the egg stage of the parasite.

Results

Multiple exposures to schistosome cercariae cause CD4+

cell hypo-responsiveness in the sdLN
The immune responses in the sdLN of mice exposed to four

percutaneous doses (4x) of S. mansoni cercariae at weekly intervals

were compared with those in mice exposed to a single (1x)

infection (Figure 1A). This revealed that following stimulation in

vitro with larval parasite antigen, CFSE-labelled cells from the

sdLN of 4x mice were hypo-responsive in terms of their ability to

proliferate and divide, compared to cells from 1x mice (Figure 1B).

The hypo-responsive state in 4x mice was particularly marked in

the CD4+ cell population (4x= 4.8% cf. 1x= 30.1%; Figure 1B).

Furthermore, while sdLN cells from 1x mice produced abundant

antigen-specific IL-4, IFNc and IL-10, very little or no cytokine

was produced by cells from 4x mice (Figure 1C). Hypo-

responsiveness in the sdLN was also evident in vivo since CD4+

cells from 1x mice presented significantly greater uptake of BrdU

compared to 4x mice (26.6% cf. 16.9%, p,0.001; Figure 1D).

However, analysis of the CD4+ cell population in the sdLN failed

to provide any evidence of expanded Foxp3+ regulatory T cell

populations (Figure 1E). Hypo-responsiveness was not dependent

on the total dose (i.e. 4x 100 cercariae), as a single dose of 400

cercariae induced abundant cell proliferation (data not shown).

The duration after the initial infection was not a cause of hypo-

responsiveness as CD4+ cells from 1x mice infected on day 0 and

sampled on day 25 (Figure S1A) which failed to proliferate

extensively in response to antigen, (Figure S1B), released abundant

antigen-driven IFNc showing that the cells were responsive to

antigenic re-stimulation (Figure S1C).

To assess whether hypo-responsiveness was evident in lymphoid

tissues distant from the site of infection, mice were exposed to 4x

doses of cercariae on the right pinna (4xR) while the left pinna was

exposed to only one dose (1xL). Mice exposed to 4x or 1x dose(s)

on both pinnae served as controls. As predicted, cells from the

sdLN draining 4xR pinnae were hypo-responsive, comparable to

mice exposed to 4x doses on both ears (Figure 2A). However,

sdLN cells draining the 1xL pinna from the same mouse as 4xR

pinna were also hypo-responsive (Figure 2A). This suggests that

immune events in the skin exposed to multiple doses of larvae

induce hypo-responsiveness even in distant non-draining sdLN (i.e.

1xL pinnae) and is not just confined to the local site of infection (i.e.

4xR pinnae).

Multiple infections also modulated the immune response after

maturation of larvae into adult worms and commencement of

oviposition. Five weeks (35 days) after the initial infection

(Figure 2B), cells from the mesenteric LN of mice exposed to 4x

infections were hypo-responsive in terms of their ability to

proliferate in vitro to stimulation with SEA compared to cells from

mice exposed to a single infection (p,0.05; Figure 2C). Modu-

lation was observed even when a lower infection dose (25

cercariae) was employed (data not shown). At 6 weeks (42 days)

after the first infection, 4x mice produced significantly lower levels

of IL-4 than cells from 1x mice (p,0.05; Figure 2D). IFNc was not

detectable in either 1x or 4x mice, while only limited amounts of

IL-10 were detected, supporting the thesis that multiple infections

induce lymphoid hypo-responsiveness. The timing of the infection

regime (Figure 2B) ensured that the only source of egg antigens

came from the primary and not subsequent infections. Signifi-

cantly, inflammatory granulomas surrounding embolised eggs in

the livers of 4x mice at day 42 were on average 38% smaller in

area (mM2) than in 1x mice (Figure 2E; p,0.001). This

demonstrates that repeated percutaneous exposure to schistosome

cercariae causes immune hypo-responsiveness to later develop-

mental stages of the parasite and can down-regulate egg-induced

pathology.

Dermal exudate cells (DEC) from the skin infection site
are responsible for mediating CD4+ cell
hypo-responsiveness
Multiple exposures to schistosome cercariae caused a significant

thickening of the skin infection site (Figure S2A). This was largely

due to a pronounced infiltrate of inflammatory cells within

epidermal and dermal layers (Figure S2B). Therefore, we

hypothesised that MHC-II+ APC populations within this infiltrate

might play an important role in mediating the observed hypo-

responsiveness following their migration to the sdLN and

presentation of antigen to CD4+ lymphocytes [9].

Skin biopsies from 1x and 4x infected mice were cultured in vitro

overnight to obtain populations of spontaneously migrating dermal

exudate cells (DEC) and then used as APC during co-culture with

CD4+ cells from the sdLN [20]. The advantage of this isolation

technique is that migratory cells can be recovered without having

to use a potentially damaging enzymatic digestion step. Signifi-

cantly, DEC from 1x mice supported much greater levels (.60%)

of antigen-specific CD4+ cell proliferation than DEC from 4x mice

(p,0.001; Figure 3A). Moreover, the superior antigen presenting

Author Summary

Schistosomiasis is a major helminth disease that infects
more than 200 million people in the tropics. Free-
swimming aquatic cercariae infect through the skin after
contact with contaminated water, and in endemic areas
this can occur frequently. However, nothing is known
about how multiple exposures affects innate immunity in
the skin, and/or whether it impacts the acquired immune
response. Consequently, we have developed an infection
model in the mouse to examine the immune response to
multiple infections prior to the production of eggs. We
show that multiple exposures to schistosome larvae cause
lymphocyte hypo-responsiveness, partly mediated by
macrophages and dendritic cells from the skin which have
a ‘down-regulated’ phenotype and are not able to act as
efficient antigen presenting cells (APCs). These regulated
APCs are conditioned amongst high levels of the cytokines
IL-4 and IL-13 which follow an influx of abundant
eosinophils. In the absence of the regulatory APCs, and
in the absence of the common receptor chain for IL-4 and
IL-13 (i.e. IL-4Ra), lymphocyte proliferation is restored.
These findings are important in understanding how
dermal immune responses are modulated so that we can
devise new strategies for vaccine delivery, or the treatment
of chronic inflammatory conditions of the skin.

Helminth Modulation of Dermal Cell Activation
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capacity of 1x DEC was evident with CD4+ cells from either 1x or

4x infected mice (data not shown).

Multiple parasite exposure induces dermal eosinophilia
The total numbers of DEC obtained from 4x mice between days

1 to 4 post-infection were much greater compared to 1x mice

(p,0.01; Figure 3B), although the proportions that were CD45+

across both groups of mice, at all time points, were similar (60–

80%; Figure 3B). Very few (,0.26105) spontaneously migrating

DEC were recovered from naı̈ve mice, indicating that the DEC

recovered from 1x and 4x mice represented the infection-induced

inflammatory immune cell populations of the skin. DEC consist

primarily of neutrophils immediately after infection but an

increasing number of DC and MW are present during the time

that larvae remain in the skin [8,9,10]. On the basis of MHC-II

and F4/80 expression, four discrete cell populations (R1–R4) were

identified (Figure 3C). R1 cells were F4/802 and MHC-II2, and

comprised a smaller proportion of 4x compared to 1x DEC

(p,0.001). The majority of R1 cells were Ly6GhiLy6ChiSigle-

cFloCD11clo (Figure 3E), suggesting the majority are neutrophils.

Cytospins of R1 cells recovered using a MoFlo cell sorter

(DakoCytomation) confirmed that morphologically they predom-

inantly consisted of neutrophils (Figure 3D) and that very few

lymphocytes were present.

R2 cells (F4/80+MHC-II2) constituted the majority (.60%) of

DEC from 4x mice, and comprised a much greater proportion of

the DEC population than from 1x mice (,5 fold increase;

p,0.001; Figure 3C). Moreover, when the numbers of DEC

recovered from the two groups of mice (Figure 3B) are taken into

account, R2 cells in 4x mice were 15.8-fold more numerous than

in 1x mice. R2 cells were the only cells to express high levels of

SiglecF (Figure 3E), a marker of eosinophils [21]. R2 cells were

also Ly6GloLy6ChiCD11clo, displayed high granularity and

cytospins of sorted R2 cells identified them as eosinophils

(Figure 3D). The abundance of eosinophils in 4x compared to

1x or naı̈ve mice was confirmed following probing of pinnae sheets

with FITC-labelled anti-SiglecF mAb (Figure S3A). Toluidine blue

staining of skin sections showed that while the occasional mast cell

Figure 1. Multiple infections of mice with S. mansoni cercariae render CD4+ cells in the draining LN hypo-responsive. (A) Infection
regime at days 0, 7, 14 and 21 indicated by an arrow (,100 cercariae per pinna; 50% penetration rate [56]); sdLN sampled at day 4 after the final
infection from multiply (4x) and singly (1x) exposed mice. (B) Antigen stimulated in vitro proliferation of CFSE-labelled cells from the sdLN of naı̈ve, 1x
and 4x infected mice. Representative dot plots show the percentage of CD4+ cells that have undergone.1 division and bar chart shows mean values
+ SEM for 6 mice. (C) Cytokine production from antigen stimulated sdLN cell cultures. Bars show mean + SEM (n= 4 mice); dashed line is lower limit of
detection. (D) In vivo lymphocyte proliferation measured in naı̈ve, 1x and 4x mice treated with BrdU via the drinking water for 4 days prior to sacrifice.
Representative flow histograms of BrdU+ cells; bar chart shows mean % BrdU+CD4+ cells + SEM (n= 7 mice). (E) Representative dot plots showing the
proportion of CD4+ cells which are Foxp3+; bar chart shows mean + SEM (n= 4 mice). P values are of naı̈ve or 4x mice compared to 1x mice. All
experiments were repeated at least twice with similar results.
doi:10.1371/journal.ppat.1001323.g001

Helminth Modulation of Dermal Cell Activation
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was detected in the dermis of both naı̈ve and 1x skin, there was a

substantial increase in the numbers detected in the skin of 4x mice

(p,0.01; Figure S3B & S3C). Mast cells were particularly

abundant adjacent to the basement membrane separating the

epidermis from the dermis, and many appeared to be degranu-

lating (Figure S3D). However, mast cells were retained in the

pinnae and did not migrate during overnight culture as very few

IgeR+ SiglecF2 cells were present in 4x DEC, and only,4% were

c-kit+ (data not shown).

Two further populations of DEC were defined on the basis of

differential MHC-II expression: R3 (MHC-IIlo) and R4 (MHC-IIhi).

R3 cells were also F4/80+, while R4 comprised both F4/80+ and

F4/802 cells (Figure 3C). Both R3 and R4 cells were Ly6G2Si-

glecF2 showing this fraction did not contain granulocytes

(Figure 3E). Cytospins showed that R3 and R4 cells were largely

mononuclear with a large cytoplasm (Figure 3D) and since R3 cells

had increased Ly6C expression compared to R4 cells we conclude

that R3 cells were likely to be inflammatory MW. Whilst both R3

and R4 cells expressed CD11c, the geometric mean fluorescence

intensity (MFI) was highest on MHC-IIhi R4 cells (Figure 3E),

indicating that most R4 cells were DC with high antigen presenting

capabilities. Although DEC from 4x mice comprised smaller

proportions of both R3 and R4 cells compared to 1x mice, this

was presumably due to the massive expansion of R2 eosinophils

(53% and 80% decrease respectively; p,0.001; Figure 3C).

The MFI of expression for a number of activation/regulatory

factors (i.e. CD40, CD80, CD86, PDL1, PDL2, Fas, and FasL) on

R3 and R4 cells was examined, and several were found to be

differentially expressed between 1x and 4x mice, and between R3

and R4 cells (Figure S4). CD80, and to a lesser extent CD86, were

down-regulated in 4x compared to 1x mice, although the MFI for

CD40 was either slightly up-regulated (on R3 cells), or not altered

(R4 cells). Together, this suggests that R4 rather than R3 cells are

the primary APC population in the DEC population, and that

APCs in the skin have reduced expression co-stimulatory

molecules following four infections. Both R3 and R4 cells from

4x mice expressed lower MFI of regulatory factor PDL1 but

significantly increased PDL2 and Fas (Figure S4). The expression

of PDL1 and PDL2 was greater for R4 cells, whilst the MFI for

Fas and FasL was much greater on R3 cells; all four of these

markers have been associated with regulation of the immune

responses but PDL2 is specifically associated with AAMW [22].

The immune environment of multiply-infected mice
induces an AAMW-like cell population in the skin
The cytokine milieu of the infection site is likely to be important

in determining the composition and activation status of the DEC

populations. Indeed, supernatants recovered from in vitro cultured

skin biopsies of infected compared to naive mice contained

elevated levels of several soluble immune mediators including

TNFa, IL-12/23p40, IL-4, IL-13, IL-10 and TSLP (Figure 4A);

IFNc was not detectable. The supernatants from 4x infected mice

were particularly rich in Th2-type cytokines, and over the first 4

days after infection contained 3- to 5-fold increased levels of IL-4

and IL-13 compared to 1x mice, as well as significantly greater

quantities of IL-10 (Figure 4A). Though levels of IL-12/23p40

were significantly increased from 4x skin biopsies compared to 1x,

it was a less dramatic increase compared to IL-4, IL-13 and IL-10.

Furthermore, there were no significant differences between 1x and

4x mice in the levels of TNFa and, perhaps surprisingly, TSLP.

The Th2-like environment in the skin infection site of 4x mice

appeared to trigger switching of dermal MW from being

‘classically-activated’ (CAMW) to ‘alternatively-activated’ as quan-

titative (q)RT-PCR analysis of mRNA from 4x DEC showed that

transcripts for Arg-1, Ym1 and RELMa, which typically

characterise AAMW [23,24,25], were all significantly up-regulated

compared to 1x DEC (Figure 4B). Transcripts for IL-4 and IL-13

Figure 2. Multiple infections cause systemic immune hypo-res-
ponsiveness and down-regulate the size of egg-induced granulo-
mas in the liver. (A) Antigen-specific proliferation of sdLN cells from
pinnae exposed to 1x or 4x infections on the left pinnae (1xL) or right pinnae
(4xR), or both (1x1x and 4x4x). Results show mean 3H-thymidine incor-
poration (c.p.m.) + SEM (n=5 mice). (B) Infection regime used to assess the
effect of repeated infection on the immune response tomature parasites. (C)
Egg-antigen specific proliferation of mesenteric LN cells taken on day 35
from 1x and 4xmice. Bars showsmean 3H-thymidine incorporation (c.p.m.) +
SEM (n=5 mice). (D) Egg antigen-specific IL-4, IFNc and IL-10 production by
mesenteric LN cells taken on day 42 from 1x and 4x mice. Bars shows mean
cytokine production + SEM (n=4 mice). (E) Size of hepatic granulomas
surrounding single eggs in 1x and 4x mice on day 42; Points are granuloma
areas (measured as mm2 from H&E stained liver sections + SEM; n=37
granulomas). P values are of 4x mice compared to 1x mice.
doi:10.1371/journal.ppat.1001323.g002
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Figure 3. Dermal exudate cells (DEC) from 4x mice are inefficient at supporting antigen-specific CD4+ cell proliferation and
comprise a large influx of eosinophils but a reduction in MHC-II+ cells. (A) DEC recovered from cultured biopsies of 1x and 4x infected skin
were co-cultured with purified CD4+ T cells from the sdLN of 1x mice and stimulated with parasite antigen. Bars show the mean c.p.m. + SEM (n = 5
DEC samples) and is representative of 4 experiments performed with similar results. (B) Numbers of DEC recovered from naı̈ve, 1x and 4x mice, and
the proportion which are CD45+ (mean + SEM, n = 6 pinnae/time point). (C) Representative flow cytometry dot plots of DEC recovered on day 4
labelled for MHC-II and F4/80. Values show mean percentage 6 SEM of the gated populations R1-R4 (n = 6 mice). (D) Morphology of DEC sorted by
MoFlo into R1-R4 on the basis of F4/80 and MHC-II stained with DiffQuick. (E) Representative flow cytometry histogram plots of R1-R4 cell populations
labelled with antibodies against Ly6G, Ly6C, SiglecF, and CD11c from 1x (blue) and 4x (red) mice; solid grey plot shows the extent of isotype control
antibody staining. Also shown is a bar chart for each marker showing the mean values + SEM for 5 individual mice. Data is representative of at least
two experiments.
doi:10.1371/journal.ppat.1001323.g003
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were also elevated in DEC from 4x mice. Conversely, the

expression of iNOS and IFNc mRNA was significantly lower in 4x

compared to 1x DEC.

When DEC were sorted into the R2, R3 and R4 populations as

described above (see Figure 3C), only R3 cells (F4/80+MHC-IIlo)

from 4x DEC expressed an abundance of Arg-1 and Ym1

Figure 4. Multiple infections induce a Th2-type cytokine environment in the skin and induce the expression of markers of
alternative activation. (A) Cytokine production by skin biopsies from 1x and 4x mice taken at different days post-infection. Bars show mean
cytokine + SEM (n= 6). (B) Analysis of mRNA transcript levels from 1x and 4x DEC collected on day 4 post-final infection defined by qRT-PCR. Data are
shown in arbitrary units (a.u.) + SEM relative to the expression of GAPDH for each sample (n = 5). (C) Transcript levels of DEC sorted into regions R2-R4
on the basis of F4/80 and MHC-II. Data are means + SEM of 3–4 separate experiments using DEC populations (n = 15 mice). Significances are shown
between groups indicated by connector bars, of naı̈ve or 4x mice compared to 1x mice.
doi:10.1371/journal.ppat.1001323.g004
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transcripts; they did not express RELMa (Figure 4C). This

indicates that the R3 fraction comprised a RELMa negative

‘AAMW-like’ cell population. In contrast, R3 cells from 1x DEC

are likely to be CAMW due to their high levels of iNOS transcript

combined with low expression of Arg-1, RELMa and Ym1

(Figure 4C). R2 cells (F4/80+MHC-II2), particularly from 4x

DEC, expressed the greatest levels of IL-4 and IL-13 mRNA, and

also expressed RELMa transcript. As R2 cells from 4x mice

comprised an abundance of eosinophils, this suggests that these

RELMa+ granulocytes are a source of the Th2-biassed cytokine

environment in multiply-infected skin, which in turn may be

crucial in driving the formation of the R3 AAMW-like cells.

Both ‘AAMW-like’ cells and MHC-IIhi APC but not
eosinophils from multiply-infected skin are directly
responsible for rendering CD4+ cells hypo-responsive
To test which DEC population mediates suppression of sdLN

lymphocytes, R2 (eosinophil), R3 (MHC-IIlo AAMW̃like) and R4

(MHC-IIhi DC) cells from 1x or 4x mice were isolated and co-

cultured with CD4+ cells from 1x infected mice. Whilst R2 and

R3 cells from 1x mice induced only low levels of CD4+

proliferation, this was even lower when they were obtained from

4x mice in which proliferation was not significantly above that by

CD4+ cells alone. However, MHC-IIhi R4 cells from 1x and 4x

DEC were the only cells able to support substantially elevated

levels of antigen-specific CD4+ cell proliferation (Figure 5A).

Strikingly, R4 cells from 4x DEC supported significantly lower

(,3-fold) levels of proliferation compared to R4 cells from 1x

mice (p,0.001; Figure 5A). This suggests that the R4 cells from

4x mice, despite expressing high levels of MHC-II, are

functionally compromised and that their intrinsic APC potential

is impaired.

To establish whether R2 eosinophils from 4x mice modulate the

APC potential of MHC-II+ cells (i.e. R3 and R4 combined), R2

cells were added to MHC-II+ cells and used to drive CD4+ cell

proliferation. The level of CD4+ cell proliferation in the presence

of R2 cells was similar to that achieved by MHC-II+ cells, or

unsorted 1x and 4x DEC (Figure 5B). Therefore, the R2 cells do

not adversely affect in vitro CD4+ cell proliferation, either by acting

directly on CD4+ cells, or by modulating putative APCs present in

the R4 population. In vivo however, eosinophils may modulate the

immune response indirectly as a source of IL-4 and IL-13.

Significantly, addition of R3 (MHC-IIlo) AAMW̃like cells from

4x DEC to co-cultures of R4 (MHC-IIhi) and CD4+ cells

suppressed cell proliferation by ,70% (p,0.05; Figure 5C).

Indeed, CD4+ proliferation following co-culture with both R3 and

R4 cells from 4x mice was reduced to near the level achieved with

unsorted 4x DEC and was 82% lower than the level achieved with

unsorted 1x DEC. Together, these results show that AAMW-like

R3 cells from 4x mice are unable to support antigen-specific CD4+

proliferation and have a suppressive function on MHC-IIhi R4

cells. Thus, R3 but not R2 DEC from multiply infected mice

mediate the suppression of CD4+ cells from the sdLN.

Removal of phagocytic cells in the skin infection site via

clodronate liposome (CL) treatment (Figure 6A), substantially

reduced the number of both R3 and R4 DEC from 4x mice,

although the numbers of eosinophils was only slightly reduced

(Figure 6B). Moreover, the proliferative response of sdLN cells

from CL-treated mice was increased compared to PBS-liposome-

treated 4x mice (p,0.05) and the production of IFNc, albeit

limited, was also significantly increased (Figure 6C). This further

shows that R3 and R4 phagocytes in the skin are compromised in

their ability to support lymphocyte responsiveness in the sdLN.

Figure 5. DEC from 4x mice include suppressive and function-
ally impaired MHC-II+ cells, but eosinophils do not directly
cause cell hypo-responsiveness. (A) R2, R3 and R4 cells (16104) from
1x and 4x DEC were co-cultured with purified CD4+ cells from 1x sdLN in
the presence of parasite antigen. (B) R2 eosinophils (26104) from 4x DEC
were co-cultured with purified CD4+ cells from 1x sdLN in the presence of
parasite antigen, or together with mixed R3/R4 cells, or unsorted 1x and
4x DEC populations (all 26104). Bars show CD4+ cell proliferation as mean
c.p.m. + SEM (n= 5). (C) Sorted R3 and R4 cells from 4x DEC were cultured
separately, or combined, with purified CD4+ T cells from sdLN of 1x mice.
Significances are shown between groups indicated by connector bars.
Sorted DEC fractions were pooled from 15–35 mice and bars are mean +

SEM of five replicate wells and are representative of 2–3 experiments.
doi:10.1371/journal.ppat.1001323.g005
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The cytokine environment in multiply exposed mice
causes sdLN hypo-responsiveness and is dependent
upon IL-4Ra signalling
In order to prevent the dominant Th2-type response in the skin

of 4x mice and thereby determine whether it drives the formation

of modulated APC, recombinant IL-12 (rIL-12) was administered

48 hours after the 1st, 2nd and 3rd infections (Figure 7A). DEC

from the pinnae of rIL-12 treated 4x mice had much reduced

levels of IL-4 and IL-13 transcripts (11- and 5-fold reduction

respectively; both p,0.01), but also less RELMa (p,0.01) and

Ym1 (p,0.05; Figure 7B). Although the levels of Arg-1 mRNA in

4x DEC were not affected by rIL-12 treatment, levels of iNOS

transcript were up-regulated (4.5-fold; p,0.01; Figure 7B). IL-12

treatment had no impact on the number of DEC recovered but it

altered the cellular composition of DEC from 4x mice substantially

by reducing the proportions of eosinophils (p,0.01; Figure 7C).

Moreover, as judged by the expression of iNOS, rIL-12 promotes

conditioning of MW toward a ‘classically-activated’ status rather

than ‘alternatively-activated’ as seen in the PBS-treated control 4x

mice. In contrast, the pattern of expression of CD40, CD80,

CD86, PD-L1, PD-L2, Fas and FasL by R3 and R4 cell

populations (Figure S5) showed that while there were clear

differences in expression between R3 and R4 cells obtained from

1x versus 4x mice, there were only minor changes in the expression

of these molecules between 4x versus rIL-12-treated 4x mice. The

only significant, albeit slight, changes were up-regulation of CD40,

CD80, and PDL2 by R3 cells from rIL-12-treated 4x mice, and

Fas by R4 cells. Conversely, PDL2 was down-regulated by R4

cells. Together, this suggests that an obvious marker of

‘modulation’ has not yet been identified.

On the other hand, in vitro proliferation of sdLN cells from rIL-

12-treated 4x mice was 3.6-fold greater than for cells from sham-

treated (PBS) 4x mice (p,0.01), and was similar to that in both

groups of 1x mice (Figure 7D). Moreover, the sdLN cells secreted

abundant IFNc (unlike sham-treated 4x mice), which was ,7.5

fold greater than 1x mice (p,0.001, Figure 7D): delivery of

exogenous IL-12 also caused the detection of small quantities of

IL-4 compared to sham-treated 4x mice (p,0.01). These data

indicate that exogenous IL-12 delivery to the skin prevents the

development of sdLN hypo-responsiveness whilst simultaneously

modulating dermal eosinophil influx and Th2-conditioning of

dermal macrophage populations.

To further investigate the role of dermal cytokines in

conditioning DEC phenotype and the generation of lymphocyte

hypo-responsiveness, mice deficient for IL-4Ra were exposed to

multiple infections. DEC recovered from 4x IL-4Ra2/2 mice

contained only a small SiglecF+ eosinophil population compared

to 4x WT mice (p,0.05; Figure 7E), demonstrating that IL-4Ra

expression is critical for mediating the influx of eosinophils into the

4x skin infection site. DEC from 4x IL-4Ra2/2 mice also had

significantly down-regulated levels of mRNA for Arg-1, Ym1 and

RELMa but up-regulated levels of iNOS (Figure 7F), confirming

that signalling via IL-4Ra is required for the expression of these

molecules [23] and the generation of the AAMF-like population in

4x mice. Our data reveals an essential role for IL-4Ra in the

regulation of RELMa, which is confined to the eosinophil

population.

The proliferation of sdLN cells from 4x IL-4Ra2/2 mice was

restored to near the levels achieved by cells from 1x wild-type

(WT) mice, clearly showing that IL-4/IL-13 signalling is important

in the development of lymphocyte hypo-responsiveness

(Figure 7G). Combined, this provides evidence that IL-4Ra+ cells

contribute towards the generation of lymphocyte hypo-respon-

siveness and demonstrates that IL-4 and IL-13 cytokine signalling

through the IL-4Ra is an important mediator in dampening the

immune responses in multiply infected mice.

Discussion

In this study, we demonstrate that mice multiply-infected with

schistosome larvae have increased expression of ‘Th2-associated’

cytokines in the skin-exposure site leading to hypo-responsive

lymphoid activity in the sdLN and down-regulated hepatic

pathology to schistosome eggs. We conclude that the altered

cytokine environment in the infection site of multiply-exposed

mice most likely results from an influx of RELMa+ eosinophils,

which as a source of IL-4 and IL-13 condition dermal MHC-II+

myeloid cells with an alternatively-activated and modulated

phenotype and makes them inefficient at supporting CD4+

lymphocyte activity.

We have established an experimental model of schistosome

infection in which the immune response to multiple-exposure with

S. mansoni larvae can be investigated prior to oviposition and hence

in the absence of egg antigens. Mice exposed to four doses of

cercariae exhibit lymphocyte hypo-responsiveness supporting

earlier studies on multiple infection with the bird schistosome T.

regenti [26]. The hypo-responsive state extends to sdLN of distant

‘non-exposed’ skin and the mesenteric LN responses at the acute

Figure 6. Removal of phagocytic cells through clodronate
liposome treatment partially restores lymphocyte responsive-
ness. (A) PBS- or clodronate-liposomes were given to 4x mice
intradermally as indicated prior to infection. (B) Percentage of cells
defined by flow cytometry as R2 eosinophils, R3 (MHC-IIlo AAM like)
and R4 (MHC-IIhi DC) recovered from 4x mice that received PBS- or
clodronate liposomes. Values are the mean percentage of cells + SEM
(n = 4–5 mice). (C) Antigen-specific in vitro proliferation and cytokine
production by sdLN cells from 1x mice and 4x mice treated with PBS- or
clodronate-liposomes. Results show the mean c.p.m. or pg cytokine/ml
+ SEM (n= 4–5 mice). Significance shown between groups indicated by
connector bars, one experiment of two is shown giving similar results.
doi:10.1371/journal.ppat.1001323.g006
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stage of infection leading to the modulation of granulomatous

inflammation against eggs in the liver. The down-regulated

activity of lymphocytes in the sdLN appears not to involve Foxp3+

Treg cells as there was no difference in their frequency in the sdLN

of 1x and 4x mice. Rather, it appears to result partially from the

development of anergy as in vitro responsiveness of sdLN cells can

restore lymphocyte activity to a limited extent through the

addition of IL-2 (Cook et al. MS in preparation).

Modulation of the acquired immune response to chronic

schistosome infection is a well accepted immune phenomenon

and the presence of eggs and their released antigens are the

primary agent [27]. However, whilst modulation of the immune

response to multiple schistosome infections has been reported

previously [28,29], parasites were allowed to mature and lay

eggs before drug-cure, thereby obscuring the cause of hypo-

responsiveness. Here our study clearly demonstrates that multiple

exposures of the skin to infective larvae (prior to egg deposition)

predispose the host to immune regulation against larval anti-

gens and later developmental stages of the parasite (namely the

egg). This suggest that the exposure history of individuals in

endemic areas who frequently come into contact with infective

parasites [30] is likely to be an important factor in the

development of immune responsiveness and hence egg-induced

immunopathology.

Figure 7. Treatment of 4x mice with rIL-12, or multiple infection of IL-4Ra2/2 mice reduces eosinophilia and restores the
lymphocyte responsiveness in the sdLN. (A) Treatment regime of rIL-12 administration to 4x mice 2 days after the 1st, 2nd and 3rd infection, and
2 days prior to infection for 1x mice. (B) Transcript analysis by qRT-PCR of DEC from PBS or rIL-12 treated 1x and 4x infected mice expressed in
arbitrary units (a.u.) relative to GAPDH shown as mean + SEM (n= 4–5). (C) Mean percentage of cells in R2 DEC recovered from rIL-12 or PBS treated 1x
and 4x mice + SEM (n= 4–5 mice). (D) Antigen-specific in vitro proliferation and cytokine production by sdLN cells from PBS or rIL-12 treated 1x and 4x
mice. Results show the mean c.p.m., or pg/ng cytokine/ml, + SEM. (E) Percentage of Siglec-F+ and F4/80+ cells in DEC recovered from 1x WT, 4x WT
and 4x IL-4Ra2/2 mice. Bars show mean percentage + SEM of the relevant gated region (n = 5 mice). (F) Transcript analysis of Arg-1, RELMa, Ym-1, and
iNOS genes in the total DEC performed by qRT-PCR (n = 5). (G) Antigen-specific in vitro proliferation by sdLN cells. Results are shown as the mean
percentage change compared to the level of proliferation generated by 1x WT cells + SEM (n= 9–16).
doi:10.1371/journal.ppat.1001323.g007
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Typically, chronic helminth infections are associated with the

induction of a biased Th2 associated immune response [31],

although the response to schistosome parasites prior to egg-laying

is thought to comprise a mixed Th1/Th2 phenotype with IFNc

production alongside IL-4 and IL-5 [4]. It is widely accepted that

the immune response only becomes dominated by Th2 cells after

the start of egg laying [4], although it has also been suggested that

exposure to adult worms and their released antigens in the absence

of egg antigen can initiate polarisation towards a Th2-phenotype

[32]. In light of these observations, we specifically examined

whether multiple exposures to infective larvae is conducive to the

development of Th2 polarisation. While a Th2 bias was observed

in the skin and sdLN in response to non-maturing bird

schistosome T. regenti larvae [26], we did not observe a Th cell

subset bias in the sdLN of mice exposed to 4x doses of S. mansoni

cercariae since hypo-responsiveness was evident for all the

cytokines tested. Nevertheless, analysis of the skin-infection site

demonstrated that multiple exposures to cercariae caused

dramatically increased levels of IL-4 and IL-13 secretion, as well

as increased levels of transcript for these cytokines. Lymphocyte

responsiveness was also restored in 4x IL-4Ra2/2 mice demon-

strating that signalling via IL-4Ra, which is required for both IL-4

and IL-13, has a major influence on the development of hypo-

responsiveness.

As the most abundant cell population in the skin after 4x

infections were SiglecF+ eosinophils, and R2 eosinophils sorted

from total DEC expressed abundant mRNA for IL-4 and IL-13,

we propose that eosinophils may be the primary source of the

copious IL-4 and IL-13 released by 4x skin biopsies. Eosinophils

release other pro-Th2/down regulatory molecules such as

eosinophil-derived neurotoxin [33], although the expression of

RELMa by eosinophils may represent a feedback mechanism to

dampen the abundance and potency of Th2-type cytokines

[34,35]. Other tissue resident cells in the skin, such as mast cells

and endothelial cells, may release additional polarising mediators

such as TSLP [36,37] but no difference was detected in the levels

secreted by the skin of 4x versus 1x mice. This implies that TSLP is

not likely to be important in conditioning the dermal immune

response in our multiple infection model but does not rule out

other cytokines such as IL-25 or IL-33 recently described to be

important for Th2 induction [38,39,40].

It might be argued that the abundance of eosinophils in 4x DEC

simply dilutes the number of potential APC accounting for the

inability of the total DEC population to support lymphocyte

responsiveness. However, R3 an R4 cells from 4x mice in the

absence of R2 eosinophils were deficient at supporting lymphocyte

proliferation. Moreover, we found no evidence that purified

eosinophils from 4x DEC directly or indirectly down-regulate in

vitro lymphocyte responses supported by putative APCs. Instead,

eosinophils may contribute towards the development of hypo-

responsiveness in our infection model by conditioning dermal cells

that subsequently traffic to the sdLN where they mediate the

extent of the acquired immune response.

MF are especially sensitive to high levels of IL-4 and IL-13 and

become ‘alternatively-activated’ [41]. In fact, AAMW-like cells

(R3) are a major constituent of the DEC population of 4x mice,

and while most studies on AAMW elicited by helminth infections

have been on cells in the intestines, lungs or peritoneal cavity

[24,25,34,41,42,43,44,45], our study is the first to report their

presence in the skin. Conventional AAMW observed following

helminth infection are IL-4/IL-13-dependent, and analyses of the

DEC mRNA transcript levels demonstrated that the AAMW-like

population was absent in 4x IL-4Ra2/2 mice. However, although

RELMa has been previously thought to be a defining character-

istic of AAMW [41], we note that our AAMW-like cell population

obtained from the skin does not express abundant RELMa and

may represent a tissue-specific sub-population of MF. The MF

population in 4x IL-4Ra2/2 mice instead displayed a CAMW

phenotype accompanied by increased levels of MHC-II. AAMF

are required for the induction of protective memory Th2 responses

against gut helminths [46], possibly via increased Ym1 [47].

However, sdLN cells from our repeatedly infected mice displayed

down-regulated Th2 cytokine production suggesting that the

AAMW-like cells in our infection model are not involved in the

promotion of Th2 responses. AAMW-like cells may be required for

eosinophil recruitment [48]. Indeed, 4x mice treated with

clodronate liposomes to deplete phagocytic cells had a reduced

influx of eosinophils, although the remaining population was still

substantial in number.

The AAMW-like cells revealed in our studies were functionally

suppressive and mediated hypo-responsiveness of sdLN cells. They

expressed arginase and Ym1 but not RELMa transcript which

may highlight the heterogeneity of AAMW depending upon their

tissue location (i.e. the skin), and/or reflect a ‘wound healing’

phenotype defined as M2c MW within a ‘colour wheel’ of immune

function [49,50]. The sorted R3 AAMW-like DEC population in

4x mice down-regulated CD4+ T cell responses supported by

MHC-IIhi APCs, a feature previously described for conventional

AAMW [51]. Removal of the dermal AAMW-like population by

clodronate liposomes also lead to significant increases in the

proliferative responses of sdLN cells. Therefore, we conclude that

irrespective of their precise classification, the AAMW-like cells in

our model are an important component causing down-regulation

of lymphocyte proliferation and cytokine production.

In addition to the AAMW-like cells, we show that dermal MHC-

IIhi APCs from 4x mice were less efficient at supporting the

lymphocyte response compared to R4 cells from 1x mice on a ‘cell-

to-cell’ basis (Figure 5A). The mechanism by which these cells

were functionally impaired is unclear and may be related to

decreased expression of MHC-II, CD80 or CD86, or elevated

expression of PDL2 and Fas. However, after IL-12 treatment of 4x

mice, the expression of activation versus regulatory factors was not

markedly altered, suggesting that other as yet un-identified

molecule(s) play a critical role. Expression of Arg-1 and Ym1

transcripts, indicative of an ‘alternatively-activated’ population,

were greater in MHC-IIhi DEC from 4x compared to 1x mice

(Figure 4C) and, although expression of these markers by DC has

been previously identified [25,52], it is not known what impact this

has on their ability to support lymphocyte responsiveness. The

large quantities of IL-10 released by 4x skin biopsies may impair

DC activation of CD4+ cells as IL-10 can generate tolerogenic DC

[53]. Furthermore, we speculate that since clodronate treatment

did not completely ablate the R4 cell population, the remaining

cells represent modulated APCs such as Langerhan’s cells which

are not affected by clodronate treatment [54]. This could explain

why the sdLN response of CL-treated mice was not restored to the

levels seen in 1x mice.

The ability of APCs, and DC in particular, to support T cell

proliferation needs to also be viewed in the context of how they are

stimulated by parasite specific antigens.

Like schistosome egg antigens [55], molecules released by the

invading cercariae (named 0–3hRP) stimulate limited maturation

of bone marrow-derived DC [14] which drive Th2 responses both

in vitro and in vivo [15]. Recognition of 0–3hRP by potential APCs

occurs via TLRs [16] and/or C-type lectin receptors, such as the

mannose receptor (Paveley et al., MS in preparation), drives

arginase production by cultured DC and MW, suggestive of

alternative activation [10]. Repeated exposure to these cercarial
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complexes may accentuate their properties and so interfere with

the ability of APCs to support T cell responsiveness.

This study provides evidence that the skin-infection site of mice

frequently exposed to an infectious pathogen is important in

determining the nature of subsequent acquired immune responses.

Formation of AAMW-like and modulated MHC-IIhi cells in the

skin represent previously unknown mechanisms by which the host

immune response limits harmful pathology to subsequent doses of

an infectious agent. In the context of schistosome infection, our

studies show that exposure to larvae and their antigens, prior to

the arrival of eggs, can initiate immune hypo-responsiveness

against different stages of the parasite. This has important

consequences in the development of future vaccination strategies

but also has implications in the prevention of immune-related

pathology to embolised eggs.

Materials and Methods

Ethics statement
All experiments were carried out in accordance with UK

Animal’s Scientific Procedures Act 1986 and with approval of the

University of York Ethics Committee.

Mice, parasites and in vivo treatment regimes
Female C57BL/6 mice were bred in house at the University of

York and used aged 8–12 weeks. IL-4Ra2/2 on a BALB/c

background were kindly provided by Dr F. Brombacher and

experiments were performed at the University of Cape Town. A

Puerto Rican strain of S. mansoni was maintained by routine

passage through outbred NMR-I mice and Biomphalaria glabrata

snails maintained at University of York. Mice were exposed to

either a single (1x), or four (4x) dose(s) of 100 S. mansoni cercariae

via each pinna [56] at weekly intervals between day 0 and 21

(Figure 1A). Penetration rates were approximately 50%, therefore,

the combined infection dose per mouse after 4x infections was

approximately 400 larvae.

To assess in vivo cell proliferation, mice were given 5-Bromo-

29deoxyuridine (BrdU; Sigma-Aldrich) via the drinking water

(0.8 mg/ml), for four days prior to sdLN removal. To ablate

phagocytic cells from the skin infection site, clodronate liposomes

(CL), or PBS-loaded liposomes in 10 ml, were administered

intradermally to the pinnae 72 hours prior to the 1st, 2nd and 3rd

infection. Liposomes were prepared as previously described by Dr

N. van Rooijen [57] using phosphatidylcholine (LIPOID E PC;

Lipoid GmbH) and cholesterol (Sigma). Clodronate (Cl2MDP)

was a gift of Roche Diagnostics GmbH, (Mannheim, Germany). In

some experiments, rIL-12 (gift of Dr S. Wolf, Genetics Institute,

Cambridge, MA USA), or an equivalent volume of PBS (10 ml),

was delivered intradermally into the pinnae and intraperitoneally

(0.25 mg and 0.2 mg, respectively) 48 hours after the 1st, 2nd, and

3rd S. mansoni infection (Figure 6A). In mice receiving a single

infection, rIL-12 was given once 48 hrs prior to infection.

In vitro culture of sdLN cells
Cells from the sdLN were cultured (16106 cells/ml) for 4 days

in RPMI-1640 containing 10% low endotoxin FCS (Harlan Sera

labs), 2 mM L-Glutamine, 200 U/ml penicillin, 100 mg/ml

streptomycin and 50 mM 2-ME (all Invitrogen), in the presence

of soluble Ag prepared from larval schistosomes (50 mg/ml) [9]

and cell proliferation measured by [3H]thymidine incorporation

(18.5 kBq/well; Amersham Biosciences)[20]. Alternatively, sdLN

cells were labelled with 3 mM CFSE (Molecular Probes) for

15 min, washed and after chase incubation, cultured for 3 days

with or without Ag. Culture supernatants were collected at 72 hr

for cytokine detection by ELISA.

Analysis of the skin infection site and recovery of DEC
Inflammation of pinnae was measured using a dial gauge

micrometer (Mitutoyo, Japan). For histological analysis, pinnae

were removed, fixed in 10% neutral buffered formal saline, wax-

embedded, sectioned at 5 mm and stained with Hematoxylin and

Eosin, or Toluidine Blue (Department of Veterinary Pathology,

University of Liverpool, UK). Pinnae sheets separated from the

central cartilage were incubated with optimal concentrations of

anti-Siglec-F FITC labelled antibody (BD Pharmingen) prior to

mounting and imaging using a Zeiss confocal LSM 510 meta

microscope.

For the recovery of dermal exudate cells (DEC), freshly excised

pinnae were split in two along the central cartilage, and cultured in

vitro for 18 hr in the absence of added Ag as described previously

[9,56]. DEC were then recovered and prepared for phenotyping,

or cell sorting as below. Culture supernatants from the skin

biopsies were stored at 220uC for cytokine detection by ELISA.

Immune responsiveness at sites distant to the multiple
infection site
To assess the immune response at skin sites distant to the site of

infection, mice were infected at weekly intervals as above with 100

cercariae via the right pinna. At the 4th infection, both the right

( = 4xR) and the previously uninfected left (1xL) pinnae were

infected and immune assays performed on the pinnae (i.e. 4xR and

1xL) and their respective sdLN 4 days later.

To assess the effect of multiple infections on immune responses

to later stages of parasite development, one group of mice (denoted

as 1x) were exposed to 100 cercariae on the pinnae on day 0, and

then sacrificed at days 35 or 42, by which time adult worms had

matured and commenced egg deposition. A parallel group of mice

(denoted as 4x) was similarly infected on day 0, and again on days

10, 17, and 24, before sacrifice on days 35 or 42. The mesenteric

LN were removed and cultured as for sdLN but the parasite Ag

was soluble egg antigen (SEA). Lymphocyte proliferation and

cytokine production from LN cell cultures were measured as

above. The liver was wax-embedded, sectioned at 5 mm and

stained with Hematoxylin and Eosin; granuloma areas surround-

ing individual eggs were determined using AxioVision 4.3 (Zeiss

UK Ltd) and expressed as mm2.

Cytokine ELISA
ELISAs were used to quantify IL-12/23p40, IL-6, IL-4, and

IFNc in the pinnae biopsy and sdLN culture supernatants as

previously described [9]. IL-13 and TSLP were measured by

DuoSet ELISA kit (R&D Systems), TNFa and IL-10 by Cytoset

(Invitrogen).

Flow cytometry and MoFlo cell sorting
DEC were blocked with anti-CD16/32 mAb (BD Pharmingen)

in PBS (supplemented with 1% FCS & 5 mM EDTA) and

subsequently labelled with the following conjugated antibodies;

F4/80 FITC, Pacific Blue or PE-Cy7 (BM8), CD11c APC-eFlourH

780 (N418), SiglecF PE (E50-2440), Ly6C APC (AL-21), Ly6G

PerCP-Cy5.5 (1A8), CD40 PE (3/23), CD80 APC (16-10A1),

CD86 PerCP-Cy5.5 (GL1), and I-Ab biotin or FITC (28-16-8S),

PDL1 biotin (MIH5), PDL2 PE (122), Fas PE (15A7), FasL biotin

(MFL3) (Ab from BD Pharmingen, BioLegend, Caltag Medsys-

tems, eBioscience and GeneTex Inc.). Biotin conjugated antibod-

ies were probed with streptavidin APC (Caltag Medsystems). Cells
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isolated from the sdLN were stained CD4 FITC (RM4-5), Foxp3

PE (FJK-16s). BrdU staining was performed using FITC-

conjugated anti-BrdU with DNase according to manufacturer’s

instructions (BD Pharmingen). All antibody concentrations were

optimised and labelling performed alongside relevant isotype

controls. Flow cytometric acquisition was performed using a Cyan

ADP analyser and analysed with Summit v4.3 (DakoCytomation)

or FlowJo software (Tree Star, Inc.). DEC labelled with F4/80 and

I-Ab mAb were separated using a MoFlo cell sorter (Dako)

revealing 4 populations of live cells gated to give purity .70–90%.

Cytospins of the cell fractions (Cytospin 2, Shandon) were stained

with Diff-Quik (Dade) to determine cell morphology.

CD4+ cell co-culture with unsorted and sorted DEC
populations
CD4+ cells from 1x and 4x infected mice were isolated via

negative selection (MACS LS column; Miltenyi Biotec); cell

purities were .95%. CD4+ cells (56104 cells) were co-cultured

with unsorted DEC (26104 cells), or sorted R2, R3 and R4 DEC

(1 or 26104 cells), for 4 days in round-bottom 96 well plates in the

presence of soluble larval parasite Ag (50 mg/ml) [20]. Cell

proliferation and cytokine analysis was performed as described

above.

Real time quantitative PCR
Cells were re-suspended in TRIzol (Invitrogen) and total RNA

extracted. After synthesis of cDNA using Superscript III DNA

polymerase (Invitrogen), various genes were analysed by qRT-

PCR (ABI PRISM 7000; Applied Biosystems) using Taqman

probes (Sigma-Aldrich). The relative expression of each gene was

normalised to the values for the GAPDH before statistical analysis.

The primer pairs and probes were; Arg-1:

59-TCACCTGAGCTTTGATGTCG, 59-CTGAAAGGAGC-

CCTGTCTTG,

Probe 59-TTCTGGGAGGCCTATCTTACAGAGAAGGTC-

TCTAC,

RELMa:

59-TGCTGGGATGACTGCTACTG, 59-CTGGGTTCTC-

CACCTCTTCA,

Probe 59-CAAGATCCACAGGCAAAGCCACAA,

Ym1:

59-CTCAATATACACAGTGCAAGTTG, 59TGGGATTCA-

ATTTAGGAAAGTTCA,

Probe TCCACAGTGCATTCTGCATCATGCT,

iNOS:

59-CTGCATGGACCAGTATAAGG, 59-CTAAGCATGAA-

CAGAGATTTCTTC, Probe: 59-AGTCTGCCCATTGCTG,

IL-4:

59-CTCACAGCAACGAAGAACAC,

59-TAAATAAAATATGCGAAGCACCTTG,

Probe 59-AAGCCCTACAGACGAGC,

IL-10:

59-GGTCTTGGGAAGAGAAACCAG,

59-GCCACAGTTTTCAGGGATGA,

Probe 59-CTTTGATGATCATTCCTGCAGCAGCTC,

IL-13: 59-TTATTGAGGAGCTGAGCAAC, 59-GAGATGT-

TGGTCAGGGAATC, Probe 59-TACACAGAACCCGCCAG,

IFNc: 59-GCGTCATTGAATCACACCTG, 59-TGAGCT-

CATTGAATGCTTGG, Probe 59-TTGAGGTCAACAACCCA-

CAGGTCCA,

GAPDH: 59-CCATGTTTGTGATGGGTGTG, 59-CCTT-

CCACAATGCCAAAGTT, Probe 59-CATCCTGCACCACCA-

ACTGCTTAGC.

Statistics
Statistical analysis was performed using Student’s t test, or one-

way ANOVA. Values of p,0.05 were considered significant:

* p,0.05; ** p,0.01; *** p,0.001.

Supporting Information

Figure S1 Hypo-responsiveness caused by multiple infections is

not due to duration after the first infection. (A) Infection regime at

days 0, 7, 14 and 21 indicated by an arrow (,100 cercariae per

pinna), sdLN sampled at day 4 or day 25 after single infection (1x

and 1x day 25 respectively) or day 4 after multiple infection (4x).

(B) Antigen stimulated in vitro proliferation of CFSE-labelled cells

from the sdLN of naı̈ve, 1x, 4x, and 1x day 25 infected mice. Bar

graph shows the mean + SEM of percentage of CD4+ cells that

have undergone .1 division (n= 6 mice). (C) IFNc production

from antigen stimulated sdLN cell cultures. Bars show mean +

SEM (n=4 mice); dashed line is lower limit of detection. All

experiments were repeated at least twice with similar results.

Found at: doi:10.1371/journal.ppat.1001323.s001 (0.15 MB TIF)

Figure S2 Multiple exposures to infective cercariae cause inflam-

mation of the skin infection site. (A) Pinnae thickness of naı̈ve, 1x and

4x mice on days post-final infection are expressed as mm + SEM

(n=6 pinnae). One of three experiments is shown. (B) Representative

transverse sections through pinnae stained with H‘E: epidermis, D:

dermis, C: cartilage. P values are of 4x pinnae compared to 1x cohorts.

Found at: doi:10.1371/journal.ppat.1001323.s002 (2.25 MB TIF)

Figure S3 Multiple doses of infective parasites cause the

recruitment of SiglecF+ eosinophils and mast cells. (A) Pinnae

from naı̈ve, 1x and 4x mice were isolated and tissue sheets labelled

with anti-Siglec-F FITC and imaged using a Zeiss confocal LSM

510 Meta microscope. (B) Transverse sections of pinnae stained for

mast cells with Toluidine blue (cells stained purple) and (C) total

numbers of mast cells counted per field of view (n= 20). (D) High

power images (x64) of mast cells adjacent to the membrane

separating the epidermis from the dermis, and in the process of

degranulation. P values are of 4x pinnae compared to 1x cohorts.

Found at: doi:10.1371/journal.ppat.1001323.s003 (7.65 MB TIF)

Figure S4 Multiple exposures to infective cercariae induces

changes in the expression of co-stimulatory and regulatory factors

on R3 and R4 DEC. Representative flow cytometry histogram

plots of R3 and R4 DEC populations labelled with antibodies

against CD40, CD80, CD86, PD-L1, PD-L2, Fas and FasL from

1x (blue) and 4x (red) mice; solid grey plot shows the extent of

isotype control antibody staining. Also shown is a bar chart

showing the MFI expression for each marker as mean values +

SEM for 5 individual mice.

Found at: doi:10.1371/journal.ppat.1001323.s004 (1.03 MB TIF)

Figure S5 Administration of rIL-12 does not markedly alter the

expression of co-stimulatory and regulatory factors on R3 and R4

DEC from 4x mice. Representative flow cytometry histogram plots

of R3 and R4 DEC populations labelled with antibodies against

CD40, CD80, CD86, PD-L1, PD-L2, Fas and FasL from 1x

(blue), 4x (red) and rIL-12-treated 4x mice (green); solid grey plot

shows the extent of isotype control antibody staining. Also shown

is a bar chart showing the MFI expression for each marker given

as mean values + SEM for 5 individual mice.

Found at: doi:10.1371/journal.ppat.1001323.s005 (1.33 MB TIF)
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