
This is a repository copy of Transformations for multivariate statistics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/595/

Article:

Marsh, P (2004) Transformations for multivariate statistics. Econometric Theory. pp. 963-
987. ISSN 0266-4666 

https://doi.org/10.1017/S0266466604205084

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



TRANSFORMATIONS FOR

MULTIVARIATE STATISTICS

PAAATTTRRRIIICCCKKK MAAARRRSSSHHH

University of York

This paper derives transformations for multivariate statistics that eliminate asymp-

totic skewness, extending the results of Niki and Konishi ~1986, Annals of the

Institute of Statistical Mathematics 38, 371–383!+Within the context of valid Edge-

worth expansions for such statistics we first derive the set of equations that such

a transformation must satisfy and second propose a local solution that is suffi-

cient up to the desired order+ Application of these results yields two useful corol-

laries+ First, it is possible to eliminate the first correction term in an Edgeworth

expansion, thereby accelerating convergence to the leading term normal approx-

imation+ Second, bootstrapping the transformed statistic can yield the same rate

of convergence of the double, or prepivoted, bootstrap of Beran ~1988, Journal of

the American Statistical Association 83, 687– 697!, applied to the original statis-

tic, implying a significant computational saving+

The analytic results are illustrated by application to the family of exponential

models, in which the transformation is seen to depend only upon the properties of

the likelihood+ The numerical properties are examined within a class of nonlinear

regression models ~logit, probit, Poisson, and exponential regressions!, where the

adequacy of the limiting normal and of the bootstrap ~utilizing the k-step proce-

dure of Andrews, 2002, Econometrica 70, 119–162! as distributional approxima-

tions is assessed+

1. INTRODUCTION

Valid asymptotic corrections to limiting distributions, in the form of Edge-

worth expansions, are available for a variety of econometric estimators and tests+
However, the use of such expansions specifically as inferential tools has proved

somewhat limited+ Instead, Bartlett correction, the bootstrap, and Laplace or

saddlepoint approximations have proved more popular+ In fact, all of these tech-

niques rely on the theory of Edgeworth expansions to justify their higher order
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validity+ For example, see the derivation of Bartlett corrections in McCullagh

~1987!, the synthesis of the bootstrap and Edgeworth expansion in Hall ~1992!,
and the derivations of saddlepoint approximations in Daniels ~1954! and Durbin

~1980!, all of which illustrate this point+
This paper attempts to make use of the Edgeworth expansion as a practical

tool+ First we detail precisely the conditions under which the expansion is jus-

tified, ensuring that the required conditions are verifiable in a straightforward

way+ Second we consider the statistic for which we want the expansion as a

choice in itself, specifically by choosing a nonlinear transformation so as to fix

the properties of the resultant expansion+ For example, it will be shown that

it is possible to improve the rate of convergence of the leading term, from

O~N2102! to O~N21!, where N is the asymptotic argument of the series, in most

applications the sample size+
The effect of nonlinear transformations upon the efficacy of asymptotic expan-

sions has been considered in the literature+ Phillips and Park ~1988! examine

the effect that different algebraic formulations of nonlinear hypotheses have on

the Wald test+ Phillips ~1979a! and Niki and Konishi ~1986! derive Edgeworth

expansions for transformations of a univariate statistic, whereas Phillips ~1979b!,
Taniguchi ~1991!, and Marsh ~2001! consider the Edgeworth expansion of

Fisher’s z-transformation of the serial correlation coefficient+
Here these results are generalized in the following way+ It will be assumed

that the statistic, or indeed an approximation to it suitable in distribution, per-

mits a valid, that is, with known order of error, Edgeworth expansion+ The sta-

tistic may be multivariate and the data from which it is derived may be dependent

and heterogeneously distributed+ Then we identify what is perceived to be a

fundamental difficulty in the usage of such expansions+ This is that the oscilla-

tory nature of the polynomial corrections to the leading term asymptotic distri-

bution causes nonmonotonicity, particularly in the tails of the distribution,
so-called tail difficulty ~see Niki and Konishi, 1986; Hall, 1992, App+ V!+ The

suggested transformation will, as in Niki and Konishi ~1986!, thus be that which

eliminates the asymptotic skewness coefficient and thereby limits this tail dif-

ficulty to the greatest extent+
The main results of this paper are contained in two theorems and two corol-

laries+ The first theorem derives the set of equations ~a cube of coupled second-

order partial differential equations! that the transformation that removes

asymptotic skewness must satisfy+ There will be, in general, a multiplicity of

solutions to these equations+ Specializing the problem slightly ~essentially requir-

ing that the moments depend upon some set of parameters of fixed dimension!
the second theorem yields a particular solution+ The first corollary shows that

we may find a transformation such that the leading term has an order of error

of O~N21!, rather than the usual O~N2102!+ Similarly, the second corollary shows

that if the bootstrap is used to approximate the distribution of the transformed

statistic the order of error committed is O~N2302!+ Although these results are

simply the usual orders of errors for both the limiting and bootstrap approxi-
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mations applied to symmetrically distributed statistics, and are therefore some-

what obvious, they highlight a key point of the paper, which is that the

Edgeworth expansion may be employed in such a way as to turn a first-order

problem into a second-order one+
To be of practical use these results need to offer at least some advantage

over the techniques mentioned at the beginning of this introduction+ It is cer-

tainly true that derivation of Edgeworth expansions can be a formidable exer-

cise, as exemplified by the derivations contained in Sargan ~1976!, Phillips

~1977a, 1977b!, Satchell ~1984!, Sargan and Satchell ~1986!, and more recently

Linton ~1997!+ However, the same is true for both Bartlett corrections and sad-

dlepoint approximations, and indeed the latter are only available under more

restrictive conditions+
The bootstrap has become by far the most widely used higher order inferen-

tial tool in econometrics+ See, for example, Hall ~1992!, Horowitz and Savin

~2000!, and Horowitz ~2001!, among many others+ Although it depends upon

Edgeworth-type expansions for its validity, appropriate resampling schemes

negate the necessity of calculating the expansion itself+ Thus the theoretical

complexity of the expansion is replaced by the computational complexity of

Monte Carlo and resampling+ However, unlike approximations derived from an

expansion those from the bootstrap are conditional upon the sample, that is,
they apply to the data, rather than the model+ For any given sample, calculation

of bootstrap critical values for a test is trivial given modern equipment and

software; however this needs to be repeated for every sample+ To overcome the

computational burden in nonlinear models Davidson and MacKinnon ~1999!
and Andrews ~2002! propose a more convenient procedure requiring only a finite

number of steps in an iterative optimization routine+ Combined with double

bootstrap, or prepivoting in the language of Beran ~1988!, and requiring only

two steps in the optimization we have potentially a very powerful tool, deliv-

ering an order of error of O~N2302!+ However, even with a relatively modest

sample size, number of bootstrap iterations ~at both levels!, and Monte Carlo

replications in the thousands, a single experiment would require the generation

of billions of pseudorandom numbers, even for a univariate statistic+ Although

perfectly feasible, this does require both time and the availability of sophisti-

cated pseudorandom number generators having very long periods+
Recalling that a one-level bootstrap will, in general, have an order of error

of O~N21!, in coverage probability, and for the two-level bootstrap it will be

O~N2302! ~see Beran, 1988!, this puts the results of the two corollaries of this

paper in context+ That is we may deliver the same order of error but at a sig-

nificantly lower computational cost, although this must be offset by the cost in

deriving the relevant transformation+ The computational saving may be quanti-

fied+ If the last bootstrap level consists of 100 3 B iterations, the computation

length for the methods of this paper are ~10B!% of those for the bootstrap yield-

ing the same order of error+ In some circumstances, such as calculation of a

symmetric confidence interval or application of a symmetric test, the error in
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coverage and rejection probabilities for the one-level bootstrap are O~N22!+ In
such cases the practical relevance of transformation methods appears limited in

comparison, because this order of error cannot always be attained by a leading

term approximation+
The methods of this paper are illustrated in two separate sections+ The first

applies the theorems to the distribution of the sufficient statistic in the expo-

nential family+ Doing so reveals that the transformation required depends only

upon the log-likelihood and its derivatives+ This result adds to those, including,
for example, Durbin ~1980! and Armstrong and Hillier ~1999!, in which prop-

erties of, for instance, maximum likelihood estimators ~MLE!, are derived

directly from the likelihood, not from the form of the statistic itself+ The sec-

ond illustration concerns the numerical properties of the two corollaries+ Over

four nonlinear regression models ~probit, logit, Poisson, and exponential regres-

sions!, the transformation that removes asymptotic skewness and delivers asymp-

totic normal inference of order O~N21! is found+ Then standard normal quantiles

are used as approximations to those of the MLEs ~as obtained by Monte Carlo

simulation! and those of the transformed statistic+ Similarly, bootstrap critical

values are obtained for both statistics, in the logit and exponential regression

cases, and the nominal and true rejection probabilities analyzed+
The plan of the paper is as follows+ Section 2 describes the notation used

and the assumption required to justify the Edgeworth expansion for the density

and distribution of a multivariate statistic, and it motivates consideration of trans-

formations of that statistic+ The main results are then contained in Section 3+
Section 4 applies the theorems to the cases where the statistic of interest is the

sufficient statistic and a linear combination of its elements+ Section 5 provides

a numerical comparison first with respect to the limiting standard normal and

second with respect to the bootstrap within the nonlinear models mentioned

previously, Section 6 then concludes+ The proofs of the two theorems are con-

tained in the Appendix+

2. PRELIMINARIES AND MOTIVATION

Before fixing the conditions under which the results of this paper apply, some

notation is required for expansions for multivariate statistics+ Let XN be a k 3 1

random vector with density fN ~x!, distribution FN ~x!, characteristic function

MX~l!, cumulant generating function KX~l! 5 ln@MX~l!# , and vth cumulant

defined by

k
X
Iv 5 k

X
i1, + + + , iv5 ~M21!2v

]vKX ~l!

]l
1
i1 + + +]l

k
iv *
l50

; (
j

ij 5 v+

For a full account of the notation involved see McCullagh ~1987, Ch+ 2!, in

particular for the generalities of index notation and the summation convention+
The statistic XN may be, for example, an estimator or a test derived from some
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sample of size N, or indeed an in-distribution approximation to it, of suitable

order+ In general we will assume that as N r `, XN rd N~0,k
X
i1, i2! and that

the density fN ~x! may be expanded as

fN ~x! 5 fk~x;kX
i1, i2! H1 1(

j53

b

cj,N ~k!qj ~x!J 1 o~N2~b22!02 !, (1)

for some b $ 3 and where fk~x;kX
i1, i2! is the k-dimension normal density with

covariance k
X
i1, i2 , the coefficients cj,N ~k! are an asymptotic sequence in N and

depend upon the cumulants of XN , and the qj~x! are ~Hermite tensoral! poly-

nomials of degree 3j in the elements of x+
For details of relevant conditions and assumptions under which ~1! holds,

the reader is referred to Sargan ~1976!, Phillips ~1977a!, Bhattacharya and Ghosh

~1978!, Durbin ~1980!, Sargan and Satchell ~1986!, and Hall ~1992!, among

many others+A sufficient—and, more important, verifiable—condition is given

when the cumulants of XN satisfy the following condition+

Assumption 1+ Let k
X

Ij be the j th cumulant of XN + Then

k
X
Ij 5 N2~ j22!02(

l51

`

k
X, l

Ij N2~l21!, (2)

where the O~1! cumulant coefficients k
X, l

Ij are free of N and we also assume

k
X,1
I1 5 0+

Assumption 1 guarantees that in ~1! the coefficients cj,N ~k! are of order

O~N2~ j22!02!, which in turn determine the rate of convergence of the approxi-

mation+ However, this paper is concerned with the application of ~1! as an

approximation to the finite sample density of XN + Two aspects influence the

accuracy of such approximations+ Apart from the number of correction terms

included, ~i+e+, b 2 2!, the accuracy will depend upon where, in the sample

space for XN , we evaluate the approximation+ As noted by Niki and Konishi

~1986! the polynomials qj~x! tend to be highly oscillatory in particular for large

x ~i+e+, in the tail areas!+ Moreover, they find that the highest order polynomial

occurs, for every b, with the asymptotic skewness term k
X,1
I3 + Therefore, for the

univariate case they suggest transforming XN via a nonlinear function to remove

this term+ Other investigations of the impact of nonlinear transformations on

the accuracy of asymptotic approximations are contained in Hougaard ~1982!
~for univariate likelihood!, Phillips ~1979b! ~in autoregression!, and Phillips and

Park ~1988! ~for Wald tests of nonlinear restrictions!+
An interesting slant on the problem is provided by Hall ~1992, App+ V!, who

shows that, the product fk~x;kX
i1, i2!cj,N ~k!qj ~x! involves the dominant term

~N2102x 3 ! jfk~x;kX
i1, i2!,
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so that the integral, and hence the approximating distribution, will not con-

verge at all if x 5 O~N 106!+ This is relevant because, for example, if we follow

some procedure that decreases the size of a hypothesis test for larger sample

sizes, then the critical value of the test will grow with N+ If we eliminate asymp-

totic skewness then the polynomials qj~x! become of degree 2j ~if j is even! or

2j 2 1 ~if j is odd!, and so the distribution will not converge if now x 5 O~N 104!+
Evidence that the oscillations of the polynomials qj~x! do cause tail diffi-

culty that is of concern may be found in the numerical analysis of the Edge-

worth series for the ordinary least squares ~OLS! estimator for the autoregressive

parameter in an AR~1!, contained in Phillips ~1977b!+ Nonmonotone behavior

of the approximating distribution function manifests itself even for moderate

values of the parameter and in reasonable sample sizes+ Similar results are con-

tained in the analysis of Edgeworth approximations for the information matrix

test in Chesher and Spady ~1991!+
Later in this paper we consider a family of nonlinear regression models involv-

ing a single covariate, $wi %i51
N + For each, it will be shown that the asymptotic

skewness coefficient of the bias-corrected MLE ~for the coefficient on that

covariate! takes the form,

k
Zh,1

I3
5

ka rw

MN
,

where Zh 5 h~ Zb! is the bias-corrected version of the MLE Zb, ka is a constant

depending upon the particular model characteristics, and rw is the skewness

coefficient of the covariates wi ~precise details are given in Section 5!+ To order

O~N21! the Edgeworth expansion for the distribution of Zh is

Pr~h~ Zb! # h!5F~h!2 f~h! H ka rw~h
2

2 1!

6MN
J 1 O~N21 !+ (3)

The approximation for the exponential regression case for which ka5 21 for a

sample size of N 5 25 and for two different covariate configurations having

skewness of approximately rw ' 12+5 and rw ' 5+7, respectively, is plotted in

Figure 1+
Clearly the approximation is nonmonotonic; in fact for ~3! to be monotonic

when rw ' 12+5, we would require over 50,000 observations+ If higher order

inference based upon Edgeworth expansions is to be made more practical, then

the issue of nonmonotonicity, and hence tail difficulty, needs to be overcome+

3. OPTIMAL TRANSFORMATIONS

In this section we first generalize the results of Phillips ~1979a! and Niki and

Konishi ~1986! to the multivariate case+ Following the heuristic argument of

the previous section, we call a transformation optimal if it removes asymptotic

skewness, thereby reducing the degree of the highest order polynomial in ~1!+
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Suppose that we have the k-dimension statistic X 5 XN , with density fN ~x!,
satisfying Assumption 1, with Edgeworth expansion given by ~1! and cumu-

lants k
X

Ij and consider an arbitrary nonlinear transformation of the form g 5

g~X !+ We will consider transformations satisfying the following assumption+

Assumption 2+

~i! Let the dimension of g~X ! be d, where d # k+
~ii! g~X ! is v times differentiable, where v . b, with derivatives

gIj
5

] jg~X !

]X1
i1 + + +]Xk

ik
; (

l51

k

il 5 j

with the gIv
continuous in a neighbourhood of t 5 k

X
I1 5 E @X # and all minors

of gI1
bounded away from zero+

Assumption 2 requires the following+ First, because we are transforming a

multivariate statistic, we require the dimension of the transformation to be no

larger than the original statistic+ Second, we will require that the function g 5

g~X ! may be expanded, around t, as a power series of the form

g r
5 SgI0

r
1(

j51

v

SgIv
r Z Iv 1 Op~N

2~v11!02 !; r 5 1, + + + ,d, (4)

where

SgIv
r

5

]vg~X !

]X1
i1 + + +]Xk

ik *
X5t

and Z 5 ~X2t!5 Op~N
2102 !+

Figure 1. Edgeworth approximation ~3! for the distribution of h~ Zb!, with N 5 25, for

rw ' 12+5 ~solid! and rw ' 5+7 ~dashed! in the exponential case+
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Under Assumption 2, the density and distribution of g~X ! permit a valid Edge-

worth approximation ~see Skovgaard, 1981; Sargan and Satchell, 1986!+ This

assumption is stronger than those used in the latter two papers only in that we

desire a transformation that will affect each of the terms in the expansion up to,
and including, order b+ The density of g may be approximated, for example, to
O~N2302!, by

f ~4!~g;u! 5
fd ~g;k!

6
H6 1 N2102~6kg,2

I1 hI1
~x!1 kg,1

I3 hI3
~x!!

1

N21

12
~12kg,2

I3 hI3
~x!1 3kg,1

I4 hI4
~x!

1 kg,1
I3 kg,1

J3 hI3 , J3
~x!!J + (5)

In ~5! kg, j
Iv is the j th term in the expansion of the vth cumulant array of the

statistic g+ Because g is expressible as a power series in X, then the cumulants

of g are thus the generalized cumulants of X, as detailed in the Appendix+ The

transformation we want is such that the asymptotic skewness term vanishes,
that is, kg,1

I3 5 0+ This is achieved in the following theorem+

THEOREM 1+ Suppose X satisfies Assumption 1 and g 5 g~X ! satisfies

Assumption 2. Then

kg,1
I3 5 0

if and only if g~+! solves the d-cube of coupled partial differential equations

gI1
~t!kx,1

I3 1 3gI2
~t!kx,1

I2 5 0+ (6)

Remarks+

~i! The set of differential equations ~6! are invariant with respect to affine

transformation; hence issues of standardization ~with respect to the mean and

variance! do not impact upon solutions to them+
~ii! To eliminate asymptotic skewness g~+! must satisfy ~6!+ However, some-

times the exact cumulants of X will be known, rather than their expansion+
Because by definition the exact cumulants and their leading term coincide asymp-

totically, it may be simpler to solve

gI1
~t!k

X
I3 1 3gI2

~t!k
X
I2 5 0+ (7)

~iii! In general, ~6! and ~7! describe a set of d 3 coupled second-order partial

differential equations+ Hence, solutions, even when they exist, may be difficult

to find ~see Hougaard, 1982!, whereas if d , k then there will not exist an

orthogonal basis for a solution ~see McCullagh, 1987, Ch+ 5!+ Overcoming this

problem will be the purpose of the next theorem+
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~iv! The requirement here is only that asymptotic skewness be eliminated, a

much weaker condition than requiring that all excess skewness be removed+
Thus, to simplify the problem, we need only look for local ~up to an asymp-

totic order of O~N2102!! solutions+ This is still true even if the form ~7! is used+

To implement the transformation, that is, to find a feasible solution to ~6!,
we need to specialize the problem+ Specifically we impose a parameterization

that the density of X is fN ~x;u! depending on a d-vector of parameters u and so

X has cumulants given by k
X
Iv 5 k

X
Iv~u!+ In this setup, to solve ~6! we make a

preliminary transformation of the form

Xr h 5 h~X,u!,

depending both upon the statistic and the parameter+ Again we assume that h

satisfies Assumption 1 and so permits a valid Edgeworth approximation+ The

transformation is now g 5 g~h!+ Hence a solution to ~6! is given by the follow-

ing theorem+

THEOREM 2+ Let Sgi
i and Sgii

i denote the first and second derivatives of the

ith element of g with respect to the ith element of h, evaluated at kh,1
i1 . Then a

solution to the set of d ordinary differential equations

Sgi
ikh,1

i, i, i
1 3 Sgi, i

i
5 0; i 5 1, + + + ,d, (8)

where kh,1
i, i, i is the leading term of the expansion of cum~h i, h i, h i! , is also a

solution to (6). Moreover a solution to (8) exists, unique up to constants of

integration.

Although Theorems 1 and 2 deliver transformations that remove the highest

order Hermite polynomial from any bth order approximation, often we are able

to obtain a stronger result+

COROLLARY 1+ Suppose that there exists an affine transformation of h,

hr Nh 5 d 1 Dh, so that t Nh 5 E @ Nh#5 0 1 O~N21! and hence k Nh,2
1

5 0. Defin-

ing the transformation, g 5 g~ Nh! , satisfying (8) and letting

z 5 ~kg,1
i1, i2!2102~g~ Nh!2 g~t Nh !1 c!,

c 5 2kg,1
i1, i2~gI1

~t!gI1
~t!' !2102gI2

~t!,

where kg,1
i1, i2 is the asymptotic covariance of g, then

fZ~z! 5 fk~z!$1 1 O~N21 !%, (9)

where fk~z! is the standard normal density.
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Proof+ Because now also k Nh,2
1

5 0 then the only other term of order N2102 is

c, as defined previously, which may be removed because ~8! is invariant to

affine transformation+ n

We may also consider the transformation in conjunction with an appropriate

one-step bootstrap+ Suppose that we have a sample YN 5 ~ y1, + + + , yN ! having

distribution PN,u+ The statistic of interest is X 5 XN 5 X~ y1, + + + , yN !, which

may be, for example, an estimator for, or test upon, the unknown parameter of

interest u+ Let ZuN be an MN -consistent estimator of u+ Let YN
* be resampled

observations having distribution PN, ZuN
, that is, the empirical distribution of YN ,

and similarly let X * , h * , and g * denote the bootstrapped versions of the statis-

tics considered in Theorems 1 and 2 and Corollary 1+ The cumulative distri-

bution functions of X, h, and g will be denoted by FN ~+ , u!, which are to

be approximated by FN ~+ , ZuN !, the empirical distribution of the bootstrapped

statistics+

COROLLARY 2+ Suppose that X has an Edgeworth expansion given by (1),

Nh satisfies the conditions of Corollary 1, and g 5 g~ Nh! solves (8). Then

(i) FN ~X,u! 2 FN ~X, ZuN ! 5 Op~N
21! ,

(ii) FN ~g,u! 2 FN ~g, ZuN ! 5 Op~N
2302! .

Proof+ Following Beran ~1988! the empirical distributions FN ~+ , ZuN ! permit

expansions, uniform in the first argument and local in u, of the form

FN ~X, ZuN ! 5 FN ~X,u!1 N2102 Nf1~X,u!1 O~N21 !,

FN ~g, ZuN ! 5 FN ~g,u!1 N21 Nf2~g,u!1 O~N2302 !,

where Nf1~X,u! and Nf2~g,u! are polynomials derived from the respective Edge-

worth expansions for X and g and the rate of convergence is determined by the

leading term in that expansion, that is, respectively, from ~1! and ~9!+ Conse-

quently, expanding f1~X,u! and Nf2~g,u! around ZuN and noting

Nf1~X,u!2 Nf1~X, ZuN ! 5 Op~N
2102 !,

Nf2~g,u!2 Nf2~g, ZuN ! 5 Op~N
2102 !

proves the result+ n

Provided that there is an affine transformation that removes the O~N2102!
term in the expansion of the mean, Corollary 1 contains the stronger result that

asymptotic inference is optimized via use of a transformed statistic given by

Theorem 2+ That is, if we use the limiting normal to obtain probabilities or

quantiles, then the transformation minimizes the order of error for these values+
Similarly, Corollary 2 optimizes the use of a one-step bootstrap, in the sense
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that, as is well known, the bootstrap has a faster convergence rate for symmet-

ric rather than asymmetric distributions+ In fact, the one-step bootstrap applied

to the transformed statistic can have a convergence rate equal to that of the

two-step bootstrap applied to the original statistic+
With the general results in the preceding theorems and corollaries, in the

next two sections we will analyze the resulting properties of such transforma-

tions, first their analytic and then their numerical properties+

4. ANALYTIC PROPERTIES IN THE EXPONENTIAL FAMILY

4.1. General Functions of the Sufficient Statistic

As a general application, consider a sample Y 5 $ y1, + + + , yN %
', generated from a

member of the exponential family, with density

fY ~ y;u! 5 exp $t 'h2 K~h!1 r~t !%, (10)

where h5 h~u!, properties of which are detailed in Barndorff-Nielsen and Cox

~1989!+ Many interesting Gaussian econometric models are exponential mod-

els, examples of which are contained in van Garderen ~1997!+
Inference about u will be conducted through functions of the minimal suffi-

cient statistic, t+ In this section we will derive the transformation of t, as described

in the previous section+ In particular, it will be seen that this transformation is

defined only by the properties of the sample density itself+ First we need to

check when Assumption 1 holds+ The cumulant generating function of t is

Kt ~l! 5 lnE
R

k

exp $t 'h1 t 'l2 K~h!1 r~t !% dt

5 K~l1 h!2 K~h!,

and hence the cumulants are

kt
Iv 5

]vK~l1 h!

]l
1
i1 + + +]l

k
ik *

l50

5 K ~v!~h!+ (11)

To proceed, note that if s 5 At 1 a, where A and a may depend upon N but not

h, then ~i! s is a canonical statistic and ~ii! the sample density may be written

fY ~ y;u! 5 exp $s 'g2 K~g!1 r *~t !%+

Thus the exponential form of the density is preserved by affine transforma-

tions, and moreover we may assume without loss of generality that E @t # 5 0

by choosing the constant a appropriately+ In particular we can define a canon-

ical statistic S 5 N 102t, and if in addition the cumulants of S satisfy

k
S
Iv 5 K ~v!~g!5 O~N !, (12)
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then Assumption 1 holds because for S, g 5 N2102h, then ~12! implies

kt
Iv 5 K ~v!~h!5 O~N2~2v21!02 !, (13)

noting that higher order terms in the cumulant expansion vanish+ As a conse-

quence, the density of t admits a formal Edgeworth expansion+
An analogous result for a nonlinear transformation, g 5 g~t !, may be estab-

lished, given only that ~12! holds, as in the following theorem, proved in Marsh

~2001!+

THEOREM 3+ Given a transformation t r g~t ! , satisfying Assumption 2,

the density of g permits a valid Edgeworth expansion provided only that there

exists an S satisfying (12).

Because both t and g permit Edgeworth approximations for their densities,
we may apply the criterion of an “optimal” transformation+ If we consider the

case where h 5 u, implying that fY~ y;u! is full exponential ~i+e+, k 5 d !, then

applying Theorem 2, g~+! must satisfy, using ~11!,

gI1
~t!K ~3!~u!1 3gI2

~t!K ~2!~u! 5 0, (14)

where t 5 E~t ! 5 K '~u!+ Notice that ~14! is specified purely in terms of the

properties of the sample density+ That is, if we define the log-likelihood for the

sample by l~u! 5 u 't 2 K~u! 1 h~ y!, then K ~v!~u! 5 2l ~v!~u! for v $ 2, and

t 5 t 2 l '~u!+ A solution to ~14! is found by applying Theorem 2+ Define a

symmetric P 5 pj
i such that

P21P21
5 2l ~2!~u!

and let z 5 Pt, so the cumulants of z are

kz
i1, i2 5 pj1

i1 pj2

i2 K j1, j2~u!; kz
i1, i2 , i3 5 pj1

i1 pj2

i2 pj3

i3 K j1, j2 , j3~u!;

then the optimal transformation must satisfy

gi
i~tz !kz,1

i, i, i
1 3gii

i ~tz ! 5 0, i 5 1, + + + ,d, (15)

where tz 5 Pt+
This explicit dependence on the likelihood is a further result in the spirit of

Durbin ~1980!, Hougaard ~1982!, and Armstrong and Hillier ~1999!+ In those

papers the object is to derive exact or higher order asymptotic densities of esti-

mators and tests, purely in terms of functionals of the likelihood and its deriv-

atives+ Here, the optimal transformation is defined entirely in terms of a

differential equation in the derivatives of the log-likelihood+
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4.2. Tests of a Particular Form

Often, even for multivariable hypotheses, we require a univariate statistic+ In

this section we analyze the properties of the transformation acting upon a

weighted average of the components of the sufficient statistic+ In a slightly altered

setup, consider the full exponential model

fY ~ y;g! 5 exp $s 'g2 K~g!%,

where s 5 $s1, + + + , sk%
' and g 5 $g1, + + + ,gk%, and the set of statistics defined by

h 5 (
i51

k

ai si , (16)

the set of weighted averages of the canonical statistic+ Statistics such as ~16!
encompass point optimal and locally most powerful tests of H0 : g5 g0 against

H1 : g 5 g1 ~see van Garderen, 1998! and also statistics with asymptotically

optimal properties ~see Elliott, Rothenberg, and Stock, 1996!+ As a conse-

quence, we look for a transformation of h, g 5 g~h!, satisfying the conditions

of Theorem 2+ Defining

t 5 As; A 5 diag$ai %,

then the density may be written

fY ~ y;g! 5 fY ~ y;u!5 exp $t 'u2 K~u!1 r~t !%,

and h then becomes h 5 (i51
k

ti + Now from ~11!, the cumulants of t are

kt
j
5

] jK~u!

]u j1+ + +]u jk
, (

ji

5 j,

and hence the cumulants of h are

kh
j
5 (

j11{{{1jk5j

] jK~u!

]u1
j1 + + +]uk

jk
,

and in particular

E~h! 5 th 5(
i51

k ]K~u!

]ui
, (17)

so that

kh
j
5 (

j11{{{1jk5j21

] jth

]u1
j1 + + +]uk

jk
+
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On applying Theorem 1, the optimal transformation of h is given by

g '~th !S (
j11{{{1jk52

] jth

]u1
j1 + + +]uk

jkD1 3g ''~th !S (
j11{{{1jk51

] jth

]u1
j1 + + +]uk

jkD 5 0+

(18)

Solutions to ~18! will obviously depend upon the particular form of the likeli-

hood; however, rearranging gives

d ln@g '~th !#

dth
5 2

1

3 1 (
j11{{{1jk52

] jth

]u1
j1 + + +]uk

jk

(
j11{{{1jk51

] jth

]u1
j1 + + +]uk

jk

2 ,
so that, noting ~17!, the shape of the transformation, once again, is explicitly

determined by the shape of the likelihood+ The general solution to ~18! is

g~th ! 5 C1 1 exp HC2 1E
R

1

3S (
j11{{{1jk52

] jth

]u1
j1 + + +]uk

jkD
3S (

j11{{{1jk51

] jth

]u1
j1 + + +]uk

jkD21

dthJ ,
for constants C1 and C2+

5. NUMERICAL ANALYSIS

In this section we apply the results of Section 3 to some simple likelihood based

analysis of nonlinear regression problems+ In particular, we consider ~a! expo-

nential and ~b! Poisson regression models and also two binary choice regres-

sion models ~c! logit and ~d! probit+ In general, small sample results for these

models are relatively scarce+ Some exceptions are the work of McCullagh ~1987,
Ch+ 7!, who calculates Bartlett corrections for the first two models, Armstrong

and Hillier ~1999!, who derive an expression for the exact distribution of the

MLE for exponential regression, and Horowitz ~1994! and Horowitz and Savin

~2000! who apply higher order bootstrap methods in binary probit+
Before proceeding, we note some crucial properties of likelihood based on

independent observations, which will vastly simplify application of the trans-

formation for all these models+ Let yi , i 5 1, + + + ,N, be independent observations

with density fi~b! depending upon some d 3 1 parameter, b, and with sample

log-likelihood

ln~b! 5 (
i51

N

ln@ fi ~b!#

and denote the MLE for b by Zb+ Define the generalized mean information mea-

sures ~see McCullagh, 1987, Ch+ 7! by
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IIa , + + + , Ib
5 I

Ia , + + + , Ib 5

1

N
EFS ] ln~b!

]b1 + + +]bd
Da

+ + +S ]v ln~b!

]b1
j1 + + +]bd

jvDbG ,
where (l jl 5 v and, for example, 2Ii1, i2

is Fisher information+ As a conse-

quence, the first three cumulants of Zb are asymptotically

k
Zb

I1~b! 5 b1 N21~I i1, i2I
j1, j2~Ii2 , j1, j2

2 Ii2 , j1 j2
!!1 O~N22 !,

k
Zb

I2~b! 5 N21
Ii1, i2

1 O~N22 !,

k
Zb

I3~b! 5 N22
I

i1, i2I
j1, j2I

k1, k2~Ii2 , j2 , k2
2 Ii2 j2 k2

!+ (19)

For all the models listed previously we will consider approximating the distri-

bution of the standardized, bias-corrected MLE, given by

h 5 h~ Zb!5MIi1, i2
MN ~ Zb2 b0 2 N21~I i1, i2I

j1, j2~Ii2 , j1, j2
2 Ii2 , j1 j2

!!!, (20)

with asymptotic cumulants

kh,1
I1 5 O~N2302 !,

kh,1
I2 5 Id 1 O~N21 !,

kh,1
I3 5 N2102MI

i1, i2I
j1, j2~Ii2 , j2 , k2

2 Ii2 j2 k2
!1 O~N2302 !+ (21)

Crucially, by standardizing the MLE as in ~20!, the following points should

be noted+ From ~21! Assumption 1 holds for h~ Zb! ~with b 5 3! and moreover

for any function satisfying Assumption 2+ The elements of h~ Zb!, ~h1, + + + , hd !,
are asymptotically independent, and therefore the conditions for Theorem 2 are

met; that is, we may transform the hi individually+ Finally, by considering the

bias-corrected MLE the conditions of Corollary 1 are met, and the transforma-

tion will be optimal+ As a consequence, and also to keep the algebra as brief as

possible, we will only consider the case where the mean function for all of the

regressions depends only upon l i 5 exp $a1 bwi %, for covariates wi satisfying

(i wi 5 0+ We will assume a is known and that we are interested in a homo-

geneity hypothesis, that is, H0 : b 5 0+ Assuming a is unknown and replacing

it with an MN -consistent estimator would not affect the order of error of the

approximation+
For each case, the density of the ith observation is

~a! fi ~b! 5 li
21 exp $2yi 0li %,

~b! fi ~b! 5 exp $2li %li
yi0yi !,

~c! fi ~b! 5 yi
p1i~1 2 yi !

12p1i ; p1i 5

li

1 1 li

,

~d! fi ~b! 5 yi
Fi~1 2 yi !

12Fi ; Fi 5E
2`

ln@li #

f~z! dz, (22)

where f~z! is the standard normal density+
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The simplifications we have placed upon the regressions give, for each case

and under H0 : b 5 0,

kh,1
I3 5 N2102ka

(
i51

N

wi
3

S(
i51

N

wi
2D302

, (23)

where ka is a constant depending upon the value of a and the particular char-

acteristics of each likelihood+ Indeed, after some algebra, we find

~a! exponential: ka 5 21,
~b! Poisson: ka 5 22e2a02,

~c! logit: ka 5 2
Mea

1 1 ea
~ea

2 1!,

~d! probit: ka 5 ~faFa~1 2 Fa!!
2102~aFa~1 2 Fa! 1 fa!,

where Fa 5 *
2`
a
f~z! dz and fa 5 e2a202YM2p+ So, given a value a, the suc-

cess of low-order Edgeworth approximations for the density of the standard-

ized MLE h~ Zb!, even for these very simple cases, depends crucially upon the

value of

rw 5

(
i51

N

wi
3

S(
i51

N

wi
2D302

, (24)

the sample skewness coefficient of the covariate w 5 ~w1, + + + ,wN !
'+

Because in all cases the conditions of Theorem 2 are met, the transformation

we seek satisfies

g ''~h!1 3ka rw g '~h! 5 0, (25)

so that upon standardization,

r~ Zb! 5 MN S g~h~ Zb!!2 g~h~0!!

g '~h~0!!
Drd N~0,1!, (26)

and solving ~25! we find

g~h~ Zb!! 5
exp $23ka rw h~ Zb!%

3ka rw

+

To assess the numerical performance, for each model we fix a 5 1 and

N 5 25 and consider two sets of ~centered! covariates+ Set ~i! was generated

from an exponential random variable with mean 2+718 and set ~ii! from a uni-
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form @0,5# , giving values of ~24!; rw
~i !

5 12+538 and rw
~ii !

5 5+693, respectively+
Based on likelihoods from ~22! and setting b 5 0, h~ Zb! and r~ Zb! were simu-

lated with 20,000 replications, using the internal numerical optimization rou-

tine in Mathematica+
The quantiles for the empirical distribution of h~ Zb! and r~ Zb!, for each model

configuration, are given in Table 1, along with those for the standard normal,
the limiting distribution for either+Although the numerical accuracy of the trans-

formation is by no means perfect, there is an obvious improvement over that of

the bias-corrected MLE+ This is particularly so for the binary choice models

and when the covariate has significant skewness+ Thus for these cases, the theo-

retical improvement implied by Corollary 1 manifests itself in the improved

ability of the standard normal to approximate the distribution of the trans-

formed statistic ~26!+
The second set of experiments concerns the application of the bootstrap in

these nonlinear models, specifically the logit and exponential regressions+ Of

interest will be the true cumulative probabilities of bootstrap critical values for

Table 1. Quantiles of the empirical distribution of the bias-corrected MLE h~ Zb!
and the transformed statistic r~ Zb!

rw
~i !

' 12+5 rw
~ii !

' 5+7 rw
~i !

' 12+5 rw
~ii !

' 5+7

N~0,1! h~ Zb! r~ Zb! h~ Zb! r~ Zb! h~ Zb! r~ Zb! h~ Zb! r~ Zb!

~a! Exponential Regression ~b! Poisson Regression

21+282 21+143 21+292 21+308 21+306 21+197 21+225 21+200 21+225

20+842 20+771 20+796 20+909 20+844 20+753 20+850 20+753 20+850

20+524 20+481 20+503 20+582 20+535 20+480 20+579 20+481 20+558

20+253 20+249 20+260 20+284 20+262 20+261 20+332 20+259 20+303

0 20+030 20+032 20+013 20+011 20+036 20+040 20+029 20+043

0+253 0+149 0+178 0+216 0+254 0+151 0+201 0+151 0+208

0+524 0+343 0+419 0+452 0+527 0+341 0+486 0+342 0+489

0+842 0+567 0+722 0+735 0+864 0+563 0+851 0+566 0+848

1+282 0+864 1+167 0+110 1+305 0+838 1+361 0+846 1+322

~c! Binary Logit ~d! Binary Probit

21+282 20+588 21+070 20+645 21+136 20+467 20+976 20+942 21+092

20+842 20+371 20+671 20+422 20+753 20+323 20+695 20+619 20+790

20+524 20+247 20+442 20+254 20+464 20+161 20+457 20+375 20+467

20+253 20+113 20+214 20+115 20+229 0+037 20+181 20+153 20+219

0 0+052 0+034 0+021 0+004 0+192 0+057 0+081 0+030

0+253 0+274 0+282 0+161 0+241 0+339 0+295 0+320 0+266

0+524 0+489 0+551 0+325 0+492 0+523 0+536 0+595 0+549

0+842 0+784 0+861 0+546 0+832 0+908 0+941 0+942 0+884

1+282 1+339 1+295 0+894 1+342 1+616 1+474 1+493 1+353
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both the standardized MLE h~ Zb! and the transformed statistic r~ Zb!+ The pro-

cedure used is the k-step bootstrap described by Andrews ~2002!+
Let YN 5 ~ y1, + + + , yN ! be the data having likelihood f ~YN ;b! and yielding

MLE Zb+ A bootstrap sample YN
* is generated from the likelihood f ~YN

* ; Zb! and a

k-step bootstrap estimator based on a Newton–Raphson iterative routine is

defined by

b~k!
*

5 b~k21!
*

2 S ]2 ln f ~YN
* ;b!

]b]b '
D
b5b~k21!

*

21 S ] ln f ~YN
* ;b!

]b
D
b5b~k21!

*
, (27)

where b~0!
*

5 Zb+ For the parametric bootstrap to be employed here it is suffi-

cient to consider k 5 1,2 for the one- and two-step bootstrap to have the same

order of error in coverage probability as a bootstrap procedure based on full

estimation of the parameter ~see Andrews, 2002!+
Define the k-step standardized MLE and transformed statistic by h~k! 5

h~b~k!
* ! and r~k! 5 r~b~k!

* ! and let Fh,N 5 FN ~h~k!; Zb! and Fr,N 5 FN ~r~2!; Zb!
be their empirical bootstrap distributions based on B bootstrap iterations+
Notice that for the transformed statistic at least two steps are needed to en-

sure that r~2! and r~ Zb! have coincident asymptotic skewness+ We will also

consider the two-step bootstrap for h~2!+ Following Beran ~1988! let F2,N 5

F2,N ~FN ~h~2! ;b~2!
* !; Zb! denote the empirical bootstrap distribution of the pre-

pivoted standardized MLE+ Finally, denote the bootstrap critical values, of nom-

inal size r, by, respectively, ch,N ~r!, cr,N ~r!, and c1,N ~r! as the @ rB# th element

in the bootstrap empirical distributions Fh,N ,Fr,N , and F1,N + These critical val-

ues have error in probabilities of order O~N21!, O~N2302!, and O~N2302! ~see

Beran, 1988; and Corollary 2 in Section 3 of this paper!+
Details of these experiments are as follows+ For both the logit and exponen-

tial regression, data were generated with b 5 0 and a 5 1, for two sample

sizes, N 5 25 and N 5 50; the set of regressors ~i! was used ~in the case N 5

50, the same set was sampled twice!+ The full bias-corrected MLE was evalu-

ated, say, Zbm, for m 5 1, + + + ,2,500 Monte Carlo replications+ For each value of

Zbm a bootstrap sample YN
b1 was generated and using ~27! the k-step boot-

strap estimates calculated, and from that, h~1!
b1 , h~2!

b1 , and r~2!
b1 , for b1 5 1, + + + ,400

bootstrap iterations+ Similarly the distribution of h~2!
b1 itself was bootstrapped

~prepivoted! giving values Fh,N
b2 for b2 5 1, + + + ,200 double bootstrap replica-

tions+ The bootstrap critical values, of nominal size r are then found as the

@ rB# th entry in the sorted values for h~1!
b1 , r~2!

b1 , and Fh,N
b2 , giving ch,N ~r!,

cr,N ~r!, and c1,N ~r!, respectively+ The true cumulative probability of these crit-

ical values is then calculated from the empirical distributions of the h~ Zbm!,

r~ Zbm!, and the h~2!
b1 for the double bootstrap+ The results are presented in

Table 2+
The results confirm the relevance of Corollary 2+ That is, the one-step boot-

strap applied to the transformed statistic does seem to have improved finite

sample performance compared with the one-step bootstrap applied to the stan-
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dardized estimator+ However, the asymptotic improvement offered by the trans-

formation applies, in this case, only for one-sided coverage probabilities+ For

symmetrical confidence intervals the error orders are identical+
The performance of the double, or prepivoted, bootstrap is not significantly

better than that of the transformed statistic, whereas the computation time for

the latter is 200 times that of the one-step bootstrap+ The experiments were run

on a 2 MHz PC+ A single Monte Carlo replication of 400 bootstrap iterations

for a sample size of 25 required approximately 0+8 seconds, and a period of

160 seconds was required for a double bootstrap with 200 iterations at the sec-

ond level+ Consequently, with 2,500 Monte Carlo replications the single boot-

strap required just over an hour of computation time whereas the double bootstrap

required approximately 1 week+ Times for the experiments involving a sample

size of 50 were approximately a third longer+

6. CONCLUSIONS

This paper has generalized the results of Phillips ~1979a! and Niki and Konishi

~1986! on transformations in univariate Edgeworth series to the multivariate

case+ To solve the system of differential equations that the transformation must

satisfy, ~6!, more structure on the inferential problem was imposed, yielding an

asymptotically local solution+ Although we lose some generality in the process,
the resultant theorem, Theorem 2, seems a powerful tool for higher order infer-

ence in a multivariate setting+ This is particularly the case if the conditions

required for Corollaries 1 and 2 hold+ Specifically, we can achieve accelerated

asymptotic, that is, O~N21! normal, inference and thus utilize the appropriate

tabulated critical values and confidence intervals+Moreover, in combination with

the bootstrap, inference of order O~N2302! is available with a single bootstrap,

Table 2. Monte Carlo cumulative probabilities for bootstrap critical values for
the bias-corrected MLE h~ Zb! and the transformed statistic r~ Zb!

N 5 25 N 5 50

r ch,N ~r! cr,N ~r! c1,N ~r! ch,N ~r! cr,N ~r! c1,N ~r!

0+05 0+208 0+166 0+207 0+089 0+090 0+089

0+10 0+267 0+237 0+267 0+204 0+200 0+203

0+90 0+709 0+728 0+747 0+679 0+804 0+799

0+95 0+775 0+783 0+819 0+765 0+898 0+901

0+05 0+234 0+195 0+177 0+183 0+101 0+081

0+10 0+242 0+245 0+238 0+233 0+162 0+136

0+90 0+696 0+717 0+709 0+708 0+846 0+815

0+95 0+747 0+798 0+759 0+801 0+926 0+858
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offering a considerable computational saving over the equivalent, in order of

error, double bootstrap+
A full analysis of the properties of the transformation is obtained in the spe-

cial case of the exponential family+ For general functions of the sufficient sta-

tistics, the transformation is defined by a set of second-order partial differential

equations in the derivatives of the log-likelihood+ A similar result is obtained

for transformations of the class of statistics defined as a weighted average of

the components of the sufficient statistic+ Perhaps more important than the ana-

lytic are the numerical properties+ For the class of simple nonlinear regression

models considered here, the transformation is relatively simple to apply and

has reasonable numerical properties+
Although the theoretical properties of such transformations are precisely

detailed in this paper, one potential weakness is the practical difficulty of obtain-

ing the transformation in cases more complex than considered here+ The trans-

formed statistic is found by solving the set of equations given in ~8!; how

demanding this might be will vary from case to case+ However, a possible way

forward might be to utilize methods analogous to those of Andrews ~2002!:
specifically, to find numerical solutions to these equations that are equivalent

to the analytic ones, up to some appropriate order+
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APPENDIX

We will require the cumulants of products of the elements of X, the generalized cumu-

lants, as detailed in McCullagh ~1987, Ch+ 3!+ For our purposes the first four will suffice

and, for reference, are

k i1, i2 i3 5 k i1, i2 , i3 1 k i1k i2 , i3 1 k i3k i1, i2,

k i1 i2 , i3 i4 5 k i1, i2 , i3 , i4 1 k i2k i1, i3 , i4 @3#1 k i1, i2k i3 , i4 @3#1 k i1, i2k i3k i4 @3# ,

k i1 i2 , i3 i4 5 k i1, i2 , i3 , i4 1 k i1k i2 , i3 , i4 @2#1 k i3k i1, i2 , i4 @2#1 k i1, i3k i2 , i4 @2# ,

1 k i1k i3k i2 , i4 @4# ,

k i1, i2 , i3 i4 5 k i1, i2 , i3 , i4 1 k i3k i1, i2 , i4 @2#1 k i1, i3k i2 , i4 @2# , (A.1)
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where @i # implies summation over similar objects, for example, k i1, i3k i2 , i4 @2# 5

k i1, i3k i2 , i4 1 k i1, i4k i2 , i3+

Proof of Theorem 1. The transformed statistic is, upon expansion,

g 5 g~t!1 ~X 2 t!'gi1, i2
~t!1

1

2
~XN 2 t!'gi1, i2

~XN 2 t!1 {{{,

and because E~XN 2 t! 5 Op~N
2102!, then it is sufficient to consider only up to the

quadratic term+ We write

Ig r
5 Sg r

1 Sgi1
r Z i1 1 Sgi1, i2

r X i1X i2 ; r 5 1, + + + ,d,

where Z 5 X 2 t, SgIv
5 ~]vg~X !0]X1

i1 + + +]Xk
ik!6X5t and note that Ig r and g r have identical

asymptotic skewness terms, which follows from before and the expansion of cumulants

in terms of generalized cumulants+ Hence, for notational convenience we drop the tildes+

Following McCullagh ~1987, Ch+ 3!,

g r
5 ~G0

r
1 G1

r
1 G2

r!Z r,

where ~G0
r
1 G1

r
1 G2

r! is an operator acting on X, with, for example, G2
r Z containing all

quadratic and bilinear terms in the elements of X+ Denote this operator by D r, for a

generic element of g; then the cumulant generating function of g is simply

Kg~l! 5 exp $lr D r %kx ; (A.2)

that is, exp $lr D r% is an operator acting upon the cumulants of X+ Expansion of this

cumulant operator gives

Kg~l! 5 $1 1 lr1
D r1 1 lr1

lr2
D r1D r2 1 lr1

lr2
lr3

D r1D r2D r3 1 {{{%kx ,

with

D r1kx 5 Sg r1 1 Sgi1

r1k
X
i1 1

1

2
Sgi1, i2
r1 k

X
i1, i2 +

The compound operators produce terms, for example, for the cubic,

G1
r1 G1

r2 G1
r3 5 Sgi1

r1 Sgi2

r2 Sgi3

r3k I3,

and so on+ Consequently, the cumulant generating function may be written as

Kg~l! 5 lrF Sg r1 1 Sgi1

r1k
X
i1 1

1

2
Sgi1, i2
r1 k

X
i1, i2G

1 lr1
lr2
@ Sgi1

r1 Sgi2

r2k
X
i1, i2 1 Sgi1

r1 Sgi2 , i3
r2 k

X
i1, i2 i3 @2#1 Sgi1, i2

r1 Sgi3 , i4
r2 k

X
i1 i2 , i3 i4#

1 lr1
lr2
lr3
@ Sgi1

r1 Sgi2

r2 Sgi3
r3k

X
i1, i2 , i3 1 Sgi1

r1 Sgi2

r2 Sgi3 , i4
r3 k

X
i1, i2 , i3 i4 @3#

1 Sgi1

r1 Sgi2 , i3
r2 Sgi4 , i5

r3 k
X
i1, i2 i3 , i4 i5 @3#1 Sgi1, i2

r1 Sgi3 , i4
r2 Sgi5 , i6

r3 k
X
i1 i2 i3 , i4 i5 i6#

1 @Higher order terms# + (A.3)
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Now, for the skewness term, enclosed in the third set of brackets, consider the objects

in the third term, which contribute to the asymptotic skewness of g, namely,

Sgi1

r1 Sgi2

r2 Sgi3
r3k

X
i1, i2 , i3 1 Sgi1

r1 Sgi2

r2 Sgi3 , i4
r3 k

X
i1, i2 , i3 i4 @3# +

From ~A+1! we have that

k
X
i1, i2 , i3 i4 5 k

X
i1, i2 , i3 , i4 1 k

X
i1k

X
i2 , i3 , i4 @2#1 k

X
i1, i2k

X
i3 , i4 @2# ,

so, noting the cumulant expansions given in Assumption 1, particularly

kx,1
i1 5 0, and k

X
i1, i2 , i3 , i4 5 O~N21 !,

denoting asymptotic equivalence by ;, that is, an ; bn n an0bn 5 O~1!, we have

k
X
i1, i2 , i3 i4 ; k

X
i1, i2k

X
i3 , i4 @2# ; kx,1

i1, i2kx,1
i3 , i4 @2# +

Further, again because kx,1
i1 5 0,

k
X
i1, i2 5 k

X
i3 , i4 5 S5 var @X # ; kx,1

i1, i2 ,

which implies that

k
X
i1, i2 , i3 i4 ; 2~kx,1

i1, i2!2, (A.4)

because E @X i1X i2 # 5 E @X i2X i1 # +

We note that ~A+4! holds for all permutations over i1, i2, i3, i4, giving

k
X
i1, i2 , i3 i4 @3# 5 6~kx,1

i1, i2!2+

Thus to reduce asymptotic skewness to zero, to our desired order, and because

k
X
i1, i2 , i3 ; kx,1

i1, i2 , i3 we need to solve

Sgi1

r1 Sgi2

r2 Sgi3
r3kx,1

i1, i2 , i3 1 6 Sgi1

r1 Sgi2

r2 Sgi3 , i4
r3 ~kx,1

i1, i2!2 5 0+

Premultiplying twice by the inverse of the first derivative matrix ~which exists by Assump-

tion 2~ii!! gives

Sgi3

r3k
X
i1, i2 , i3 1 6 Sgi3 , i4

r3 ~k
X
i1, i2!2 5 0, (A.5)

and noting the definition of Sgi3 , i4
r3 , for r3 5 1, + + + ,d, ~A+5! proves the result+ n

Proof of Theorem 2. Suppose initially k 5 d+ Now X has asymptotic cumulants kx,1
i1 ,

kx,2
i1, i2 , and so on, and in particular consider

kx,1
i1, i2 5 V~u!,

which is a function of the m parameters and is by definition is positive definite+ Under

the null H0 : u 5 u0; kX
i1, i2 5 S~u0! with u0 a fixed point in Vu+ Hence there exists a

positive definite matrix P0
21

5 P~u0!
21 such that

P0
21 P0

21
5 S~u0 !+
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We define

z0 5 P0 x,

so z has cumulants kz0

i1 , Ik, kz0

i1, i2 , i3 , and so on+ For any u [ Vu
'

5 $u : 6u2 u06 , dYMN %

we say z is locally canonical for families fY~ y;u0 1 dYMN !+ Moreover, for u [ Vu
' and

zu 5 P~u!x we have

Pr $6zu2 zu0 6 . d%5 O~N2102 !,

and denoting the cumulants of zu appropriately gives

kz0

I
5 kzu

I $1 1 O~N2102 !% (A.6)

for all 6I 6 5 j+

That is, the asymptotic cumulants of zu and zu0 agree+ Because, asymptotically, the ele-

ments of z0 are independent we choose the ith element of g to be a function of the ith

element of z0 alone+ Thus we have the derivatives of g~+! as

Sgi1
5 1

Sg1
1 + 0

: + :

+ + Sg1
d2 and Sgi1, i2

5 1
Sg11
1 + 0

: + :

+ + 0
2 : + + + : 1

0 + 0

: + :

+ + Sgdd
1 2 + (A.7)

Substituting ~A+7! into system ~6! gives

Sgi
ikz0 ,1

i, i, i
1 3 Sgii

i
5 0, i 5 1, + + + ,d, (A.8)

defined for the range of kz0

i1 in R
d , Vk, say, implicitly defined by the set Vu

' , such that

~A+6! holds+ To prove the existence of a solution we note first that each equation in

system ~A+8! is uncoupled from every other, and second that each is simply a linear,

homogeneous second-order differential equation+ Finally, a sufficient condition for a solu-

tion is that kz0 ,1
i, i, i is a continuous function of kz0 ,1

i1 for kz0 ,1
i1 [ Vk, and sufficient for this is

that P~u! is continuous in Vu
' + Consider

PS~u!P 5 Id +

Denoting derivatives with respect to u by Pu and Su, we have

PuSP21
1 P21SPu 5 Su ,

and Su exists in Vu
' , because b $ 3 in Assumption 1; then so does Pu+ Hence P is con-

tinuous in a neighborhood of u0+

Returning to the k . d case, we make a “pre-preliminary” transformation as

xr S ZucD, (A.9)

986 PATRICK MARSH



where Zu is the MLE for u, c 5 Bx, and B is a ~k 2 d !3 k matrix and is chosen, using the

implicit function theorem, such that

B
] Zu

]x1 + + +]xk
*

x5t

5 0 and BB ' 5 Ik2d + (A.10)

Now Zu is locally sufficient in an O~N2102! neighborhood of u0 ~see McCullagh, 1984!

in that the density of X may be factored

fX ~x;u! 5 G~ Zu;u!$1 1 O~N2102 !%,

and by ~A+10! Zu and c are independent in this neighborhood+ Hence, marginalizing locally,

noting from ~A+10! that the Jacobian of the transformation ~A+9! does not depend on B,

and then transforming from Zu to z 5 P Zu, where PP ' 5 Var~ Zu! retains the local proper-

ties required for the solution in the k 5 d case, the analysis follows similarly+ n
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